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We describe finite-difference time-domain simulations of a two-dimensional photonic crystal
implementation of a two-resonator system capable of capturing light pulses from a waveguide. As
much as 99.61% of incident pulse energy is captured in simulations. The release of near-perfect
Gaussian pulses is also demonstrated. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3141485�

Stopping light in technologically relevant systems, such
as photonic crystals, has important implications for various
optical information processing tasks, including buffering and
nonlinear signal processing.1,2 The initial theoretical proposal
for such a system requires tuning many resonators3 and has
not yet been implemented. Recent experimental studies in-
stead used either one or two dynamically tuned resonators,
and have demonstrated partial capture of pulses.4–6 In a pre-
vious paper, using coupled mode theory, we have proposed a
general theoretical condition for completely capturing pulses
with the use of several cavities.7 Related work on pulse cap-
turing in atomic media with small optical depth has been
considered in Ref. 8.

In this letter we numerically implement the condition
described in Ref. 7 by simulating a two-dimensional photo-
nic crystal system as shown in Fig. 1�a� using finite-
difference time-domain �FDTD� methods. Our simulation in-
deed demonstrates near-complete pulse capture. The
simulations have also provided a validation of the coupled
mode theory model shown in Fig. 1�b�.

We start by using this coupled mode theory model to
highlight the essential physics of pulse capture and release in
a few dynamically tuned cavities. For this system, the
coupled mode theory equations are

da1

dt
= i�1a1 + i�a2 −

�1

2
��1a1 + �2a2� + �1awg

+ ,

da2

dt
= i�2a2 + i�a1 −

�2

2
��1a1 + �2a2� + �2awg

+ ,

awg
− = − awg

+ + ��1a1 + �2a2� , �1�

where a1 and a2 are the complex field amplitudes in the
cavities, awg

+ and awg
− are the incoming and outgoing wave

amplitudes inside the waveguide, � is the direct coupling
strength due to modal overlap between the cavity modes, and
�1 and �2 are the coupling strength between each of the two
cavity modes and the waveguide.9 Notice that such a
waveguide-cavity coupling also induces an indirect coupling
between the cavities.

The key to pulse capture and release lies in the presence
of a dark state in this system. When �1=�2=�0 and �1=�2,
one of the eigenstates of the system, with a1=−a2, which has
an eigenfrequency �0−�, does not leak into the waveguide.
Suppose the system is initially in such a dark state. Then by
dynamically detuning the two resonances such that �1��2,
the energy in the cavities leaks into the waveguide, generat-
ing a released pulse. Conversely, since the underlying phys-
ics is time-reversal invariant, the time-reversed temporal de-
tuning trajectory allows for the complete capture of the time-
reversed pulse into the dark state.

We implement the system of Eq. �1� numerically by
simulating the structure shown in Fig. 1�a�. The structure
consists of a triangular lattice of air holes �r=0.275a, where
a is the lattice constant.� in a dielectric. The dielectric is
silicon ��=11.56�, and for our two-dimensional simulations
we used an effective �=8.94 appropriate for a slab with a
thickness of 0.829a.10 In the simulations, 15 grid points were
used per lattice constant. The cavities are formed by remov-
ing three holes. The waveguide is formed by removing one
row of holes. Also, the radius of the holes adjacent to the
waveguide is shrunk to r=0.24a, so that the band edge of the
waveguide is moved away from the cavity resonances, al-
lowing for design of a perfectly matched layer with low re-
flection �0.66%�.11

In the absence of modulation, this system can be de-
scribed with static values for the parameters, i.e., �1=�2
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FIG. 1. �Color online� �a� A part of the implementation of the pulse capture/
release structure in a two-dimensional photonic crystal. The black is dielec-
tric ��=8.94�, the gray is modulated dielectric, and the white is air ��=1�.
�b� A coupled mode theory model of the structure. On the left is a wave-
guide, and on the right are resonators, represented by circles. The cavities
are coupled to the waveguide with coupling constants �1 and �2, and di-
rectly coupled to each other with coupling constant �.
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=�0, �=�0, and �1=�2=�0. We calculate these parameters
by first directly exciting the cavity modes in FDTD simula-
tions. We then determine the decay rate, resonant frequency,
and relative amplitude of the eigenmodes of the system
by performing a harmonic inversion of the decaying cavity
field amplitudes.12 From this information we obtain the
coupled mode theory parameters in Eq. �1�. The calculated
values are �0

2=2.924�10−3�c /a�, �0=1.210�0
2, and �0

=0.2473�2�c /a�.
As a demonstration, we will use dynamic modulation to

capture an incident unchirped Gaussian pulse of the form

awg
+ = Ae−�t − 4T�2/2T2

cos��pt + �� . �2�

The method we develop is general, though, and can be ap-
plied to other pulse forms as well. We choose �p=�0−�0, so
that the pulse frequency matches the eigenfrequency of the
dark state. We choose �0

2T=10.33. We generate this pulse by
exciting a point current source in-plane and perpendicular to
the waveguide, located in the center of the waveguide at a
distance 30a from the cavities.

As the pulse approaches the cavities, the resonant fre-
quencies of the cavities are tuned by dynamically changing
the dielectric constant by the amounts ��1 and ��2 in the
regions within a distance 1.25a around each cavity. Figure 2
shows snapshots of the out of plane Hz field during and after
this dynamic process. The final state corresponds to the dark
state of the system.

The tuning trajectories �� j�t� are determined by combin-
ing coupled mode theory with FDTD simulations on static
systems. The procedure is as follows. We first calculate
��i=�i−�0 from coupled mode theory by numerically inte-
grating Eq. �1� in a pulse release scenario, where energy is
initially stored in the dark state, and awg

+ =0. We partition the
period of integration into many small time intervals. Within
each interval, we vary ��i�t� until the pulse released from
the cavity matches with the desired pulse form of Eq. �2� in
the same interval. For the pulse of Eq. �2�, since it is un-
chirped, we enforce the condition �a2���2=−�a1���1, so that
the instantaneous frequency of the released pulse is kept ap-
proximately fixed. As discussed above, the pulse capture tun-
ing curve is the time reverse of the pulse release curve. To
determine �	 j from ��i, we simulate structures with various
dielectric modulations, and perform the same parameter ex-
traction procedure as outlined above.

The generated ��i�t� is shown in Fig. 3�a�. The use of
such modulation results in capturing of pulse with near-unity
efficiency. We determine the capture efficiency based on flux
measurements. The flux is measured through a vertical line
halfway between the source and the cavities, and integrated
in time to yield the total energy ET transferred from the
source to the cavities. To calculate a capture efficiency, we
find the total energy in the pulse EP by measuring the time-
integrated flux of an identically excited pulse through an
unimpeded waveguide with no termination or cavities. The
final result is a capture efficiency ET /EP=99.61%.

For the purpose of generating the temporal trajectory of
the tuning, we use time-independent parameter values �1
=�2=�0 and �=�0 in the coupled mode equations. The data
extraction procedure, however, has indicated a dependency
of these coupling constants on �� j �as shown in Figs.
3�b�–3�d�� and hence a temporal dependency of these param-
eters. Taking this temporal dependence into account, we nu-
merically integrated the coupled mode Eq. �1� and compared
to FDTD simulations. Figure 4�a� shows excellent agreement
between the predicted �coupled mode theory� and measured
�FDTD� total energy in the two cavities as a function of time.
The coupled mode theory predicts a capture efficiency of
99.63%, which agrees well with the measured FDTD value.
In comparison, if the temporal dependency in coupling rates
is not taken into account, the predicted capture efficiency is
99.98%.

Once energy is stored in the cavities, the time-reversed
detuning curve should result in the release of a Gaussian
pulse. Figure 4�b� shows the predicted and measured field
amplitude in the waveguide as a function of time for a pulse
release simulation. The amplitude of the released pulse devi-
ates from the predicted amplitude by less than 2% of the
maximum amplitude during the process.

FIG. 2. �Color online� The Hz field at �a� t=0.3 T and �b� t=7.1 T.
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FIG. 3. The parameters used in the simulations as a function of time. �a� The
dielectric modulation curves for the two cavities, used in FDTD simulations.
�0 is the dielectric constant in the absence of modulation, not the value in
vacuum. �b� The resulting resonant frequency detuning, used in coupled
mode simulations. �c� The coupling rate of the two cavities to the wave-
guide. �d� The intercavity coupling rate.
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FIG. 4. Comparison of coupled mode theory and FDTD simulation results.
�a� The energy in the two cavities in a pulse capture simulation. The black
curve is the FDTD result and the circles are the coupled mode theory pre-
diction. �b� The pulse amplitude in a pulse release simulation. The black
curve is the FDTD result and the circles are the coupled mode theory
prediction.
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The system parameters we chose were based on compu-
tational considerations rather than physical implementation
issues. With a lattice constant a=370 nm, the parameters
correspond to a carrier frequency of 200 THz and a pulse
width of T=4 ps. Longer pulse widths, which are more ame-
nable to practical implementation with available index of
refraction modulation rates,13,14 may be obtained by increas-
ing �0

2T.7

This scheme requires that the two cavities have very
close resonant frequencies. The presence of fabrication im-
perfections typically leads to cavities with substantial fre-
quency splitting. Nevertheless, a recent work has overcome
this problem through the use of differential thermal tuning.10

The scheme also requires independent tuning of the two
cavities. For this purpose we note that the carrier diffusion
length in etched Si is in the submicron scale,15 shorter than
the typical distance between the cavities. Finally, in the pres-
ence of intrinsic cavity loss, while the tuning needs to occur
within a time scale shorter than the cavity lifetime, there
always exists a tuning scheme that results in negligible re-
flection, and which maximizes the amount of energy
captured.7
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