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a b s t r a c t

Near-field electromagnetic heat transfer is of interest for a variety of applications,
including energy conversion, and precision heating, cooling and imaging of nano-
structures. This past decade has seen considerable progress in the study of near-field
electromagnetic heat transfer, but it is only very recently that numerically exact methods
have been developed for treating near-field heat transfer in the fluctuational electro-
dynamics formalism for non-trivial geometries. In this paper we provide a tutorial review
of these exact methods, with an emphasis on the computational aspects of three
important methods, which we compare in the context of a canonical example, the
coupled dielectric sphere problem.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat will flow between bodies at different tempera-
tures. Among the mechanisms of heat transfer, radiative
electromagnetic heat transfer is special in that it may
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transmit heat through vacuum. When certain classes of
dielectric bodies are in close proximity, so that their
separation falls below the characteristic thermal wave-
length λT ¼ hc=kBT , we observe the near-field regime,
where the heat flow can be enhanced beyond the con-
straint of the Planck law that governs far-field heat
transfer. Such an enhancement has been demonstrated in
a number of recent experiments [1–4], leading to the
prospect of applying near-field heat transfer in areas
including non-contact radiative cooling [5], thermal ima-
ging [6,7], thermal circuit elements [8–11], as well as
energy conversion and thermo-photo-voltaics [12–16].

These experimental developments have in turn moti-
vated theoretical studies of the mathematical and computa-
tional underpinnings of near-field heat transfer. What has
emerged is a clear need for exact methods to calculate
electromagnetic heat transfer in the fluctuational electrody-
namics formalism [17]. It is important to state up front that
the quantum electrodynamics formalism yields the same
results, provided the thermodynamic interpretation is appro-
priate; in particular it must be assumed that the sources are
in local equilibrium with a thermal reservoir [18].

Using the fluctuational electrodynamics formalism, we can
calculate heat flux between two bodies separated by a vacuum
gap, as shown in Fig. 1a. The problem is completely specified
by the temperature distribution TðrÞ and relative dielectric
function of the materials, ϵðr;ωÞ ¼ ϵ′ðr;ωÞ þ iϵ″ðr;ωÞ. We work
with the time-harmonic form of Maxwell's equations, with
implicit ∝e−iωt time-dependent factors, so a positive imagin-
ary part of the dielectric functions, ϵ″ðr;ωÞ, corresponds to
Fig. 1. (a) Near-field heat transfer between two non-planar bodies V1 and V2 wi
temperatures T1 and T2, respectively. (b) Schematic of a fluctuational electrod
correlations in V1 are specified by the fluctuation–dissipation theorem, and ar
correlations, and thus the ensemble-averaged Poynting vector on the boundary
material loss. We limit our discussion to the case of homo-
genous dielectric bodies, so that ϵðr;ωÞ ¼ ϵnðωÞ in the various
regions n∈0;1;2. Free space corresponds to n¼0, and is
spatially unbounded, with ϵ0 ¼ limδ-01þ δi. The dielectric
constants are typically assumed to be local, i.e. depends on the
frequency but not the wave vector of the excitation. One
expects that such a local dielectric function should be applic-
able unless one is in the deep near-field regimewhere the size
of the vacuum gap is reduced to a few nanometers [7,19]. We
note that in this regime, other mechanisms of heat transfer
may come into play, such as phonon transport [20], but we do
not consider these mechanisms in this review. Regarding the
temperature distribution, we assume that the temperature is
uniform in each region; we label these temperatures Tn.

The sources of electromagnetic heat transfer are ther-
mally fluctuating current density distributions Jiðr;ωÞ
within the bodies; see Fig. 1b. For the purpose of calculat-
ing ensemble-averaged heat transfer in a stationary sys-
tem, it suffices to know the two-point spectral correlation
function of the current densities, which for a system in
local thermal equilibrium is given by the fluctuation–
dissipation theorem [21–23]. We use the time-harmonic
form of the theorem, and thus we already assume a
stationary process. Here and throughout, an overbar will
denote an ensemble average. The theorem holds in general
for dissipative linear systems. In the present case, the
dissipation is due to dielectric losses, and we write

Jiðr;ωÞJnkðr′;ωÞ ¼
4
π
ωΘðω; TÞδðr−r′ÞIm½ϵðr;ωÞ�ϵ0δik ð1Þ
th dielectric functions ϵ1 and ϵ2, separated by vacuum and maintained at
ynamics calculation in the Green function picture. The current–current
e related via the dyadic Green functions GEE and GHE to the field–field
of V2.
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where the mean spectral thermal energy is given by
Θðω; TÞ ¼ ℏω=ðexpðℏω=kBTÞ−1Þ, and i and k label different
spatial directions. With the sources specified, the E and H
fields can be expressed in terms of dyadic Green functions
(also referred to as Green dyads) for the time-harmonic
Maxwell's equations,

Eðr;ωÞ ¼ iωμ0

Z
GEEðr; r′;ωÞ � Jðr′;ωÞ ð2Þ

Hðr;ωÞ ¼
Z

GHEðr; r′;ωÞ � Jðr′;ωÞ ð3Þ

We will make use of the concise operator notation
whenever possible [24]. A brief review on this notation can
be found in Appendix A. For example, Eqs. (1)–(3) above
become

jJ〉〈Jj ¼ 4
π
ωΘ Im½ϵ�ϵ0I ð4Þ

jE〉¼ iωμ0GEEjJ〉 ð5Þ

jH〉¼GHEjJ〉 ð6Þ
In Eq. (4), I is the identity operator over all indices,
including a delta

R
dr δ3ðr−r′Þ� term. In general, ϵ is a

tensor, and the operator notation is indifferent to the form
of this tensor. In our computational examples, though, we
will assume an isotropic dielectric, which is adequate for
describing most metal and dielectric systems.

The spectral energy flux into V2 due to sources in V1 can
be calculated by integrating the associated time-harmonic
Poynting vector over the surface ∂V2

SðωÞ ¼ 1
2
Re
Z
∂V2

dn̂ � Eðr;ωÞ �Hnðr;ωÞ ð7Þ

Here, n̂ is the outward pointing normal. The correlation of
the E and H fields, due to sources inside V1, follows from
Eqs. (1)–(3) as

jE〉〈Hj ¼ iωμ0GEEjJ〉〈JjG†
HE

¼ i
4
π
ðω=cÞ2Θðω; T1ÞIm½ϵ1�GEEG

†
HE ð8Þ

The total heat flux is just the integral of the spectral heat
flux in Eq. (7), S¼ R∞

0 dω SðωÞ. Fig. 1b displays a schematic
of this formalism.

One can reformulate Eq. (8) as a double volume
integral, which can be absorbed into a trace in the operator
formalism. Following Krüger et al. [24, Section III.B], we
may write this as

SðωÞ ¼ 2
π
Im Tr½jE〉〈ðωμ0G0

EEÞ−1Ej� ð9Þ

where G0
EE is the homogenous, free-space electric field

Green dyad.
Of course, heat flows from V2 to V1, as well, and the

physically measurable quantity is the net heat transfer.
Fortunately, reciprocity of the Green functions manifests a
necessary consequence of detailed balance: at equilibrium
the net heat transfer must vanish, and so when T1¼T2, the
heat flux into V2 due to sources in V1 must equal the heat
flux into V1 due to sources in V2. From a computational
standpoint, then, we may therefore limit our attention to
sources in V1, effectively treating V2 as a zero temperature
body. To recover the net heat flux when T2≠0, we simply
replace Θðω; T1Þ by Θðω; T1Þ−Θðω; T2Þ.

A direct implementation of the fluctuational electro-
dynamic treatment of near-field electromagnetic heat
transfer typically involves integration over a large number
of sources and frequencies, which for arbitrary geometries
can be very computationally demanding. While the basic
formalism was developed in the 1950s [17], for several
decades afterwards exact calculations of near-field elec-
tromagnetic heat transfer were restricted to planar
geometries [25,26]. The theory for planar surfaces has
been subsequently extended to treat, for example,
structures with surface roughness [27] and nano-porous
materials [28].

For non-planar geometries, a number of approximate
methods have been developed [2,29–32]. The dipole
approximation was developed to treat the heat transfer
between a deep sub-wavelength nano-particle and a
planar substrate [29,31]. The proximity approximation,
which was also extensively applied, approximates the
two bodies in terms of a series of parallel planes [2]. One
should note however that the proximity approximation is
an uncontrolled approximation in the sense that there is
no systematic process through which one can improve the
approximation towards an exact result. Also, the proximity
approximation does not reproduce the correct far-field
results when the two bodies are far apart from each
other [32].

One of the most significant recent developments in the
past few years is the developments of exact numerical
calculations of near-field heat transfer between dielectrics
in non-planar geometries. In this paper, we provide a brief
tutorial review of such developments, with an emphasis
on the computational aspects involved. We begin with the
partial-wave scattering matrix approach in Section 2,
which is well suited for treating highly symmetric geome-
tries such as coupled-sphere and sphere-plate. In Section
3, we discuss the use of the boundary element method
(BEM). In Section 4, we discuss the finite-difference time-
domain method, for treating arbitrary geometries in a
statistical manner. Finally, in Section 5, we compare all
these methods with an illustrative example, where we
solve a coupled-sphere problem with all three different
methods.

2. Partial-wave scattering method

2.1. Green function picture

The coupled microsphere geometry was the first non-
planar geometry treated exactly with the fluctuational
electrodynamics formalism. The approach of Narayanas-
wamy and Chen in [33] was to calculate the Green dyad's
in Eq. (8) directly, by matching boundary conditions in a
vector spherical harmonic partial-wave expansion, and
perform the source volume and flux surface integration
using orthonormality properties of this basis. For concre-
teness, our discussion below will often make reference to
this original coupled-sphere problem. We will use a more
general notation, though, closely following the work of
Krüger et al. [34; 35, Section IV; 24, Section VII]. We aim to



C.R. Otey et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 132 (2014) 3–116
emphasize how this intuitive Green function picture can
be related to an elegant field-correlator picture, which
actually makes no reference to the sources.

To set notation, we work below with a basis of vector
wave function solutions fjΦα〉g to the Maxwell equation,

∇� ∇� jΦα〉−ðω=cÞ2jΦα〉¼ 0 ð10Þ

These basis functions span a Hilbert space, with the
usual inner product [36]. Here, and throughout the paper,
we sum over repeated indices unless otherwise noted in
the text. A key property of these functions is that they have
a well-defined and coordinate-free relationship to the
free-space Green dyads, e.g.

G0
EE ¼ iðω=cÞjΦ′out

α 〉〈Φ′reg
α j ð11Þ

Referring now to the coupled-sphere example, we use a
vector spherical harmonic basis, and α∈fl;m; Pg labels the
degree l, orderm, and polarization P (Mwave or Nwave) of
the orthonormal basis of spherical harmonics, and
jΦ′l;m;P〉¼ jΦl;−m;P〉.

G0
HE can be decomposed in a similar manner, with the

polarization for the r partial wave swapped (M waves
become N waves and vice versa), which we denote with�

the replacement jΦ〉-jΦ〉

G0
HE ¼ iðω=cÞ2jΦ

� ′out

α 〉〈Φ′reg
α j ð12Þ

The inhomogenous Green functions can be obtained by
applying a scattering operator O to the free-space Green
function G0

EE , which acts on the outgoing partial-wave
only, i.e.

GEE ¼OG0
EE ð13Þ

GEE ¼ iðω=cÞOαβjΦ′out
β 〉〈Φ′reg

α j ð14Þ

O is defined to act on a partial-wave solution of the
Maxwell equations in homogenous space (the incident
field), and return the total field when V1 and V2 are present
[37,24].

If we restore the position dependence of the fields and
dyads, we may write the field correlations, due to sources
inside V1, as

〈rjE〉〈Hjr′〉body ¼
4
π
ðω=cÞ2Θðω; T1Þ

�
Z
V1

dr″ ϵ″1ðω=cÞ3〈r″jΦ′reg
α 〉〈Φ′reg

β jr″〉
� �

�Oαγ〈rjΦ′out
γ 〉〈Φ

� ′out

ρ jr′〉O†
βρ ð15Þ

Note that the volume integral over sources is now
independent of the scattering, and can be performed
analytically using orthonormality of fjΦα〉g. The remainder
of the computation is thus reduced to determining the
scattering operator Oαβ . It suffices to know the T operators
T1 and T2 for the isolated bodies in a suitable basis, and
the translation operators U12 and U21, which express the
linear relationship between the partial-waves sourced by
body 1 and body 2, in their respective bases. The T

matrices for the individual bodies, which contain the
reflection coefficients for the partial waves in the basis
for that body, are defined to satisfy

jΦ′tot
α 〉¼ jΦ′reg

α 〉þ TαβjΦ′out
β 〉 ð16Þ

where jΦ′tot
α 〉 represents the total field resulting from

scattering the homogenous free space solutions jΦ′reg
α 〉 in

the presence of the body.
In the coupled-sphere problem, the U operators are

matrices with elements given by the vector translation
addition theorem which expresses vector spherical har-
monics centered at V1 in terms of a similar basis with
origin at the center of V2. We arrive at a linear system forO
by expressing waves sourced from V1 and V2 in a single
basis using the T and U matrices,

O¼ ðI−T1U12T2U21Þ−1 ð17Þ
In the coupled-sphere problem, we truncate the α basis to
f1…lmax;−mmax…mmaxg. Because of azimuthal symmetry in
this case, we find that O splits into blocks, indexed by m.
Each m contribution involves a linear solve for 2lmax

unknown partial wave coefficients.
Eq. (15) expresses the field correlations in the partial-

wave basis for body 1. In order to obtain the partial-wave
coefficients in the basis for body 2, we multiply by
ðIþ T2U21Þ. Then we may easily perform the surface
integral of the Poynting flux over ∂V2 using orthonormality
of the body 2 basis. A similar procedure can be used in the
sphere-plate geometry [34,38,39], and in principle for
other systems where orthonormality of the bases can be
used to analytically perform the spatial integrals.
2.2. Field correlator picture

Alternatively, one can avoid explicit reference to the
current–current correlation function and the Green dyads,
in favor of field–field correlators. In Section III.A of [24],
Krüger et al. derive an expression for the radiation from a
body in terms of the single body T-matrix. This in turn
allows them to write the heat transfer as the trace of a
matrix, which is constructed entirely from scattering T and
translation U matrices. Here we briefly outline the idea,
closely following their original arguments, but with a
slightly different notation.

The starting point is the fluctuation–dissipation theo-
rem for the electric field correlator in the absence of the
body [35,24]. In thermal equilibrium the bodies are at the
same temperature and there is no net heat flux, and the
fluctuation–dissipation theorem applied to the electric-
field fluctuations yields

jE〉〈Ejeq ¼ μ0ωð4=πÞΘðω; TÞIm½GEE�
¼ aðω; TÞRe½jΦreg

α þ TαβΦout
β 〉〈Φ′reg

α j�
¼ aðω; TÞjΦreg

α þ TαβΦreg
β 〉〈Φ′reg

α j ð18Þ

where aðω; TÞ ¼ 4ω2

πϵ0c3
Θðω; TÞ.

One can decompose the field correlator in Eq. (18):

jE〉〈Ejeq ¼ jE〉〈Ejbody þ jE〉〈Ejenv ð19Þ
The environmental correlator is sourced by the free-

space region V0 [22,24,35,30], and can be expressed by
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applying T-matrices to the partial-wave expansion of G0
EE ,

jE〉〈Ejjenv ¼ aðω; TÞjΦ′reg
α þ TαβΦ′out

β 〉〈Φ′reg
α þ TαβΦ′out

β j ð20Þ
The correlator due to sources integrated inside the

body then follows from Eq. (19),

jE〉〈Ejbody ¼ aðω; TÞRαβjΦ′out
α 〉〈Φ′outn

β j ð21Þ

where the R matrix contains all of the information about
emission, and is defined in terms of the T�matrix, as

R¼−1
2ðT þ T†Þ−TT† ð22Þ

The presence of the 2nd body can be accounted for by
applying the Oαβ scattering operator from Eq. (17) to each
field in the tensor product in Eq. (21). This gives the
inhomogenous field correlation, and as a result, a trace
formula for SðωÞ may be written as

SðωÞ ¼ yðω; TÞ2 2
π
TrfRn

2WR1W
†g ð23Þ

where W¼ ðI−U21T1U12T2Þ−1U21.
From a computational perspective, the calculation of

the W�matrix is essentially the same as the calculation of
O, described in the previous section. One needs to deter-
mine the reflection coefficients and translation operators
for the system and solve a linear system with a truncated
basis. However, the theoretical framework here is consid-
erably more elegant, and can be generalized to any
coordinate system (see [24, Section VII]). Furthermore,
for arbitrary geometries, one could calculate elements of
the T-matrices for each body separately using any numer-
ical method at one's disposal, and then use these same
trace formulae [37]. Of course, the coordinate systems for
each body must be appropriate for the geometry. If there
exists a plane that does not intersect either of the bodies,
then a plane wave basis will work [40]; if a body can be
enclosed by sphere which does not intersect the other
bodies, then a spherical basis is appropriate for that body's
T�matrix.

3. Boundary element method

With the boundary element we consider, instead of
partial-wave solutions to the homogenous Maxwell's
equations, the scattered fields which are sourced by the
tangential E and H fields on the boundaries of the bodies,
considered as equivalent current sources. Given any inci-
dent field configuration, these tangential surface fields are
uniquely determined, and they completely specify the
scattered fields.

More specifically, we introduce fjfα〉g, a set of
orthonormal vector-valued functions with support on
∂V1;2. We then expand the surface currents

jn̂ �H〉
jE� n̂〉

 !
¼ ηαjfα〉 ð24Þ

and the tangential fields

jEt〉

jHt〉

 !
¼ ϕαjfα〉 ð25Þ

The coefficients for the surface currents ηα and the
tangential fields ϕα become the objects of interest in the
well known boundary element method (BEM) [41–43]. The
BEM provides an efficient means of relating incident and
scattered fields on ∂V1;2.

Using the BEM formalism, we can approach the near-
field heat transfer problem from two pictures, very much
the same as in the previous section. The first is a direct
approach based on the Green function picture, i.e. calcu-
lating the Green dyads in Eq. (8) explicitly, and integrating
over all source configurations. The second approach
involves constructing the non-equilibrium, inhomogenous
field correlators from the equilibrium, homogenous Green
functions and scattering operators.

3.1. Green function picture

In the Green function picture, we consider a set of
volumetric current density distributions Ji with support
inside V1, as in Fig. 1 and solve for the fields Ei and Hi on
∂V2 (See again Fig. 1b). The superscript i indexes this set
of current sources. We follow the notation of Reid et al.
[42–44], and carry over some content from Chew [45].

For each Ji, the boundary element method gives a linear
system

Mαβη
i
β ¼ ϕi

α ð26Þ

where

M¼
Zϵ1
11 þ Zϵ0

11 Zϵ0
12

Zϵ0
21 Zϵ2

22 þ Zϵ0
22

 !
ð27Þ

The Zϵ blocks contain interactions between the basis
functions via the Green dyads Gϵ

EE and Gϵ
EH for a homo-

genous space with dielectric constant ϵ,

ðZϵ
mnÞαβ ¼ fα

�����
iωμ0G

ϵ
EE Gϵ

EH

−Gϵ
EH iωϵϵ0Gϵ

EE

�����fβ
+
;

r∈∂Vm

r′∈∂Vn
:

*
ð28Þ

The solution of Eq. (26) is sufficient for determining
SiðωÞ as

SiðωÞ ¼ 1
2

Z
∂V2

dn̂ � Ei �Hin

¼ 1
4

Z
∂V2

dS
E
H

� �
� n̂ �Hn

En � n̂

 !

¼ 1
4
TrfðZ2η

2;iÞðη2;iÞ†g ð29Þ

In the last line, η2;i are those components of η that lie on
the surface of body 2, and we have used the relation
ϕ2;i
α ¼ ðZ2Þαβη2;iβ . The integral is approximated as a trace over

all basis functions with support on ∂V2.
With the BEM described above, we can calculate the

matrix M once per frequency, invert it, and use it to
calculate SðωÞ∝∑iS

iðωÞ for a complete set of ϕi associated
with dipole sources distributed uniformly throughout V1.

3.2. Field correlator picture

There is an interesting connection between the BEM
formalism and the field correlator picture discussed in
Section 2.2 which gives a direct route to a trace formula
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similar to Eq. (23),

SðωÞ ¼ yðω; TÞ2
π
Tr Q 2M

−1Q 1ðM−1Þ† ð30Þ

where

Q 1 ¼
1
2

Zϵ1
11 þ ðZϵ1

11Þ† 0
0 0

 !
ð31Þ

Q 2 ¼
1
2

0 0
0 Zϵ2

22 þ ðZϵ2
22Þ†

 !
ð32Þ

The M and Z matrices are precisely those defined in Eqs.
(27) and (28).

This formula was first derived in [44] without reference
to the correlator picture. But the form of Eq. (30) suggests
a connection to the trace formula (23) derived in Section 2.
In fact, one can construct Eq. (30) as follows.

First consider a homogenous space with ϵðrÞ ¼ ϵ1. Note
that this is the material that composes the first body, not
vacuum. The equilibrium field correlations can be written
in matrix form, as in the vacuum case,

ϕaϕ
n

b

� �
eq

¼ fa
jE〉〈Ej jE〉〈Hj
jH〉〈Ej jH〉〈Hj

�����fb
+

eq

������
*

¼ yðω; TÞ fa
ωμ0 Im½Gϵ1

EE� i Im½Gϵ1
HE�

i Im½Gϵ1
EH � ωϵ1 Im½Gϵ1

E �

�����fb
+�����

*

¼ yðω; TÞ1
2

Zϵ1
11 þ ðZϵ1

11Þ†
� �

aβ ð33Þ

Here we have used the definition of the Z matrices in Eq.
(28), and reciprocity of the Green dyads. The equilibrium
field correlations in Eq. (33) contain contributions from
both the body and from the environment.

We now turn our attention to the correlation of the
surface currents due to sources in body 1. Eq. (26) provides
the necessary connection between the homogenous (inci-
dent) fields and inhomogenous (incident plus scattered)
fields. The key step is to restrict the incident fields to body
1, so that the environmental contribution to the equili-
brium correlation is not included when solving for the
inhomogenous surface currents. This gives a modified BEM
equation,

M
η1

η2

 !
¼ I 0

0 0

� �
ϕ1

ϕ2

 !
ð34Þ

From Eqs. (33) and (34), we can derive the correlation
of the surface current coefficients,

ηηn ¼M−1 I 0
0 0

� �
ϕϕn

eq
I 0
0 0

� �
ðM−1Þ†

¼ yðω; TÞM−1Q 1ðM−1Þ† ð35Þ
We finally arrive at Eq. (30) by appalying to the left of

Eq.(35), which isolates the scattered fields on aV2, as in Eq.
(29). The BEM trace formula (30) has the same form as the
T�matrix formula in Eq. (23). However, the BEM formula
is not merely a special case of the T�matrix formula. The
Q matrices are associated with the equilibrium, homo-
genous fields in V1, whereas the R operators in Eq. (23) are
associated with the single body radiation fields.
The BEM formalism can also be used to calculate
T�matrix elements for bodies which do not have the same
symmetry as the partial-wave coordinate systems. This
may be accomplished by solving the BEM problem in Eq.
(26) Mγβηαβ ¼ 〈fγ jΦα〉 for each partial-wave Φα in the trun-
cated basis associated with the coordinate system. Then Tn

can be expressed as Tn ¼ Zϵn
nnη

α. This type of procedure was
first used by McCauley et al. for calculating heat transfer
between a probe and a plane [37], using a cylindrical
plane-wave basis.

4. Finite difference time domain method

In this section we describe how the finite-difference
time-domain (FDTD) method [46] can be used to calculate
heat transfer by incorporating the Langevin approach to
Brownian motion [47–49]. In this approach, we model the
polarization response PðtÞ of a system to a local electric
field EðtÞ and a random force term KðtÞ using the following
equation of motion:

d2P

dt2
þ γ

dP
dt

þ ω2
0P¼ sEþ K ð36Þ

where γ is the frictional coefficient of the polarization
system, ω0 is its resonance frequency and s is its strength.
The random force term KðtÞ is a fluctuating source that
gives rise to thermal radiation.

After discretizing Eq. (36) and specifying KðtÞ, we can
perform time-stepping updates of PðtÞ and EðtÞ using the
conventional FDTD algorithm [47]. From this numerical
simulation of thermal emission, we can calculate the heat
flux spectrum in an arbitrarily shaped geometry.

We first describe how the random force term KðtÞ can
be specified in order to model the thermal fluctuations in
the electromagnetic field. The polarization component of
the displacement field D¼ ϵ0Eþ P contains a random
component with spectral amplitude [48]

Q ðr;ωÞ ¼ Kðr;ωÞ
ω2
0−ω2−iγω

ð37Þ

Q ðr;ωÞ is related to the current Jðr;ωÞ ¼−iωQ ðr;ωÞ and

ϵ″ðωÞ ¼ Im ϵ0 þ
jPj
jEj

� �
¼ sγω

ðω2
0−ω2Þ2 þ γ2ω2

:

By combining the fluctuation–dissipation theorem for the
currents in Eq. (1) with Eq. (37), we find the correlation
function for Kðr;ωÞ [48],

Kαðr;ωÞKn

βðr′;ωÞ ¼
4
π
sγΘðω; TÞδαβδðr−r′Þ: ð38Þ

This expression for the K correlation function gives us
information about the distribution of the random force
term. For FDTD simulations, we generally need Fourier
transform equation (38) in order to get the time-domain
variance jKαðr; tÞj2 of the random force term distribution.

However, if one were to directly implement Eq. (38),
the frequency dependency of the correlator needs to be
implemented in terms of a temporal convolution due to
the Θðω; TÞ term, which is computationally expensive.
Instead, the key idea is to use an alternative source
K′ðr;ωÞ ¼Kðr;ωÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðω; TÞ

p
with a white noise spectrum,



Table 1
A comparison of some computational aspects of three methods for
calculating heat transfer between coupled spheres.

Method Error Total
runtime

Total
memory

Time
complexity

Space
complexity

Partial-
wave

0 3 s o1 Mb Oðζ4Þ Oðζ2Þ

BEM 0.3% 100 h 1.8 Gb Oðζ6Þ Oðζ4Þ
FDTD 14% 4000 h 200 Mb Oðζ4Þ Oðζ3Þ
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where the correlation is instantaneous in time [47]. Using
a random force term with correlation function
K′αðr′;ωÞK ′n

α ðr″;ωÞ in the FDTD method will allow us to
simulate a normalized heat flux spectrum SðωÞ=Θðω; TÞ.
The actual heat flux spectrum SðωÞ is then calculated by
simply multiplying this normalized heat flux spectrum by
the known function Θðω; TÞ.

The discretized correlation function of K′ðr;ωÞ is

K′αðr;ωÞK ′n
β ðr′;ω′Þ ¼

4sγ
πΔV

δαβδωω′δrr′: ð39Þ

Eq. (39) can be trivially Fourier transformed into the time-
domain:

K′αðr; tÞK ′n
β ðr′; t′Þ ¼

4sγ
πNΔV

δαβδtt′δrr′ ð40Þ

where N is the number of time steps used in the Fourier
transform. Hence, by performing at each time step a
random drawing of K′ from a distribution with variance
jK′αðr; tÞj2 , we can simulate a normalized thermal emission
with normalized heat flux spectrum SðωÞ=Θðω; TÞ. Since the
specification of the variance jK′αðr; tÞj2 is the only con-
straint on the distribution of K′, we can choose a uniform
distribution with a range 7 ð12sγ=πNΔVÞ1=2.

Finally, we note that although in this section we used a
permittivity that is modeled by a single-pole Lorentz
function, the method discussed can be implemented with
material permittivity that has multiple poles.
5. Comparison of computational approaches

In order to provide a concrete basis for comparison of
the computational aspects of the three methods (partial
wave scattering, BEM and FDTD), we choose a simple test
case: coupled dielectric spheres. In our example, both
spheres have a radius a¼800 nm, are separated by a
vacuum gap d¼200 nm, and the dielectrics are n-doped
silicon with a carrier concentration n¼1020 cm−3, modeled
using [50]. The dielectric functions are shown in Fig. 2a.
The small sphere size is chosen in part so that all methods
can converge in a reasonable time.

All these numerical methods require some discretiza-
tion or truncation of the problem which introduces error.
In the case of BEM, the basis we use in our implementa-
tions is the well known RWG (Rao–Wilton–Glisson) func-
tions [51,41], which are defined on a triangulated mesh of
the object boundaries. For the FDTD method we use a non-
uniform 3D Cartesian grid. In both methods, the intended
geometry is only approximated in the spatial discretization
procedure. At a more fundamental level, the relevant
length scales in the problem must be resolved by incor-
porating a sufficient number of unknowns in the compu-
tation, so we can characterize the behavior of these
methods in terms of the scaling behavior of time and
memory costs as we vary a and d. As the bodies grow,
more unknowns will be required to account for the
additional degrees of freedom in the fields. Also, as the
bodies are brought closer together, more unknowns are
required to resolve the field variations due to near-field
interactions. In the following, we will characterize the
complexity of the system in terms of the single dimen-
sionless parameter, ζ¼maxfk0a; a=dg [52].

The numerical results of the three methods, BEM,
scattering and FDTD, are shown in Fig. 2b. A summary of
the computational performance of the three methods is
shown in Table 1. All of our calculations were performed
on the SDSC Trestles linux cluster [53].

The scattering method acts as a benchmark of the
coupled-sphere problem. There is no discretization error,
and the system is small enough that numerical conver-
gence to within 1�10−8 can be achieved with fewer than
100 unknowns. The complexity of the scattering method is
favorable as well, for highly symmetric geometries. In a
system with azimuthal symmetry, each m¼ 0…mmax gives
a separable problem which requires N¼ 2lmax∝ζ
unknowns. The linear solve is O(N3) time complexity, but
in practice, the time spent calculating the N2 matrix
elements far exceeds the time for the linear solve, pro-
vided N≲104. In general, mmax∝ζ, as well, so for azimuthal
symmetric problems, the total time complexity is Oðζ3Þ in
practice. In the ζ-∞ limit, though, the linear solve
eventually dominates so the time complexity is Oðζ4Þ.
Space complexity is Oðζ2Þ, and is not at all prohibitive.

The number of unknowns (edges) in the BEM scales
with the area which needs to be resolved, i.e. as Oðζ2Þ, so
often the limiting computational resource is memory. For
our small test case, we used 7000 unknowns, which
requires ≈2 Gb to store all the relevant matrices. This is
an intentional test to approach maximum problem size we
can easily carry out in a 32-bit memory address space. We
do not need this many elements to achieve good accuracy.
This computation is roughly equally divided between
computing BEM matrix elements, and performing matrix
operations. For larger systems, matrix operations will
dominate the time complexity. The BEM approach gives
nearly identical numerical results, whether using direct
volume integration or the closed form boundary trace
formula, but the latter is more time efficient for larger
systems, and there is no ambiguity in how to choose the
sources Ji in the volume integration.

The FDTD method is of a statistical nature; the data
shown is an average taken over 40 independent runs, each
of which takes ≈100 h to complete. Even after 40 runs, the
numerical results have not converged, but the results are
consistent with the other methods. Despite these short-
comings, the FDTD method is a valuable tool due to the
simplicity of treating arbitrary geometries and inhomo-
genous dielectrics.

At least two things are worth reemphasizing. First,
FDTD is at volumetric method, it actually requires less
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The inset graphic is an artistic rendering of theoretical electric field
intensity at a hot and cold sphere. (b) Spectral heat transfer SðωÞ
calculated using three different computational methods.
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memory because the system is sparse, whereas our BEM
approach results in a dense matrix. Second, BEM also has
poor worst case scaling in time complexity, but performs
relatively well in a realistically sized system, and there are
optimizations which can improve this to ζ4 log N using the
pre-corrected FFT algorithm [54,55], or better if adaptive
meshes or hierarchical matrices are also used [56].

6. Conclusion

Precision probes of near-field heat transfer have largely
focused on plate–plate [3] or sphere–plate [1,2,5] geome-
tries. However, there are important structures which
cannot be treated efficiently with the methods described
here. For example, one of the most exciting possible
applications of near-field heat transfer is near-field
thermo-photo-voltaics. The design of effective near-field
emitters and absorbers requires tuning the spectral heat
transfer between nano-structured surfaces. There has been
some work towards this end in 1D grating geometries,
using the plane-wave scattering approach [57,58] and the
FDTD [49] methods. For more general periodic systems,
periodic extensions of the BEM [59] may prove to be an
efficient alternative. There is evidence that for nano-scale
systems, non-local dielectric effects may come into play
[7]. If these non-local effects can be modeled computa-
tionally in arbitrary geometries, then light may be shed on
near-field heat transfer experiments and the properties of
nano-scale dielectrics in general. Certain non-local models
[60] can be implemented by modifying the homogenous
space Green's function. Since the BEM matrices are con-
structed from homogenous space Green's functions, BEM
methods could perhaps be developed to deal with arbi-
trary non-local dielectrics.
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Appendix A. Electromagnetic operator notation

We employ the operator algebra in this paper to make
the notation compact. Here we provide a brief discussion
of this notation. As an example, in the dyad-vector nota-
tion, the electric field EðrÞ relates the current density JðrÞ
through a dyadic Green function,

EiðrÞ ¼
Z

dr′ ∑
j
GijJjðr′Þ ðA:1Þ

This formula describes a linear map between JðrÞ and
Eðr′Þ. In operator language we write this as

jE〉¼GEEjJ〉 ðA:2Þ
From any two states ϕiðrÞ and ψ jðr′Þ, we can define an
operator

Oijðr; r′Þ≡ϕn

i ðrÞ⊗ψ jðr′Þ ðA:3Þ

We can write this in the operator notation as

O≡jϕ〉〈ψj ðA:4Þ
Finally, the trace is defined

Tr O≡∑i

Z
dr Oiiðr; rÞ ðA:5Þ

where integration occurs over all space.
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