
PHYSICAL REVIEW B 84, 245431 (2011)

Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate
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We present a numerically exact calculation of electromagnetic heat transfer between a dielectric sphere
and plate. We compare the calculation to a recent experiment. Our calculations unify various approximations
previously used to treat this problem, and provide a basis for new physical insights into the design of nanoscale
thermal transfer experiments.
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I. INTRODUCTION

Near-field electromagnetic heat transfer holds great po-
tential for the advancement of nanotechnology. Whereas far-
field electromagnetic heat transfer is constrained by Planck’s
blackbody limit, the increased density of states in the near field
enhances heat transfer rates by orders of magnitude relative to
the conventional far-field limit.1–3 Such enhancement opens up
new possibilities in numerous applications,4 including thermal
photovoltaics,5 nanopatterning,6 high-resolution material sur-
face probing and imaging,7–10 and thermally assisted magnetic
recording.11 The advancement in this area was hampered by
the lack of rigorous theoretical treatment for geometries that
are of direct experimental relevance, such as the sphere-plate
geometry.12–14 Recently, at least two groups have theoreti-
cally addressed the sphere-plate electromagnetic heat transfer
problem15,16 using a variation on a mode-based scattering
theory approach.17,18 This approach is closely related to com-
putations of Casimir observables in similar geometries.19,20

Here we expand upon Ref. 16, and present in detail our
numerically exact calculations of the electromagnetic heat
flux between a sphere [with a spatially homogenous dielectric
function εA(ω), a radius a, at a temperature TA] and a plate
[assumed to fill a half space, with a spatially homogenous
dielectric function εB(ω), at temperature TB], separated by a
vacuum gap (with ε = 1, and a gap distance d). By numerically
exact, we mean that the results of our calculations should
converge to exact results, as we increase the number of basis
functions used to describe the fields. We consider the nonequi-
librium situation where the sphere and the plate are maintained
at different temperatures, TA and TB , respectively. A schematic
rendering of the geometrical configuration is shown in Fig. 1.

The paper is organized as follows: In Sec. II we will
describe the computational method. Some numerical
implementation details, in particular those that allow us to
efficiently calculate the heat flux in extreme geometries,
are outlined in Sec. III. Section IV A contains a detailed
comparison with experimental datafrom Ref. 14. Section IV B
contains some comparisons between our numerically
exact fluctuational electrodynamics calculation and various
physically intuitive approximations: the far-field limit, the
dipole limit, and the proximity approximation.

II. COMPUTATIONAL METHOD

A general scattering approach to this problem, which allows
for an arbitrary number of bodies, in principle, has been

described before.15 Here we present a concise derivation of the
scattering formulation in the present sphere-plate case, with a
specific focus on those aspects that pertain to our computation.
The underlying physical assumptions are those of fluctuational
electrodynamics of Rytov,21,22 and notation is borrowed from
various related work.15–17,23

First, regarding notation, all repeated indices are implicitly
summed over, unless they appear on both sides. Now, consider
first the outgoing thermal radiation from an isolated sphere
maintained at a constant temperature TA. The electric field of
this radiation outside the sphere can be expanded as E0(

⇀

r ) =
A0

α+�α+ (
⇀

r ) in a complete basis �α+ of outgoing solutions to
the free-space Maxwell equation(

−ω2

c2
I + ∇ × ∇×

)
�α+(

⇀

r ) = 0. (1)

We use α = {l,m,P,S} as a multi-index specifying the vector
spherical harmonics defined with respect to the center of the
sphere. Here l is the total angular momentum, m is the angular
momentum component along the z direction, P labels the
polarization, and S ∈ {+,0,−} labels the type of solution,
in the sense of outgoing (+), regular (0), or incoming (−)
waves. In the following, we use αS to denote an index into the
vector spherical harmonic basis, restricted to a particular type
of wave, so for example, α0 is an index into regular spherical
waves. Notice that the αS index is independent of the α index.
Primed indices α′

S refer to the same basis as αS , and are used
when one such index does not suffice.

The thermal sources in the sphere are correlated according
to the fluctuation-dissipation theorem, resulting in a correlation
of electric fields,15,24

〈E0(
⇀

r ) ⊗ E0∗(
⇀

r ′)〉 ≡ D0
αα′�α(

⇀

r ) ⊗ �∗
α′ (

⇀

r ′), (2)

where the unperturbed correlator D0
αα′ = 〈A0

αA0∗
α′ 〉δαα′δS .

The temperature dependence can be extracted as D0
αα′ =

D̃0
αα′�(ω,T ), where �(ω,T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the

mean thermal energy of each mode due to its occupation by
thermal photons.

We now introduce the plate. Here as a starting point we
assume that the plate is at zero temperature, and thus the
thermal radiation originates entirely from the sources in the
sphere. We define a basis of cylindrical waves 	β(

⇀

r ), with
origin at the point on the plate closest to the sphere; the ẑ axis is
directed from this origin to the center of the sphere. The indices
in this case are β = {λ,m,h,P,S}, where λ is the cylindrical
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FIG. 1. (Color online) A schematic of the geometry considered:
a dielectric sphere of radius a, and a dielectric plate separated by a
distance d through a vacuum gap. The color corresponds to electric-
field intensity near the surface of the sphere and the plate, using
the parameters a = 1000 nm and d = 800 nm as a representative
example. The field near the sphere is much greater than that near
the plate, so in order to resolve the variation in intensity, the scales
(see the color bars on the right) are not the same. In all the examples in
this paper, the sphere and plate are both amorphous SiO2, the sphere
is at temperature T1 = 321 K, and the plate is at T2 = 300 K.

radial wave number, h is the wave number in the axial ẑ

direction, P is the polarization, and S ∈ {+,−} with “+”
referring to outgoing waves propagating away from the plate
toward the sphere, and “−” referring to incoming cylindrical
plane waves, respectively. Both incoming and outgoing waves
in this case are regular in the radial direction.

When the plate is introduced, the total radiated field from
the sphere is now E(

⇀

r ), which can be expanded on the
cylindrical wave basis as E(

⇀

r ) = Bβ	β(
⇀

r ). The correlation
function of the radiated field is then

〈E(
⇀

r ) ⊗ E∗(
⇀

r ′)〉 ≡ Dββ ′	β(
⇀

r ) ⊗ 	∗
β ′(

⇀

r ′), (3)

where Dββ ′ = 〈BβB∗
β ′ 〉. Moreover, defining Bβ = Oβα′+A0

α′+
,

where Oβα− describes the scattering (by the plate) of waves
emitted from the sphere, we have

Dββ ′ = Dβα+D
0
α+α′+

(Oβ ′α′+ )†. (4)

To determine Oβα+ , we consider the resulting total electric
field Eα that is consistent with a wave incident on the plate
from the sphere �α+ . We expand Eα in the vacuum region
in terms of outgoing spherical waves from the sphere, and
outgoing cylindrical waves from the plate,

Eα = Aα
α+�α+ + Bα

β+	β+ . (5)

It is now useful to introduce the operators �α0β+ and �β−α+ ,
which relate the vector spherical and cylindrical waves. The
operator �α0β+ transforms a cylindrical wave, labeled by β+,
into a spherical wave labeled by α0. Likewise, the operator
�β−α+ transforms a spherical wave labeled by α+ into a
cylindrical wave labeled by β−. Integral expressions for these
operators exist in the literature.25 The only source of cylindrical
waves is the reflection of spherical waves from the plate, so

Bα
β+ = Rβ+β−�β−α+Aα

α+ , (6)

where Rβ+β−are the reflection coefficients for the cylindrical
plane waves at the plate surface. The outgoing spherical

waves originate from both the sources in the sphere, and from
reflection of cylindrical waves by the sphere, so

Aα
α+ = A0

α+δα+α + Rα+α0�α0β+Bα
β+ , (7)

where Rα+α0 ’s are the Mie reflection coefficients for the
spherical waves at the boundary of the sphere [note that
following our convention, α+ is not summed over in Eq. (7)].
Simple analytic expressions for A0

α+ can be derived from
computations of thermal radiation from an isolated sphere
using the fluctuation-dissipation theorem, and are found in
the literature.23 We provide formulas for R, �, and A in the
Appendix.

Combining Eqs. (6) and (7), we have

(δα+α′+
− Tα+α′+

)Aα
α′+

= A0
α′+

δα+α, (8)

where we have defined Tα+α′+ ≡ Rα+α0�α0β+Rβ+β−�β+α′+ .
Having determined Aα

α+ using Eq. (8), we can transform the
field to the complete β basis,

Oβα+ = Tβ+β−�β−α′+ (δα−α′+ − Tα+α′+)−1, (9)

where Tβ+β− are the transmission coefficients for cylindrical
plane waves incident on the plate.

We can now calculate the energy flux from the sphere to the
plate through a plane in the vacuum region, with the sphere at
a temperature T , and the plate at a temperature of 0 K. It is
convenient to introduce the following operator, related to the
Poynting vector,

Sββ ′ (ω) = Re
i

ωμ0

∫
∂Vplate

dn · {	β(ω) × [∇ × 	β ′ (ω)]∗}.

(10)

Then we can write the energy flux

S(ω,T ) = Re
i

ωμ0

∫
∂Vplate

dn · 〈E(ω) × [∇ × E(ω)]∗〉T

= Sββ ′Dββ ′ = Tr[SD] = Tr[SOD0O†]

= (Oβ ′α′+)†Sββ ′Oβ ′α+D̃
0
α+α′+�(ω,T )

= Sα′+α′′+Aα∗
α′+

Aα
α′′+

, (11)

where we have introduced

Sα+α′− ≡ (�β ′−α+)†(Tβ ′+β ′− )†Sβ ′−β+Tβ+β−�β−α′+ . (12)

Finally, we wish to determine the heat transfer in the
nonequilibrium case, where the sphere is at a temperature
TA, and the plate is at a temperature TB . Using a reciprocity
argument,1 the net heat transfer can be written as

Q(TA,TB) = Q(TA,0) + Q(0,TB)

=
∫ ∞

0
dω[S(ω,TA) − S(ω,TB)]. (13)

III. NUMERICAL DETAILS AND CONVERGENCE

In this section we provide numerical details on the im-
plementation of the computational method described in the
previous section.

When carrying out the frequency integration of S(ω,T ) in
Eq. (13), we sample the frequency space by explicitly choosing
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a few dozen frequencies, which suffices to resolve the relevant
dielectric resonances around the thermal wavelength.

To calculate the heat flux spectral density S(ω,T ) at
a given frequency, we can decompose the flux as Q =∑mmax

m=0

∑lmax
l=lmin

Q(m,l), where Q(m,l) = Sα′+α′′+A
αlm∗
α′+

A
αlm

α′′+
, as in

Eq. (11), but with α now restricted to a given αlm. In the
numerical calculation of Q(m,l), l ranges between lmin =
max(1,m) and a heuristically determined lmax. The choice of
lmax will be discussed in detail in the convergence analysis.

The calculation proceeds in two steps: (1) solving for
the spherical scattering coefficients Aαlm

α+vm
, using Eq. (8) and

(2) calculating the flux contributions given these spherical
scattering coefficients, using Eq. (12).

In step (1), Eq. (8) becomes a dense linear system in a
N = 2(lmax − lmin + 1) dimensional vector space [note that
since lmin = max(1,m), N varies with m]. In setting up the
matrix on the left-hand side of Eq. (8), we use adaptive Gauss-
Kronrod numerical quadrature26 to perform the integration
over the cylindrical radial wave number λ ∈ β. Notice that λ is
a continuous variable. There are N2 such numerical quadrature
in the calculation of Tαα′ . In practice we do not perform all
N2 integrations; we use a heuristic numerical condition to
determine if the value should negligibly differ from 0. In
step (2), we similarly perform ∝N2 numerical integrations
to calculate Sαα′ . Note that the cylindrical β coordinates (in
particular the continuous λ) show up only in inner loops in the
final form for the heat flux in Eq. (12).

We now provide a brief physically motivated convergence
analysis. Our expectation is that reasonable convergence
should be achieved when lmax is large enough to resolve the
relevant spatial scales. In general, the far-field contributions
require lmax ∝ (aω/c), and the near-field contributions require
lmax ∝ a/d, as in Ref. 23. In our implementation we set

lmax = κ0 + κ1(aω/c) + κ2(a/d). (14)

We typically set κ0 = 8, κ1 = 2.5,and κ2 = 1.0.
To demonstrate the convergence behavior, as a specific

example, we consider a system with a = 20 μm and d =
100 nm, with the sphere maintained at TA = 321 K and the
plate at TB = 300 K. Both the sphere and plate are silica glass;
we use the dielectric function taken from Ref. 27. This example
corresponds to one of the structures measured in Ref. 14. For
this example, in Fig. 2, we plot Q(m) and Q(l), defined as

Q(m) =
∑

l

Q(m,l),

(15)
Q(l) =

∑
m

Q(m,l),

as a function of m and l, respectively. We see that Q(l) decays
as a function of l. To reach a 1% convergence, we require
lmax � 700. Hence, Eq. (8) represents a modestly sized linear
system, even in such an extreme geometry with a/d = 200.

We have found similar convergence behavior as in Fig. 2 in
all numerical data that we have presented in this paper. If we
vary κ1 (or κ2) by 20%, then the results change by less than
2%. We find that the error decays exponentially as a function
of κ1, κ2 for κ1 � 2.0, κ2 � 0.8.

Our implementation for the sphere-plate configuration can
accurately and efficiently handle even more extreme geometric

−100 0 100
m

Q
(m

) 
(a

.u
.)

(a)

1 350 700
l

Q
(l)

 (
a.

u)

(b)

FIG. 2. (Color online) Typical contribution to the spectral energy
flux as a function of m and l [a = 20 μm, d = 100 nm, h̄ω =
0.0605 eV(corresponding to a surface phonon polariton resonance),
ε1 = ε2 corresponds to amorphous SiO2].

configurations, such as those seen in experiments where
a/d � 103. In order to efficiently achieve a large lmax, we find it
necessary to (1) use 128-bit precision floating point arithmetic;
(2) make use of message passing interfaces (MPI) and
parallel computation [we have utilized 32 8-core processors
from the National Center for Scientific Applications (NCSA)
at University of Illinois]; and (3) implement a coupled,
normalized calculation of appropriately scaled Bessel and
Legendre functions of higher orders. The source code that
implements all these aspects can be found online.28

IV. RESULTS

In this section, we compare our numerical calculations with
experiments, and with various approximations commonly used
to describe thermal transfer in the sphere-plate geometry. We
show that our calculations are consistent with experiments.
Our calculations also provide a unified view of various
approximations.

A. Comparison to experimental data

We directly compare our results with the experimental
sphere-plate heat flux data from Ref. 14. The data in this
experiment were taken with T1 = 321 K, T2 = 300 K, a =
20 μm, and 20 nm < d < 3 μm. For reference, the thermal
wavelength λT ≡ hc/kBT as well as the electromagnetic
surface resonance wavelengths for silica surfaces are on the
order of 10 μm.

In the experiment described in Ref. 14, a silica sphere is
attached to a cantilever. The deformation �(d) of the cantilever
is then measured as the sphere is moved in the vicinity of a
silica plate, where d is the sphere-plate vacuum gap. The heat
flux between the sphere and plate is related to the deformation
as

Q(d) − Q(d → ∞) = H�(d − d0). (16)

H and d0 are experimental calibration parameters. Mea-
surements of similar cantilevers suggested H = 2.30 ±
0.69 nW/nm. The characteristic surface roughness was 40 nm,
and hence there is uncertainty in d0 as well.14 In comparing
theoretical calculations of Q(d) with such experiments, we
note that the experiments do not directly measure Q(d → ∞),
i.e., the far-field contribution was not directly measured.
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FIG. 3. (Color online) A comparison of our numerical results to
the experiments in Ref. 14. (a) Our results do not agree with the
proximity approximation. (b) The proximity approximation (and the
experimental data from Ref. 14) can be scaled to match our results.

Based on their experimental �(d) data,14 Greffet et al.
reported an excellent fit of the proximity approximation to
Q(d), using the parameters Q(d → ∞) = 5.45 nW, H =
2.162 nW/nm, and d0 = 31.8 nm. Our numerically exact
results of Q(d) do not agree with the proximity approximation,
as seen in Fig. 3(a). However, as seen Fig. 3(b), our results
for Q(d) can be fit to the experimental �(d) data as well,
with the choice of parameters Q(d → ∞) = 9.74 nW, H =
2.134 nW/nm, and d0 = 32.3 nm. We note that the differences
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FIG. 4. (Color online) Heat flux as a function of a for fixed d =
100 nm, 1 μm, and 10 μm. Insets are calculated scattered electric-
field intensities (located in the figure at the appropriate value of a,d).
Each curve is normalized by the far-field heat flux Qff , which is by
definition independent of d .
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FIG. 5. (Color online) Numerically exact heat flux compared with
dipole and proximity approximations, as a function of d , with fixed
a = 1 μm.

between these two sets of parameters are well within experi-
mental uncertainties. The fact that the same experimental data
can be fit to two very different theoretical models should
motivate a more thorough assessment of uncertainties in
precision nanoscale sphere-plate electromagnetic heat transfer
experiments.

B. Comparison to various approximations

There have been a large number of works treating this
problem with a variety of approximations.12–14,29–32 Many of
these approximations were not directly tested against exper-
iment. Only the far-field limit and the so-called “proximity
approximation”14,33 were used to fit experimental nanoscale
heat transfer data.12–14 In particular, a recent work has
emphasized that the far-field contribution, which can be
significant in the sphere-plate geometry, is not treated correctly
in the standard proximity approximation.32 We find that these
approximations tend to break down in regimes that are of
practical interest for experimental probing of nanoscale heat
transfer. Thus, a careful comparison of these approximations
with the numerically exact calculation can provide physical
insight, which may be useful in designing experiments.

To this end, we explore a wide a − d parameter space using
our method. In Fig. 4 we plot the numerically exact heat flux
Q as a function of sphere radius a, for various fixed gap
distances d. We compare our results with three commonly
used approximations in order to provide a unifying picture
across different regimes.

Far-field approximation. In Fig. 4, we normalize the values
for the heat flux to the far-field approximation Qff , which we
define as the heat flux in the absence of interference due to
secondary reflection from the sphere. In particular, it ignores
near-field effects and geometrical effects that are not captured
in the angular distribution of far-field radiation. We calculate
this limit as follows: First, we calculate the isotropic far-field
radiation from the sphere in the absence of the plate, as well
as the angle-dependent absorption for incident plane waves
for the plate. The far-field approximation is then determined

245431-4



NUMERICALLY EXACT CALCULATION OF . . . PHYSICAL REVIEW B 84, 245431 (2011)

a (nm)

d 
(n

m
)

Far Field

100 1,000 10,000

10,000

1,000

100

a (nm)

Dipole

100 1,000 10,000

a (nm)

Proximity (adjusted)

100 1,000 10,000

a (nm)

Proximity

100 1,000 10,000

FIG. 6. A phase-space diagram of the relative accuracy of four approximations to the sphere-plate heat flux. The grayscale corresponds to
the error as where corresponds to the far-field, dipole, proximity, or ‘far-field adjusted’ proximity approximations, respectively. The minimum
error (corresponding to white) is 3%. The maximum error (corresponding to black) is 450%. The images are rendered from a smoothed
interpolation of 147 data points.

by integrating, over all incidence angles, the absorption into
the plate of far-field plane waves from the sphere. In general,
the numerically exact Q deviates from Qff only when d is
sufficiently small. The near-field contribution is significant
only when d � 1 μm (see Fig. 4, d = 100 nm, 1000 nm).

Perhaps somewhat surprisingly, our results reveal that for
every gap size d, Q always approaches Qff , in the limit of
large a. This is true even when the gap size is as small as
d = 100 nm, when one might expect a substantial near-field
contribution. This behavior arises from the specific geometric
aspects of the sphere-plate configuration. When the gap size
is small, the evanescent near-field component of the heat flux
scales as a/d , according to the scaling arguments associated
with the proximity approximation. On the other hand, the
far-field component always scales with the area of the sphere
∝a2, independent of gap size. Thus, given any gap size, the
near-field component is negligible compared to the far-field
component when the radius of the sphere is large enough.
This observation is relevant for experimental design: In order
to achieve substantial enhancement of heat flux above the
far-field limit, it is important to use small, micrometer- (or
submicrometer-) scale spheres, as can be inferred from Fig. 4.

Dipole approximation. In Fig. 4, Qdipole is the result from
the dipole approximation, which treats the sphere as a single-
point dipole emitter.30 Referring to Fig. 3, we find that for any
given d, Qdipole asymptotically approaches Q when a 
 d,
and that the dipole approximation is actually quite good over
a substantial range of radii. For example, when d = 1 μm,
Qdipole deviates from Q by less than 10%, even for a as large
as a ≈ d = 1 μm, and deviates only when a > d. Since the
enhancement over the far-field limit is most prominent when
the sphere is small, our results here indicate that the dipole
approximation is useful in regimes where enhancement over
the far-field limit is substantial.

Proximity approximation. In Fig. 4, Qprox is the result from
the proximity approximation,14,31 which assumes that all heat
transfer occurs pointwise, between the closest points on the
sphere and plate. Mathematically,

Qprox(a,d) =
∫ a

0
dr 2πrQpp(d + a −

√
a2 − r2), (17)

where Qpp(h) is the heat flux surface density for two
plates separated by a distance h, which is known
analytically.1

Referring again to Fig. 4, we observe that for small
radii (a 
 d, a regime very relevant to enhancement over
the far-field limit), the proximity approximation consistently
overestimates the heat flux for two related reasons. First, it
ignores the effect that the spherical curvature has on scattering.
Second, it does not distinguish between propagating and
evanescent waves. As recognized in the literature, the proxim-
ity approximation does provide a useful approximation when
a > d. However, when a � d, the proximity approximation
does not approach the correct far-field limit; it underestimates
the far-field contribution due to emission by the part of the
sphere far from the plate. Since it fails in both extremes of
radius, it is difficult to interpret the physical meaning of the
proximity approximation.

The proximity approximation is of practical use when
a � d, though, if the prescription recommended in Ref.
32 is followed, whereby the far-field and near-field com-
ponents are treated separately so that the correct far-field
limit is attained. This is equivalent to adding a constant
correction term to the unadjusted proximity approximation.
If we compare the exact data to the adjusted proximity data
for a = 20 μm, by directly comparing the corresponding fit
parameters in Eq. (16), we find that the parameters change
by ∼1%. This agreement gets better as the sphere gets
larger.

As another illustration, we plot in Fig. 5 the heat flux as a
function of d for fixed a = 1 μm. We notice that the proximity
and dipole approximations are valid when d < a and d � a,
respectively. The crossover between the two regimes occurs
near d ≈ 300 nm; none of the standard approximations apply
in this case.

Finally, to visually summarize the validity of these various
approximations in different regimes, we present in Fig. 6 a
regime map of the parameter space. Note again that while there
is no limit in which the proximity approximation is valid, the
far-field adjusted proximity approximation is valid in the large
and large limits.
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V. SUMMARY

We have presented a numerically exact and computa-
tionally efficient method for calculating the fluctuational
electromagnetic heat transfer between a dielectric sphere
and plate separated by nanoscale gaps. We described the
physical principles, the mathematical formulation, and aspects
of our computer implementation. We compared the results
to existing experimental data, and to existing approximate
methods.

While we have focused on the sphere-plate geometry,
the method we have outlined can be generalized to other
multiple-body geometries, provided the scattering matrix for
each individual body is known. The underlying method is
therefore of general applicability for understanding a variety of
near-field electromagnetic effects, including Casimir effects,
optical forces, and vacuum friction.34,35

ACKNOWLEDGMENTS

This work is supported in part by an AFOSR-MURI
program (Grant No. FA9550-08-1-0407) and by the US
Department of Energy, Office of Basic Energy Sciences,
Division of Material Sciences and Engineering. The authors
acknowledge useful discussions with G. Chen and D. Cahill.
The computations were carried out through the support of the
NSF-Teragrid program.

APPENDIX

Here we provide the explicit formula for R,�, andA0 in
Eqs. (6)–(8).

The physically relevant solutions of the wave equation
(∇2 + k2)� = 0 can be written in spherical vector harmonics
� ∈ {�α} or in cylindrical vector harmonics � ∈ {	β}:

�α(P=M) = z
(s)
l (kr)

1√
l(l + 1)

[
θ̂

(
im

sin θ
Yl

m

)
+ φ̂

(
−Y ′

l

m

)]
,

�α(P=N) = ζl
(s)(kr)

1√
l(l + 1)

[
θ̂

(
Y ′

l

m

)
+ φ̂

(
im

sin θ
Yl

m

)]
+ r̂

(
z

(s)
l (kr)

kr

√
l(l + 1)Yl

m

)
,

(A1)

	β(P=M) = eihzeimφ

[
r̂

(
i
m

r
Jm(λr)

)
+ φ̂[−λJ ′

m(λr)]

]
,

	β(P=N) = eihzeimφ

[
r̂

(
i
hλ

k
J ′

m(λr)

)
+ φ̂

(−hm

kr
Jm(λr)

)
+ ẑ

(
λ2

k
Jm(λr)

)]
.

Here, we denote the total wave number by k, the axial wave
number by h = k cos θ, and the radial wave number by λ =
k sin θ . Jm are the Bessel functions and Ym

l are the spherical
harmonics. Primed functions denote the first derivative of the
function.

For a planar interface between two unbounded homogenous
dielectric half-spaces, one is denoted by Vf (the background
medium, typically free space) and the other by Vb (typically the
substrate in near-field heat transfer experiments), the reflection
coefficient for an axially propagating cylindrical wave incident

on Vb from Vf is

Rββ = δββ

(
δp⊥

hf − hb

hb + hf

+ δp‖
hb(kf /kb) − hf (kb/kf )

hb(kf /kb) + hf (kb/kf )

)
.

(A2)

For a spherical region Va consisting of a homogenous
dielectric, embedded in an unbounded region Vf , the reflection
coefficient at the interface for a spherical wave incident on Va

from Vf is23

Rαα′ = δαα′

(
δPM

kaζ
(1)
l (kaa)z(1)

l (kf a) − kf ζ
(1)
l (kf a)z(1)

l (kaa)

kaζ
(1)
l (kaa)z(3)

l (kf a) − kf ζ
(3)
l (kf a)z(1)

l (kaa)
+ δPN

kaζ
(1)
l (kf a)z(1)

l (kaa) − kf ζ
(1)
l (kaa)z(1)

l (kf a)

kaζ
(3)
l (kf a)z(1)

l (kaa) − kf ζ
(1)
l (kaa)z(3)

l (kf a)

)
. (A3)

Here, z
(1)
l are the spherical Bessel functions, z

(3)
l are the spherical Hankel functions, and ζ

(s)
l (x) = 1

x
d
dx

[xz
(s)
l (x)]. The

transformation between cylindrical and spherical waves can be described by25

�αβ	β(mu) =
∞∑

l=m

δPM�α(M)kil−m−1 (2l + 1)(l − m)!

l(l + 1)(l + m)!
u2P ′

l

m(
√

1 − u2) + δPN�α(N)kil−m−2 m(2l + 1)(l − m)!

l(l + 1)(l + m)!
P m

l (
√

1 − u2),

(A4)

�βα�α(ml) =
∫ ∞

0
du

u√
1 − u2

{
δPM	β(M)

1

2k
im−l+1P ′

l

m(
√

1 − u2) + δPN	β(N)
m

2ku2
im−l−1P m

l (
√

1 − u2)

}
.
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Here, u = sin θ and P m
l is the associated Legendre polynomial

of degree l and order m. Note that Eq. (A4) includes
contributions from evanescent waves, for which u > 1, and
thus differs from Ref. 25, which includes only propagating
waves with 0 � u � 1.

The numerical behavior of certain special functions for
large orders and degrees is of practical importance. In
particular, 1/jl , hl , and P m

l diverge for large l, so it is useful,
from a numerical standpoint, to instead calculate renormal-
ized functions {eihzP m

l jl,e
ihzP ′ m

l jl,e
ihzP m

l /hl,e
ihzP ′ m

l /hl}.
These routines have been efficiently implemented with re-
cursive C++ functions,28 and are evaluated within numerical

quadrature routines for calculating Tα+α′+ in Eq. (8) and Sα+α′+
in Eq. (12). The complete formulas for Tα+α′+ and Sα+α′+ are
lengthy, but can be found in the source code.28

Finally, the thermal emission of an isolated sphere is given
by23

A0
α(l,P=M) = −i/(kf a)

kaζ
(1)
l (kaa)z(3)

l (kf a) − kf ζ
(3)
l (kf a)z(1)

l (kaa)

A0
α(l,P=N) = i/(kf a)

kaζ
(3)
l (kf a)z(1)

l (kaa) − kf ζ
(1)
l (kaa)z(3)

l (kf a)
.
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