
Design of subwavelength superscattering nanospheres
Zhichao Ruana� and Shanhui Fan
Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford,
California 94305, USA

�Received 15 August 2010; accepted 4 December 2010; published online 24 January 2011�

We design a subwavelength superscattering nanosphere with plasmonic-dielectric-plasmonic layer
structure. We show that the scattering cross section of such a particle can be significantly enhanced
by employing multiple resonances with different total angular momenta, and by ensuring that all
these resonances have almost the same frequency and operate in the overcoupling region. © 2011
American Institute of Physics. �doi:10.1063/1.3536475�

Enhancing the scattering cross section of subwavelength
nanoparticles has practical significance for applications such
as imaging, biomedicine, and photovoltaics.1–10 Most sub-
wavelength nanoparticles have a scattering cross section less
than 3�2 /2� since the underlying resonance has a total an-
gular momentum l=1.2,4,6 In Ref. 10, it has been pointed out
that one can achieve a cross section of �2l+1��2 /2� where
l�1, by instead employing a resonance with a larger total
angular momentum of l. In this paper, building upon a pre-
vious work on a two-dimensional cylindrical scatterer,11 we
numerically demonstrate subwavelength spherical particles
with a scattering cross section beyond �2l+1��2 /2�, by em-
ploying multiple resonances with different total angular mo-
menta, and by ensuring that all these resonances have almost
the same frequency and operate in the overcoupling region.
Such a theoretical design is relevant since spherical nanopar-
ticles have been widely explored experimentally in
nanoplasmonics.1–8

We start by formulating the general theoretical idea in
Ref. 11 specifically for individual spherical scatterers. We
consider a spherical particle in air. To describe the scattering
process, we expand the field outside of the sphere in terms of
different channels labeled by �l ,m ,��. Here, l is the total
angular momentum, m corresponds to the angular momen-
tum component along the z direction and is subject to −l
�m� l, and � labels polarizations. At each angular momen-
tum �l ,m�, there are two orthogonal polarizations: tran-
sverse magnetic �TM� and transverse electric �TE�. For a TM
�TE� polarization, the magnetic �electric� fields can be writ-

ten as HTM =�4 �0

�0
� 	 r̂
TM �ETE=�4 �0

�0
� 	 r̂
TE�, where


TM�
TE� is proportional to the electric �magnetic� potential
and satisfies the scalar wave equation in the spherical
coordinate.12 Using such an expansion, in general, the poten-
tials in the air region outside the scatterer can be written as


� = �
l=1

�

�
m=−l

l

Al,m�al,m,�
+ hl

�2��kr� + al,m,�
− hl

�1��kr��

	Pl
�m��cos ��exp�im
� , �1�

where Al,m is a normalization constant, �r ,� ,
� are the
spherical coordinates oriented at the center of the particle, k
is the wave number in air, hl

�1� �hl
�2�� is the l-th order spherical

Hankel function of the first �second� kind, and Pl
m is the

associated Legendre function of the first kind. Here the sum-

mation excludes the l=0 term because such a term is a func-
tion of r only, and hence does not contribute to the electro-
magnetic field. Since hl

�1,2��kr�→ei�l�/2+�/4�e�+,−�ikr /kr, taking
the convention that the field varies in time as exp�−i�t�, one
can identify al,m,�

+ and al,m,�
− as the incoming and outgoing

wave amplitudes. By integrating the Poynting vector over a
closed spherical surface at r=�, we obtain the power carried
in the incoming or outgoing waves in each channel,

Pl,m,�
� =

2�

k2

l�l + 1�
�2l + 1�

�l + �m��!
�l − �m��!

�Al,m�2�al,m,�
� �2. �2�

Therefore, by choosing the normalization constant

Al,m = k� 1

2�

�2l + 1�
l�l + 1�

�l − �m��!
�l + �m��!

, �3�

we have then �al,m,�
+ �2 and �al,m,�

− �2 representing the incoming
and outgoing power carried by the waves in the �l ,m ,��
scattering channel.

For a scatterer with a spherical symmetry, amplitudes in
different channels do not mix with one another. Thus, for
each channel, we define the reflection coefficient Rl,� as

Rl,� 	
al,m,�

−

al,m,�
+ . �4�

Note that due to the spherical symmetry, Rl,� is a function of
� and l, but not m. Moreover, by energy conservation,

�Rl,�� � 1. �5�

We now calculate the scattering and absorption cross
sections of the obstacle. For this purpose, by considering a
x-polarized plane wave propagating along the z direction,
i.e., Einc= êx exp�ikz�. The incident field can be described in
terms of both electric and magnetic potentials,12


�
inc = �

l=1

�

�
m=−1,1

B��4 �0
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il

2
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jl�kr�Pl
�m��cos ��eim
, �6�

where B�=1 and i for the TM and TE polarizations, respec-
tively. Similarly, the potentials for the scattered field outsider
the scatterer are


�
sct = �

l=1

�
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where Sl,� is the scattering coefficient for the �l ,m ,�� scat-a�Electronic mail: zhichao@stanford.edu.
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tering channel. Noting that 
�=
�
inc+
�

sct, and comparing

� to Eq. �1�, we have

Sl,� =
Rl,� − 1

2
. �8�

Furthermore, the scattered power in the �l ,m= �1,�� scat-
tering channel is
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Bl�4 �0

�0

il

2

�2l + 1�
l�l + 1�

Sl,�
2

/�Al,m�2

=
�

2k2� �0

�0
�2l + 1��Sl,��2. �9�

As a result, the total scattering cross section is
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and the total absorption cross section is

Cabs 	
Pabs

I0
= �

�
�
l=1

�
�2

8�
�2l + 1��1 − �Rl,��2� . �11�

Using Eq. �5�, one can immediately infer that for given
polarization, the total contributions of all channels with total
angular momentum l cannot exceed �2l+1��2 /2� for the
scattering cross section, and �2l+1��2 /8� for the absorption
cross section. The strongest scattering occurs when Rl,�=
−1, while the strongest absorption occurs when Rl,�=0.

For subwavelength particles, typically only those chan-
nels that support resonances have significant contributions to
the total cross sections. When a resonance is present in a
scattering channel labeled by �l ,m ,��, the scattering process
can be modeled by temporal coupled-mode equations, which
leads to a general formula for the reflection coefficient13,14

Rl,� =
i��0 − �� + �0 − �

i��0 − �� + �0 + �
. �12�

Here � is the frequency of the incident wave, �0 is the reso-
nant frequency, �0 is the intrinsic loss rate due to material
absorption, and � is the external leakage rate due to the cou-
pling of the resonance to the outgoing wave. All these pa-

rameters for the resonance are dependent of l and �. As a
result, using Eq. �9� and summing over the m= �1 channels,
the total contribution of all channels with the same total an-
gular momentum l becomes

Cl,�
sct = �2l + 1�

�2

2�

�2

�� − �0�2 + ��0 + ��2 . �13�

In the absence of resonance in other angular momentum
channels, the total scattering cross section thus exhibits a
Lorentzian spectral line shape, reaching a peak value of �2l

+1� �2

2�
�2

��0+��2 at the resonant frequency �0. In the strong over-

coupling regime, i.e., ���0, the total scattering cross section
maximizes to �2l+1��2 /2�.

From the analysis above, one strategy of designing nano-
particles with a large scattering cross section is to create
resonance in channels with high total angular momentum.10

Instead of doing so, following the theoretical suggestion of
Ref. 11, we seek to create accidental degeneracy of resonant
modes with different total angular momenta. Compared with
the approach in Ref. 10, one potential advantage of the
present approach is that one can exploit channels with
smaller total angular momentum, which are typically less
susceptible to loss and more stably stay in the overcoupling
region.11 Here we refer to a subwavelength particle having a
total scattering cross section exceeding �2lmax+1��2 /2� as a
superscatterer, where lmax is the maximal total angular mo-
mentum involved.

To design a superscatterer, we consider a nanosphere
which consists of concentric metal-dielectric-metal layer �In-
set of Fig. 1�a��. The metal is described by a Drude model
�m=1−�p

2 / ��2+ i�d��. We start with lossless case first by
setting �d=0. We note that a similar layer structure has been
applied to design a superscattering nanorod in two
dimensions.11 Here we show that the same idea can be
adopted for three-dimensional design as well. With a proper
choice of the dielectric layer thickness, for the modes with
the magnetic field parallel with the interface, the correspond-
ing planar structure �the left-top inset of Fig. 2� exhibits a flat
band around the frequency of 0.2932�p �solid lines in Fig.
2�. In the nanosphere, when the waves propagate along the
equator, i.e., m= � l, the resonances are of the whispering
gallery type. �As an example, the TM resonance with l
=3, m=3 is shown in the right-bottom inset of Fig. 2.�
Moreover, since the modes with the same l but different m
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FIG. 1. �Color online� �a� Total scattering cross section of a nanosphere in the lossless case, and the contributions from individual channels. �Inset� Schematic
of the nanosphere. The dark �dark cyan� and gray �yellow� areas correspond to a plasmonic material and a dielectric, respectively. The permittivity of dielectric
is �d=12.96. The geometric parameters are �1=0.4749�p, �2=0.6404�p, and �3=0.8249�p, where �p=2�c /�p, with c being the speed of light in vacuum. �b�
Real part of the total Ex field distribution and the “flow lines” of Poynting vector at a frequency of 0.2932�p, where a plane wave with unity amplitude
illuminates the nanosphere from the left side. The white circle at the center indicates the sphere.
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are all degenerate, the resonant frequency of a mode with
total angular momentum l can therefore be determined by
using

� · 2�r0 = 2�l , �14�

where r0= ��1+�2� /2, and � is the propagation constant in
the corresponding planar structure. As a result, the existence
of a flat band in the corresponding planar structure should
directly translate into near-degeneracy in the nanosphere be-
tween modes with different total angular momenta.

We plot the resonant frequencies and the leakage rates of
the TM modes of the nanosphere, as a function of l /r0 in Fig.
2. We indeed observe resonances in the l=1,2 ,3 channels,
all lying close to the frequency of 0.2932�p where the planar
structure has a flat band. The positions of these resonances in
general agree quite well with Eq. �14�. Also, the leakage
rates of these resonances decrease as the total angular mo-
mentum increases, in consistency with Refs. 10 and 15.

We now calculate the total scattering cross section of the
nanosphere �Fig. 1�a��. The total scattering cross section
reaches a peak value of 15.2��2 /2�� or 2.42�2 at the fre-
quency of 0.2932�p, in comparison to the geometric cross
section of the particle of 0.18�2, for such a subwavelength
particle with a diameter of 0.485�. In consistency with Eq.
�13�, the contribution from different total angular momentum
l each has a Lorenztian lineshape that peaks with a value of
�2l+1��2 /2�, at a frequency around 0.2932�p �Fig. 1�a��.
The total cross section also exceeds 7�2 /2� where lmax=3.
We have thus indeed designed a superscattering nanosphere.

Figure 1�b� shows the real part of Ex field distribution,
when a plane wave with a frequency of 0.2932�p and unity
amplitude illuminates the nanosphere from the left side. The
nanosphere leaves a significant shadow behind it, where the
field strength is reduced. The “flow lines” of the Poynting
vector field indicate significant redistribution of the power
flow around the nanosphere.

We now consider the lossy case, by setting �d=�bulk
+A	VF / lr in order to take into account both the bulk and
the surface scattering effects for the electrons.16 Here �bulk
=0.002�p is appropriate for bulk silver at the room

temperature,17 A�1,16 VF=7.37	10−4�p�p is the Fermi ve-
locity for silver,18 and lr is the electron mean free path. For
this structure, lr=�1 is taken for the metallic core, and lr
=�3−�2 for the metallic shell. The total scattering cross sec-
tion at the peak frequency of 0.2932�p is reduced to
6.1�2 /2� �Fig. 3�, which nevertheless still exceeds �2lmax

+1��2 /2�, since the contributions to scattering are mostly
from the l=1,2 channels. The resonances with l=3 do not
contribute, since they are no longer in the overcoupling re-
gime due to the material loss. To summarize, our results
show that a superscattering nanosphere can be designed even
in the presence of realistic loss.
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FIG. 2. �Color online� The band structure of the corresponding plane struc-
ture shown in the left-top inset �lines�, and the resonant frequencies and the
leakage rates for the l=1,2 ,3 TM modes in the sphere �bars�. The center
and the height of each bar correspond to the resonant frequency and the
leakage rate, respectively. In the inset, a=�2−�1, b=�3−�2. The right-
bottom inset shows the H� field distribution for the �l=3, m=3,TM� reso-
nant mode.
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FIG. 3. �Color online� Total scattering cross section in the lossy case, and
the contribution from each individual channel.
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