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We present a theory for Fano interference in light scattering by individual obstacle, based on a temporal
coupled-mode formalism. This theory is applicable for obstacles that are much smaller than the incident
wavelength, or for systems with two-dimensional cylindrical or three-dimensional spherical symmetry. We
show that for each angle momentum channel, the Fano interference effect can be modeled by a simple temporal
coupled-mode equation, which provides a line shape formula for scattering and absorption cross-section. We
validate the analysis with numerical simulations. As an application of the theory, we design a structure that
exhibits strong absorption and weak scattering properties at the same frequency.

I. Introduction

Understanding light scattering by individual particles is of
fundamental importance.1 In recent years, the Fano interference
effect2 in such light scattering has attracted significant attention.
Individual particles can support resonances. In the vicinity of
such resonances, the spectrum of either scattering cross-section
or extinction cross-section can exhibit a Fano line shape, where
the spectrum varies asymmetrically with respect to resonant
frequency.3–8 Such Fano interference effects are also closely
related to the classical analogue to electromagnetically induced
transparency (EIT),9 which have recently been proposed and
demonstrated in scattering systems consisting of metallic
elements.10–16 Although the Fano effect in particle scattering
has been demonstrated in different systems, given the ubiquitous
nature of such an effect, it would be very useful to present a
broader theory that captures some of general aspects.

In this paper, we generalize the temporal coupled-mode
theoryspreviously developed to account for the Fano interfer-
ence effect in waveguide or grating systems17sto treat light
scattering by individual resonant obstacles. In the theory of ref
17, the Fano line shape appears in the transmission spectrum
of the system. For an individual obstacle, the transmission
spectrum is no longer well-defined. Instead, the theory here aims
to calculate the scattering cross-section of the obstacle. Also
related to this work, the temporal coupled mode theory has
recently been generalized to treat small particle scattering in
ref 18. The work of ref 18, however, did not include the Fano
interference effect.

The paper is organized as follows: In section II, we show
that for each angle momentum channel, the Fano interference
effect can be modeled by a simple temporal coupled-mode
equation, which provides a line shape formula for scattering
and absorption cross-section. In section III, we compare the
theoretical predictions to numerical simulations. Finally, in
section IV, as an application of the theory, we design a structure
that exhibits strong absorption and weak scattering properties
at the same frequency.

II. Theory

A. Brief Review of Standard Scattering Theory. We start
by briefly reviewing the standard scattering theory for a single
obstacle. For simplicity, this paper only discusses the two-
dimensional (2D) case where the obstacle is uniform in the z
direction, but the concept is straightforwardly generalizable to
the three-dimensional cases. Consider an obstacle located at the
origin, surrounding by air. When a TM wave (with its magnetic
field H polarized along the z-direction) impinges on the obstacle,
the total field in the air region outside the scatterer can be written
as

Htotal ) ∑
l)-∞

∞

H0(hl
+Hl

(2)(kF) exp(ilθ) + hl
-Hl

(1)(kF) exp(ilθ))

(1)

where H0 is a normalization constant, (F, θ) is the polar
coordinates oriented at the origin, k is the wavenumber in air,
and Hl

(1) (Hl
(2)) is the lth order Hankel function of the first

(second) kind. Since Hl
(1, 2)(kF) f (2/πk)1/2ei[(lπ/2)+(π/4)] e(+,-)ikF/

F1/2 when Ff ∞, and taking the convention that the field varies
in time as exp(-iωt), one can identify hl

+ and hl
- as the incoming

and outgoing wave amplitudes. The power carried in such
incoming (or outgoing) wave is

Pl
( ) 2

ωε0
|H0|2|hl

(|2 (2)

(Notice that the power in two-dimension has the unit of W/m.)
By choosing the magnetic field normalization

H0 ) 1�W
m

ωε0

2
(3)

we have then |hl
+|2 and |hl

-|2 representing the incoming and
outgoing power carried by waves in the lth angular momentum
channel, measured in the unit of W/m.

In the cases where the scatterer is much smaller than the
incident wavelength, or the system has cylindrical symmetry,
the lth order incoming wave only excites the same order
outgoing wave. So we define Rl as† Part of the “Martin Moskovits Festschrift”.
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Rl ≡
hl
-

hl
+ (4)

which can be thought of as a “reflection coefficient” since it
relates the outgoing wave to the incoming wave in each channel.
Moreover, if the obstacle is lossless, the power carried by the
outgoing wave must be equal to that of the incoming wave.
Consequently,

Rl ) eiφl (5)

where φl is a real phase factor.
We will now calculate the scattering, absorption, and extinc-

tion cross-sections of an obstacle. For this purpose, imagining
a plane wave incident upon the obstacle, the scattering (absorp-
tion) cross-section is then defined as the total power scattered
(absorbed), divided by the intensity of the incident field. For
2D system the cross-section has the unit of length. Mathemati-
cally, for this scenario, we write the total field in the air region
outside the scatterer as

Htotal ) H0(exp(ik · r) + ∑
l)-∞

∞

ilSlHl
(1)(kF) exp(ilθ))

(6)

where k is the wave vector of the incident plane wave and Sl is
related to the scattered field and referred to as the scattering
coefficient. To connect to eq 1, the plane wave is expanded as

exp(ik · r) ) ∑
l)-∞

∞

il1
2

(Hl
(1)(kF) + Hl

(2)(kF)) exp(ilθ)

(7)

Combining eqs 6 and 7, and comparing to eq 1, we have

Sl )
Rl - 1

2
(8)

Furthermore, in the lth channel, the scattered power Psct and
the absorbed power Pabs are

Psct )
2

ωε0
|Sl|

2|H0|2

Pabs )
1

ωε0
(1 - |Rl|

2)|H0|2 ) 2
ωε0

(-Re{Sl} - |Sl|
2)|H0|2

(9)

Following the definition of the scattering cross-section, the
contribution to the total scattering cross-section from the lth
channel is

Csct,l ≡
Psct

I0
)

2
ωε0

|Sl|
2|H0|2

1
2�µ0

ε0
|H0|2

) 2λ
π

|Sl|
2 (10)

and the total scattering cross-section is

Csct )
2λ
π ∑

l)-∞

∞

|Sl|
2 (11)

where λ is the wavelength in air. In the same way, we have the
total absorption cross-section as

Cabs ) - 2λ
π ∑

l)-∞

∞

(Re{Sl} + |Sl|
2) (12)

Finally, the total extinction cross-section, as the sum of the
scattering cross-section and the absorption cross-section, is

Cext ) - 2λ
π ∑

l)-∞

∞

Re{Sl} (13)

B. Coupled Mode Theory for Light Scattering. The goal
of our theory is then to provide a general view about these cross-
sections. In the following we consider the case that the obstacle
supports resonance for the lth channel. In this circumstance,
the Fano effect is the result of interference of two pathways:
the direct “reflectance” of the incoming wave that forms the
background, and the outgoing radiation from the excited
resonance.Usingthetemporalcoupled-modetheoryformalism,17–19

the dynamic equation for the amplitude c of the resonance is

dc
dt

) (-iω0 - γ0 - γ)c + κh+

h- ) Bh+ + ηc
(14)

where ω0 is the resonant frequency, γ0 is the intrinsic loss rate
due to for example material absorption, γ is the external leakage
rate due to the coupling of the resonance to the outgoing wave,
B is the background reflection coefficient, and κ and η
correspond to the coupling constant between the resonance and
the incoming or outgoing wave, respectively. In this section,
as we consider only the lth channel, for notation simplicity we
suppress the subscript l in all variables in eq 14. Here the
amplitude c is normalized such that |c|2 corresponds to the energy
inside the resonator.19 Note that such coupled-mode formalism
is, strictly speaking, valid only when γ0 + γ , ω0.19

The coupling constants κ and η are related to each other by
energy conservation and time-reversal symmetry consider-
ations.17 In the lossless case (i.e., γ0 ) 0), if the incoming wave
is absent (i.e., h+ ) 0), from eq 14 we have

c ) A exp(-iω0t - γt)

h- ) Aη exp(-iω0t - γt)
(15)

where A is an arbitrary constant. According to energy conserva-
tion, the energy leakage rate must be equal to the power of the
outgoing wave, i.e.

d|c|2

dt
) -2γ|c|2 ) - |h-|2 ) -ηη*|c|2 (16)

which requires that

ηη* ) 2γ (17)

Now let us perform a time-reversal transformation for the
exponential decay process as described by eq 15. The time-
reversed case is represented by feeding the resonator with
exponentially growing wave amplitude (h-(-t))*. Such excita-
tion results in a resonant amplitude (c(-t))* that also grows
exponentially, without the outgoing wave. Described this time-
reversed scenario using eq 14, we have

κη* ) 2γ (18a)

Bη* + η ) 0 (18b)

Comparing eq 18a to eq 17, we obtain
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κ ) η (19)

Equations 17-19 are the main results of the Fano interference
theory. If the system is lossless, the background reflection is B
) eiφ and therefore we can determine κ and η as

κ ) η ) √2γei(φ/2+π/2-nπ) (20)

where n is an arbitrary integer. For lossy systems, one should
expect that the strongest contribution of the loss is to the
resonant properties. In such a case, as an ansatz, we will
introduce a nonzero intrinsic loss rate γ0 in eq 14, while still
approximating the background scattering as a lossless process.
We will see below in the numerical example that such an
approach is in fact sufficient for scattering from lossy plasmonic
particles. A more rigorous approach, which we will not pursue
here, will be to treat explicitly the loss as coupling to an
additional decay channel, the combined system with the
additional decay channel can then be treated using theory that
is similar to eq 14 but without the need of introducing the
intrinsic loss rate.

We now suppose that the incident wave has a frequency ω.
The reflection coefficient R can be straightforwardly obtained
using eqs 14 and 20:

R ) h-

h+ ) eiφ + -2γeiφ

i(ω0 - ω) + γ0 + γ

)
i(ω0 - ω) + γ0 - γ
i(ω0 - ω) + γ0 + γ

eiφ
(21)

One can easily identify that in the lossless case (i.e., γ0 ) 0),
the amplitude of R is unity, as expected. Following eq 8, the
scattering coefficient is

S ) 1
2

(R - 1)

) 1
2

(i(ω0 - ω) + γ0)(e
iφ - 1) - γ(1 + eiφ)

i(ω0 - ω) + γ0 + γ
(22)

Substituting eqs 22 into eqs 11 and 12, we have the scattering
and the absorption cross-sections as

Csct )
2λ
π |12 (i(ω0 - ω) + γ0)(e

iφ - 1) - γ(1 + eiφ)

i(ω0 - ω) + γ0 + γ |2
(23a)

Cabs )
2λ
π

γ0γ

(ω - ω0)
2 + (γ0 + γ)2

(23b)

C. General Line Shapes in a Single Channel. We now use
eq 23 to illustrate general line shapes of scattering and absorption
cross-section spectra in a single channel. Let us first discuss
the scattering cross-section. In the lossless case where γ0 ) 0,
Figure 1 plots the scattering cross-section spectra with different
phase factor φ as arised from the background “reflection”.

For the phase factor φ ) 0, the spectrum is a Lorentizian
function (Figure 1a). Note that the resonance creates maximal
scattering at the resonant frequency ω0. Since φ ) 0 corresponds
to a very weak background scattering, in this case the only
contribution to the scattering process is from the resonance. An
example of a very weak background scattering is that for the
H-polarization, as we consider here, when the radius of a
metallic cylinder is far smaller than the wavelength. In this case,
the presence of a surface-plasmon resonance would create a

Lorenztian line shape in the scattering cross-section spectrum,
and dramatically increase the scattering cross-section.

For all cases where φ is not equal to 0 or π, the spectrum is
not a Lorentizian but rather exhibits a Fano asymmetric line
shape, which exhibits both enhancement and suppression of
scattering coefficients in the vicinity of the resonance. For
example, Figure 1b shows the scattering cross-section spectrum
for φ ) π/2. We note that in the Fano line shape, neither the
minimum nor the maximum in scattering cross-section occurs
at the resonant frequency ω0. Through eq 23a, we can determine
that the minimum and maximum occur at the frequency ω0 (
γ tan(φ/2) and ω0 - γ cot(φ/2) respectively, where the ( sign
corresponds to 0 < φ < π or -π < φ < 0. Therefore, to switch
the scattering cross-section from the minimum to the maximum,
the smallest frequency required is 2γ, which is for the case φ

) (π/2. This result is in fact consistent with a previous study
on optical switching using Fano resonances.20

When φ ) π, the background exhibits maximum scattering,
and the presence of the resonance creates a dip at ω0; no
scattering occurs at the resonance frequency (Figure 1c). This
effect is closely related to the all-optical analogue of EIT, which
occurs when a super-radiant state has the same resonant
frequency as a subradiant state in the same scattering channel.
The super-radiant state by itself establishes a broad scattering
peak and thus can be regarded as establishing a background in

Figure 1. Scattering cross-section spectrum as given by eq 23 for the
lossless case (γ0 ) 0). (a)-(c) correspond to φ ) 0, π/2, π, respectively.

Figure 2. Scattering cross-section spectrum as given by eq 23 for the
lossy case with γ0 ) γ.
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the vicinity of the subradiant resonance. The presence of the
subradiant state introduces a dip and renders the system
transparent (i.e., with zero scattering) at the resonant frequency.
A better treatment of the EIT effect, however, requires one to
treat the super-radiant and the subradiant state at an equal
footing21 and will be done in later works.

To show the effect of the intrinsic loss, Figure 2 shows the
scattering cross-section spectra when γ0 ) γ. Comparing it to
Figure 1, one can see that the line shapes are similar to the
corresponding lossless cases, but the presence of the loss reduces
the cross-section variation as a function of frequency. In
particular, the scattering cross-section can no longer reach 2λ/
π, which is the maximal contribution possible in a single
channel. Neither can the scattering cross-section reach zero. In
the presence of loss it is no longer possible to completely
eliminate the scattering effect at a single frequency through the
use of a Fano interference with a single resonance.

We now consider the absorption cross-section spectrum
described by eq 23b. In contrast to the scattering cross-section
spectrum, which varies with the background phase factor, the
absorption cross-section is independent of the phase factor.
Instead, it always has a symmetric Lorentzian line shape with

its maximum at the resonant frequency. Thus, Fano interference
effect does not affect the absorption properties of the obstacle.

III. Numerical Validation

To check the validity of the above theory, we compare eq
23 to the results of numerical simulations based on the
Lorentz-Mie method of a cylindrical scatterer. Figure 3 shows
the schematic of the scatterer, which consists of multiple
concentric layers of metal and a dielectric. The permittivity of
the dielectric is εd ) 12.96, and the metal is described by a
Drude model εm ) 1 - ωp

2/(ω2 + iγdω) (ωp and γd are the
plasma frequency and the damping rate, respectively). In the
frequency range ω < ωp, a corresponding planar structure can
support surface-plasmon waveguide modes that are confined in
the dielectric region. For the cylindrical structure, whispering
gallery modes related to such waveguide modes can be formed
in the low angular momentum channels.22

We start with the lossless case where γd ) 0. For the geometry
parameters of F1 ) 0.285λp, F2 ) λp, and F3 ) 1.5λp (where λp )
2πc/ωp, with c being the speed of light in vacuum), the scattering
cross-section for the l ) 0 channel is plotted as circles in Figure
4a. It shows a typical Fano resonant line shape around 0.155ωp.

To compare to the analytic results, we determine the
parameters required in eq 23 in the following way: We express
the H field in each layer as a linear superposition of J0(kF) and
H0

(1)(kF), except in the innermost layer where the field is
proportional to only J0 and the outermost layer where the field
is proportional to only H0

(1). By matching the boundary condition
at all metal-dielectric interfaces, we obtain a transcendental
equation with frequency as a variable. By solving for the
complex roots of the transcendental equation, we determine the
resonance frequency (the real part of the root) and the leakage
rate (the imaginary part of the root). For the structure shown
here, in the lossless case, we obtain ω0 ) 0.1552ωp, γ ) 1.9166
× 10-5ωp. The phase factor φ ) -0.4882π is established by
calculating the scattering coefficient of a uniform metallic
cylinder with the same size. Using these parameters, the

Figure 3. Schematic of a metal-dielectric-metal cylinder obstacle. The
dark gray area is a metal described by a Drude model. The light gray area
is dielectric (εd ) 12.96). The surrounding media is assumed as air.

Figure 4. Cross-section of the l ) 0 channel for the scatterer shown in Figure 3, where the geometric parameters are F1 ) 0.285λp, F2 ) λp, and
F3 ) 1.5λp (λp is the wavelength in the vacuum at the plasma frequency ωp): (a) scattering cross-section for the lossless metal case of γd ) 0;
(b)-(d) the scattering, extinction, and absorption cross-section spectra for the lossy metal case of γd ) 0.001ωp.
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scattering cross-section calculated by eq 23a shows an excellent
agreement with the numerical result (Figure 4a).

We now introduce a metal loss characterized by γd )
0.001ωp. Repeating the same process as outlined above for the
lossless case, we determine a resonant frequency ω0 ) 0.1552ωp

and a total loss rate γ + γ0 ) 1.0492 × 10-4ωp. Assuming that
the leakage rate is the same as the lossless case, i.e., γ ) 1.9166
× 10-5ωp, we have the intrinsic loss rate γ0 ) 8.5749 × 10-5ωp.
The background phase shift φ is determined using the same
procedure by considering the scattering of a corresponding
uniform metallic cylinder, which results in φ ) -0.4882π +
8.6 × 10-4i. Comparing with the lossless case, we notice that
the background phase shift is not significantly affected by
introducing loss in the system. Thus, in the theory for the lossy
case, we will choose as a parameter the background phase shift
φ ) -0.4882π, and ignore the small loss that occurs in the
background. Using these parameters, the theoretical spectra
again agree well with the numerical spectra (Figure 4b-d). The
example here thus provides a validation of the theory in the
single channel case.

IV. Multiple-Channel Resonant Obstacle

The theory developed in section II can be straightforwardly
generalized to include resonances in multiple channels (where

the resonance in each channel can only be excited by the same
channel incoming wave and coupled to the same channel
outgoing wave), since the total cross-section is the sum of the
contributions from all channels. As an example, here we apply
our theory to a metal-dielectric-metal cylinder scatterer where
all channels that strongly contribute to the scattering process
exhibit the Fano effect.

We again consider the structure shown in Figure 3, with a
new set of parameters F1 ) 0.36λp, F2 ) 0.73λp, and F3 ) λp.
The metal has a damping rate γd ) 0.001ωp. The circles in
Figure 5a,b correspond to the scattering and absorption cross-
section spectra, respectively, as obtained from numerical simula-
tions. In the frequency range 0.22-0.233ωp, the total cross-
section of the system is dominated by the contributions from
five channels of l ) 0, (1, (2. For each channel, the scattering
cross-section spectrum and the absorption cross-section spectrum
show the Fano and Lorentizian line shapes, respectively. We
use the above theory to fit these curves. The fitting results are
plotted as the solid lines in Figure 5, which again indicates good
agreement between theory and simulation.

We note that this obstacle can be potentially used as a cloaked
sensor23swhen the obstacle is placed in an electromagnetic field,
it absorbs the energy but creating only minimum scattering
within a narrow range of frequencies. From Figure 5, one can
see that at the frequency ω ) 0.2282ωp, the total scattering
cross-section of the obstacle is only 0.03(2λ/π), while the total
absorption cross-section is 0.32(2λ/π). In the presence of loss,
the scattering of the particle cannot be completely eliminated
in this case, as can be seen from eq 21. Nevertheless, the
scattering can be substantially reduced as we show here. The
Fano interference effect thus provides an interesting alternative
mechanism for creating a cloaked sensor as compared to ref
23.

V. Summary and Outlook

In summary, we present a theory for Fano interference in
light scattering by individual obstacle, based on a temporal
coupled-mode formalism. We show that for each angle mo-
mentum channel, the Fano interference effect can be modeled
by a simple temporal coupled-mode equation, which provides
a line shape formula for scattering and absorption cross-section.
We validate the analysis with numerical simulations. As an
application, we design a structure that exhibits strong absorption
and at the same time weak scattering properties.

We note that this theory is applicable for obstacles that are
much smaller than the incident wavelength, or systems that have
two-dimensional cylindrical or three-dimensional spherical
symmetry. For arbitrary-shaped obstacles or assembled clusters,
the overall scattering matrix of the system is no longer
diagonalizable in the angular momentum basis. Instead, for a
theory of Fano interference, one may define the channel as the
eigenstates of the background scattering matrix, the resonance
in this case is likely then to couple to several scattering channels
simultaneously. Such a theory will be developed in future
research.
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