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We illustrate that the surface plasmon polariton (SPP) excitation through the prism coupling method is fundamen-
tally limited by destructive interference of spatial light components. We propose that the destructive interference
can be canceled out by tailoring the relative phase for the different wave-vector components. As a numerical dem-
onstration, we show that through the phase modulation the excited SPP field is concentrated to a hot energy spot,
and the SPP field intensity is dramatically enhanced about three-fold in comparison with a conventional Gaussian
beam illumination. The proposed phase-shaped beam approach provides a new degree of freedom to fundamentally
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Recently, particular attention has been attracted by using
the spatial control techniques to control the excitation
and concentration of light in a variety of optical systems.
Vellekoop et al. demonstrated that sending light through
a random scattering medium, with a spatially modulated
input wavefront, can achieve the constructive interfer-
ence at a focus spot, resulting in focusing beyond the dif-
fraction limit [1]. This effect can be interpreted as time-
reversal of light emitted from a point emitter [2]. A similar
idea has also been applied to generate and control the
location of light hot spots in a diffraction grating [3] and
to experimentally focus surface plasmon wave on a metal
surface of a nanohole array [4]. In another related work,
Kao et al. proposed that in a plasmonic metamaterial the
strong optically induced interactions between discrete
metamolecules can be manipulated to realize a subwave-
length scale energy localization through spatially tailor-
ing the phase profile of a continuous-wave input light
beam [5]. Conceptually, these spatial control methods
have the strong analogy to the coherent control methods
where an incident optical pulse is modulated in the time
domain to steer light-matter interaction [6-8] or the
response of optical systems [9-12] toward a desired final
State.

Since a flat metal surface is the simplest geometry sus-
taining surface plasmons, it is of fundamental importance
in plasmonics to efficiently excite the surface plasmon
polariton (SPP) field on the surface [13]. The established
excitation techniques, including the prism coupling
method, have practical significance for applications in-
cluding surface-enhanced sensing and spectroscopy
[14,15], plasmonic nonlinear optics [16-18], and plasmon
optical tweezers [19-21]. Here we propose that the SPP
excitation on a flat metal surface can be dramatically
enhanced by phase modulation of each wave-vector
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component of an incident light. We show that under a
conventional illumination the spatial components of the
incident light have destructive interference on the SPP
excitation, and it strongly limits the SPP excitation and
lowers the field intensity. We demonstrate that the
destructive interference can be canceled out by shaping
the illumination beam with a tailored relative phase
for the different wave-vector components. As a conse-
quence, the excited SPP field under the phase-shaped
beam illumination is concentrated to a hot energy spot,
and the electric field intensity is enhanced about three-
fold at the peak in comparison with the conventional
Gaussian beam illumination.

To clearly show the interference effect, we develop a
spatial coupled-mode formula to model the SPP excita-
tion process. To excite the SPP field at a metal-dielectric
surface the prism coupling method of the Kretschmann
and Otto configurations is commonly employed to satisfy
the phase-matching requirement. Our theory can be
generally applied to the prism coupling cases. As an
example, here we consider a Kretschmann configuration
[Fig. 1(a)], where a p-polarized incident beam illuminates
a metal layer coating on a quartz prism. When the parallel
component of the incident wave vector, k., is close to the
SPP wave vector, the incident light excites SPP through
the evanescent wave. Meanwhile the excited SPP leaks
out and generates the radiation wave in quartz as it prop-
agates along the z direction. Therefore, the reflection
process consists of two pathways: the direct reflectance
of the incident wave at the quartz-metal interface, and the
outgoing radiation from the leakage of the excited SPP at
the metal-air interface.

Based on the spatial coupled-mode theory (CMT) for-
malism [22], such an excitation process can be described
by the following equations:
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(a) Schematic of a SPP excitation with the Kretschmann configuration. The thickness of the silver layer is 58.3 nm, and the

dielectric constant of the quartz prism is £; = 2.25. (b),(c) Distribution of the electric field intensity |E[> under the illumination of a
Gaussian beam (b) and the phase-shaped beam (c). Here the white dashed lines outline the interfaces of the metal layer.
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Here we take the convention that the field varies in time
as exp(-iwt). a is the amplitude of the SPP, which is nor-
malized such that |a|?> corresponds to the time-averaged
power along z direction. f,, is the propagation constant
of the SPP mode. S;,(2) (Sou:(2)) corresponds to the am-
plitude of the incident (reflective) light with the normali-
zation of |Siy|? (|Sou|?) giving the a-direction Poyntin
flux. ¢ is the phase change of the reflection at the
quartz-metal interface. o; and agy,, correspond to the loss
rate of the SPP due to the leaky radiation and that of the
propagation loss due to intrinsic material absorption,
respectively. Note that the spatial CMT takes the approxi-
mation of the strong confinement condition, i.e.,
a + agpp K Popp- We will see below in the numerical
example that such an approximation is in fact sufficient
for the SPP excitation at a real silver interface.

Let us consider two different scenarios with the spatial
CMT theory. First, when the metal has an infinite thick-
ness, the leaky rate o; = 0. In this case, Egs. (1a) and (1b)
are decoupled: the stable solution a = exp(iﬂsppz
aspp?) of Eq. (1a) presents the SPP propagatmg in the
2z direction, and Eq. (1b) turns out as S,y = €4Sy, i.e.,
the reflected light solely experiences the phase change
at the quartz-metal surface. In contrast, if the metal thick-
ness is finite, Eq. (1a) shows the SPP excitation through
the mode coupling. Equation (1b) indicates the reflective
light contributed from the SPP excitation and the direct
reflection at the quartz-metal surface. In this case, we
expand the incident (reflected) beam into a series of
plane waves as Siou) = /% Sinout) (K2) €xp(ik,2)dk,.
On substituting into Eq. (1), the amplitude of the excited
SPP and the reflection coefficient are obtained:

Sin(k,) exp(ik.z)
az) = /2a e“” Sin(k < dk,, (2a
2 ! (k ﬂspp) -y + aspp) (22)
_s i (B2 = Pspp) —|— oy — tag
R=120u _ ig PP 1~ "7sop (2b)
Sin ( :Bspp) laspp

Equation (2a) indicates that the amplitude of the excited
SPP is sensitive to the phase of different incident wave-
vector components s;, (k,). Particularly, the denominator
of the integrand’s denominator changes sign in its real
part about f,,. When the incident light is a conventional
light beam such as a Gaussian beam, where s;,(k,) has
linear phase variation about fg,,, the components with
k. < Psopp and k, > fg,, have opposite contributions to
the SPP excitation. As a result, a destructive interference
arises, which strongly limits the peak intensity of the
excited field. The analogous destructive interference also
occurs in the time domain, where an excited state is sub-
ject to a conventional unchirped pulse in the applications
of optically induced resonant transitions [7] and all-
optical bistable switching [12]. Thus, in order to cancel
out such destructive interference, a wave-vector-
dependent phase modulation on sy, is required to balance
the phase change around the SPP resonance:

Sin = Sin(k.) exp(i arg[(k, - ﬂspp) -
This phase modulation can be achieved experimentally
through a 4f Fourier transformation system, where a
transmissive spatial light modulator is positioned at
the Fourier plane and modulates the phase for the differ-
ent wave-vector components.

We numerically demonstrate this idea of enhancing the
SPP excitation by a spatially modulated beam in a
Kretschmann configuration [Fig. 1(a)], where the thick-
ness of the silver layer is 58.3 nm, and the dielectric con-
stant of the quartz prism is ¢; = 2.25. For silver, we
assume a Drude permittivity dispersion e,, = &, - j 2/
(@® + iyw), £ = 4.039, w, = 1.391 x 10%6 rad - HZ Ya =
3.139 x 10" rad - Hz, based on experimentally retrieved
silver dispersion at the room temperature [23].

To determine the parameters of the spatial CMT
theory, we fit Eq. (2b) to the amplitude and phase spectra
of the reflection coefficients obtained from numerical
simulation. Assuming that the wavelength of the incident
light in free-space is 4y = 632 nm, the solid lines in Fig. 2
correspond to the amplitude and phase spectra of R,
which are calculated by the transfer matrix method [24].
From Eq. (2b) we see that the phase of R should have a 2z
shift as k. changes from k, < fg,, to k. > By, when
o > agyp. In the range of k, = 1-1.06ky (ko = 27/4),

(o + aspp)])- 3)



the numerical simulation indicates that the phase of
R indeed exhibits such a 2z shift. The theoretical results
from Eq. (2), using the fitting parameters of ¢ = 0.97009,
Bspp. = 1.0301ky, agy, = 4.5062 x 107k, and a; = 6.6990x
10~k,, are plotted as the dotted line in Fig. 2, which agree
well with the numerical calculation. Also, fg,, as deter-
mined from the fit to the numerical simulation coincides
with the wave vector of nonleaky SPP at the metal-air
interface, ie., ko\/&,/(1+¢,), and the very small
deviation is due to the leakage of the SPP field.

The enhancement of SPP excitation is illustrated by a
comparison between a conventional Gaussian illumina-
tion and the shaped beam after the phase modulation.
We consider that the incident Gaussian beam has the
magnetic field H, = H, [ sy (k,) exp(ik,z + ik,x)dk,,
where H, is a normalization constant, s;,(k,) =
exp[-(k, — Bspp)®/k2), and k,, = 0.0758k. Such a Gaus-
sian beam has a 2.6562 pm radius waist and focuses at
the quartz-metal surface, and the incident angle is
43.4°. Figures 3(a) and 3(b) are the amplitude and phase
spectra for the Gaussian beam and the phase-shaped
beam with the phase modulation of [Eq. (3)]. Figure 3(c)
shows the incident magnetic field amplitude at the
quartz-metal surface. Distinct from the Gaussian beam
having a peak at the center, the magnetic field of the
phase-shaped beam is zero at the center. Also the phase-
shaped beam is much wider than the Gaussian beam and
does not exhibit a symmetry profile about the center.

Figures 1(b) and 1(c) show the electric field intensity
under the Gaussian beam and the phase-shaped beam il-
luminations. The fields are computed by using the super-
position of the different spatial components applying the
transfer matrix method to each spatial component. In
comparison with the Gaussian beam, and the phase-
shaped beam illumination the incident light efficiently
tunnels through the metal layer and excites a SPP spot
with much stronger intensity than that of the Gaussian
beam. The intensities of the excited SPP at the surface
& = —0.06 pm are plotted as the blue and green solid lines
in Fig. 3(d) for the Gaussian beam and the phase-shaped
beam illuminations, respectively. To compare with our
spatial CMT, the red and cyan dotted lines in Fig. 3(d)
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Fig. 2. Amplitude and phase spectra of the reflection coeffi-
cient in the Kretschmann configuration [Fig. 1(a)]. The solid
line corresponds to the numerical calculation. The dotted
line is the fitting result of the CMT Eq. (2b) with the parameters:
¢ =0.97009, Bg, = 1.0301k), ag, = 4.5062 x 10~%k,, and
a; = 6.6990 x 10~*k,.
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Fig. 3. (a),(b) Amplitude and phase spectra of the spatial com-
ponents for the Gaussian beam (solid) and the phase-shaped
beam Eq. (3) (dashed), respectively. (¢) The magnetic field am-
plitude of the Gaussian beam (solid) and the phase-shaped
beam (dashed) at the metal-quartz interface. (d) The electric
intensity of the excitation SPP. The blue solid and green dashed
lines correspond to Figs. 1(b) and 1(c) atx = -0.06 pm, respec-
tively. The red and cyan dotted lines are computed by the CMT
Eq. (22) with the fitting parameters.

correspond to the intensity of excited SPP calculated
by Eq. (2a) with the fitting parameters and the normali-
zation process, which show good agreement between the
CMT and the numerical simulation. As our theory pre-
dicts, the SPP field excited with the phase-shaped beam
has a much higher peak intensity, and it is indeed more
than 2.7-fold stronger than the conventional Gaussian il-
lumination case. We note that the phase-shaped beam
has the same incident power as the conventional Gaus-
sian beam. More interestingly, the excited SPP field
under the phase-shaped beam illumination is concen-
trated, and the hot energy spot has the full-width half-
maximal about 10 pm and exhibits a symmetry profile
about z = 0.

The proposed spatial control technology can be di-
rectly applied to three-dimensional (3D) beams which
have a confined profile in the y direction. In these cases,
Eq. (3) needs to take into account the wave-vector
components in both the y and z directions. Figures 4(a)
and 4(b) present the simulation results for the 3D
p-polarized Gaussian beam and the phase-shaped beam
through the modulation as Eq. (3), respectively. The ex-
cited SPP field by the phase-shaped beam still concen-
trates as a hot spot, and the peak intensity is 2.7 times
the Gaussian beam illumination.

In summary, we propose that the SPP excitation on a
metal surface can be strongly enhanced by the phase
modulation on the incident illumination. We note that
the field enhancement results from the constructive in-
terference between different wave-vector components,
while the launching efficiency and the propagation dis-
tance for the SPP mode of k, = f,, are the same for both
the conventional illumination and the phase-shaped
beam. The proposed spatial control technique benefits
the development of surface-enhanced applications. For
example, in plasmon optical tweezers, a very high and
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Fig. 4. Distribution of the electric field intensity |E|? under the
illumination of (a) the 3D p-polarization Gaussian beam and
(b) the phase-shaped beam with the phase modulation of
Eq. (3). The Gaussian beam has a 2.652 pm radius waist and
focuses at the quartz-metal surface.
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sharp field intensity of SPP excitation leads to strong
optical gradient forces. Moreover, the phase shaping pro-
vides a new degree of freedom to fundamentally control
the SPP excitation to move or sort micro-objects, and the
spatial CMT is vital to design the phase modulation for a
demanded intensity profile.
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