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Temporal coupled-mode theory for light scattering by an arbitrarily shaped
object supporting a single resonance
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We develop a temporal coupled-mode theory to describe the interaction of plane wave with an individual
scatterer having an arbitrary shape. The theory involves the expansion of the fields on cylindrical or spherical
wave basis for the two-dimensional and three-dimensional cases, respectively, and describes the scattering process
in terms of a background scattering matrix and the resonant radiation coefficients into different cylindrical or
spherical wave channels. This theory provides a general formula for the scattering and absorption cross sections.
We show that for a subwavelength asymmetric scatterer with a single resonance, the scattering and absorption
cross sections can exceed the single-resonance limit for some specific incident angles of illumination, but the
sum of these cross sections over all angles has an upper limit. We validate the theory with numerical simulations
of a metallic scatterer that does not have any rotation symmetry.
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I. INTRODUCTION

The study of light scattering and absorption by individual
subwavelength objects, such as nanoparticle or antenna, is of
great importance in nanophotonics and electromagnetics. The
presence of a resonance in such an object can profoundly
influence its scattering and absorption properties, resulting
in having its electromagnetic cross section far exceed its
geometric cross section [1], as well as complex resonance-
based interference phenomena including Fano interference
[2–9], all-optical analog to electromagnetically induced trans-
parency [10–15], superscattering [16,17], and the anomalous
absorption and scattering [18,19]. It is therefore of importance
to develop a theoretical framework that elucidates the role of
resonance in these subwavelength objects.

The temporal coupled-mode theory formalism provides a
very useful general framework to study the interaction of a
resonance with external waves. This formalism was initially
developed and applied for analyzing waveguide-resonator
interactions in integrated optics [20–22]. In these studies,
the incident waves were typically expanded on the basis of
propagating modes of the waveguides. This formalism has
also been used to study the interaction of plane wave with
grating structures [23–25], where the incident waves were
expanded on a plane-wave basis. More recently, the temporal
coupled-mode theory formalism with a plane-wave basis has
been used to study the behavior of an individual or two slit
apertures [26,27].

For the study of individual isolated objects, the cylindrical
wave basis in two dimensions, or the spherical wave basis in
three dimensions, provides a more natural basis for expanding
the external waves. Temporal coupled-mode theory with either
a cylindrical or a spherical wave expansion of the external
wave has been developed in Refs. [7,28]. All these works
[7,28], however, only deal with particles that have cylindrical
or spherical shapes. Considering the great importance of a large
number of antennas or nanoparticle structures that do not have
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a symmetric shape, in this paper we generalize the temporal
coupled-mode theory on a cylindrical or spherical wave basis,
to structures without rotational symmetry, and consider the
influence of the incident angle of illumination.

The paper is organized as follows: In Sec. II we present
the temporal coupled-mode theory for the two-dimensional
case. We derive a general formula for the scattering matrix
when the scatterer supports a single resonance. The theory is
then applied to calculate the scattering and absorption cross
sections, in particular for small particles with sizes far smaller
than the wavelength of light. In Sec. III we compare the
theoretical predictions to numerical simulations for a metallic
scatterer without any rotation symmetry. Finally, we extend
the theory to the three dimensions in Sec. IV.

II. THEORY

A. General scattering theory for arbitrarily shaped scatterers

We start from the general scattering theory in the two-
dimensional (2D) case where a scatterer is uniform in the
z direction. Consider the scatterer located at the origin,
surrounding by air. When a TM wave (with its magnetic field
H polarized along the z direction) impinges on the scatterer,
the total field in the air region outside the scatterer can be
written as

Htotal =
∞∑

m=−∞
A0

[
a+

mH
(2)
|m|(kρ) exp(imθ ) + a−

mH
(1)
|m|(kρ)

× exp(imθ )
]
, (1)

where (ρ,θ ) is the polar coordinates oriented at the origin, k

is the wave number in air, and H (1)
m (H (2)

m ) is the mth order
Hankel function of the first (second) kind. Here we take the
convention that the field varies in time as exp(−iωt). So a+

m

and a−
m can be identified as the incoming and outgoing wave

amplitudes, respectively. With the choice of

A0 =
√

ωε0

2
, (2)
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|a+
m |2 and |a−

m |2 represent the power of the incoming and
outgoing cylindrical waves in the mth channel and have the unit
of W/m [7]. Therefore, the total powers carried by incoming
and outgoing waves are

P ± =
∞∑

m=−∞
|a±

m |2 = (a±)†a±, (3)

where a± is a column vector composed by a±
m as

a± =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

a±
−1

a±
0

a±
1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Following Refs. [29,30] we define a scattering matrix S that
connects a− with a+ as

a− = Sa+. (5)

When the scatterer is lossless, by energy conservation, S is
unitary, that is,

S†S = I. (6)

In addition, if the system satisfies time-reversal symmetry,
S needs to be further constrained. A time-reversal operation
transforms an outgoing (incoming) wave in the channel m to an
incoming (outgoing) wave in the channel (−m). Thus, for an
outgoing wave described by a−, its time-reversed counterpart
is an incoming wave:

ã+ = Ôa−∗
. (7)

Similarly, the time-reversed counterpart of an incoming wave
described by a+ is

ã− = Ôa+∗
. (8)

Here Ômn = δm,−n and Ô has a matrix form:

Ô =

⎡
⎢⎢⎢⎣

0 . .
.

1
1

1
. .

.
0

⎤
⎥⎥⎥⎦ . (9)

For the given set of incoming and outgoing waves satisfying
Eq. (5), if the system has time-reversal symmetry, we should
also have from Eqs. (7) and (8)

ã− = Sã+ (10)

and therefore

S−1 = ÔS∗Ô. (11)

Combining Eqs. (6) and (11), we see that in a system that
conserves energy and has time-reversal symmetry, S should
satisfy

ST = ÔSÔ. (12)

B. Temporal coupled-mode theory in the single-resonance case

We now apply the temporal coupled-mode theory to
calculate S for the case when the scatterer supports a
single resonant mode. We consider the amplitude c of the
resonance normalized such that |c|2 corresponds to the energy
inside the resonator [20] with the unit of J/m, which is
appropriate for 2D systems. Using the temporal coupled-
mode theory formalism [20,24], the dynamic equation for the
amplitude c is

dc

dt
= (−iω0 − γ0 − γ ) c + κT a+, (13a)

a− = Ba+ + cd, (13b)

where ω0 is the resonant frequency, γ0 is the intrinsic loss rate
due to, for example, material absorption, γ is the external
leakage rate due to the coupling of the resonance to the
outgoing wave, and κ corresponds to the coupling coefficients
between the resonance and the incoming wave. Note that such
coupled-mode formalism is, strictly speaking, valid only when
γ0 + γ � ω0 [20].

As shown in Eq. (13b) the outgoing waves have contribu-
tions from two pathways. The direct pathway, as described
by the term Ba+, forms the background in the response
spectrum. B is the background scattering matrix. In this
pathway, scattering occurs without exciting the resonance. The
indirect, or the resonant, pathway is described by the term cd.
The vector d can be determined by considering the scenario,
where the resonance has amplitude c, and there is no incoming
wave, that is, a+ = 0. For this scenario, the radiation field
outside the scatterer can be written as

Heigen = c

∞∑
m=−∞

A0dmH
(1)
|m|(kρ) exp(ilθ ). (14)

Here dm, which are components of the column vector d,
correspond to the radiation coefficients of the resonance.

From Eqs. (13) we have the scattering matrix for the single-
resonance scatterer as

S = B + dκT

iω0 − iω + γ + γ0
. (15)

C. Relations among B, d, and κ

We now derive constrains between B, d, and κ as imposed
by energy conservation and time-reversal symmetry [24]. Let
us first consider the lossless case with γ0 = 0. B and S should
then both satisfy Eq. (12). As a result we have

κdT = ÔdκT Ô. (16)

Next, we consider a scenario that the incoming wave is
absent (i.e., a+ = 0). From Eqs. (13) we have

c = c(0) exp(−iω0t − γ t), (17a)

a− = c(0) exp(−iω0t − γ t) d, (17b)

where c(0) is the resonance amplitude at t = 0. According to
energy conservation, the energy leakage rate must be equal to
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the power of the outgoing wave, that is,

d|c|2
dt

= −2γ |c|2 = −(a−)†a− = −d†d|c|2, (18)

which requires that

d†d = 2γ. (19)

Now let us perform a time-reversal transformation. In this
scenario, the original outgoing wave in the mth channel with
the exponential decay will be transformed to the incoming
wave in the (−m)th channel with an exponentially growing
amplitude. Such an exponentially growing excitation results
in a resonant amplitude that also grows exponentially, without
the outgoing wave. So in the time-reversed case, the amplitude
of the resonance c̃ and the incoming wave amplitude ã+ can
be written as

c̃ = [c(−t)]∗, (20a)

ã+ = Ô[a−(−t)]∗, (20b)

where c and a− are described by the original case represented
in Eqs. (17). Substituting Eqs. (20) into Eqs. (13) we have

κT Ôd∗ = 2γ, (21)

BÔd∗ + d = 0. (22)

By left multiplying d∗ on both sides of Eq. (16) and applying
Eqs. (19) and (21), we find

κ = Ôd. (23)

From Eqs. (15) and (23) we have a general form of the
scattering matrix

S = B + ddT Ô

iω0 − iω + γ + γ0
. (24)

Below we will apply Eq. (24) to describe the scattering process
of a single particle.

D. Scattering and absorption cross sections

Generally, for a scatterer without rotation symmetry the
scattering and absorption cross sections are functions of
incident angle. We consider a plane wave with Hinc =
H0 exp(ik · r) incident upon the scatterer with an incident
angle of φ schematically showed in Fig. 1. Here k is the wave
vector of the incident plane wave. The total field in the air

FIG. 1. A plane wave impinges upon a scatterer with an incident
angle of φ. The scatterer does not have rotational symmetry.

region outside the scatterer is then written as

Htotal = H0exp(ik · r) +
∞∑

m=−∞
A0smH

(1)
|m|(kρ) exp(imθ ),

(25)

where sm is the amplitude of the scattered field in the mth
channel. To connect Eq. (25) with Eq. (1), we expand the
plane wave into cylindrical waves as

exp(ik · r) =
∞∑

m=−∞
i|m| exp(−iφm)

(
H

(2)
|m|(kρ) + H

(1)
|m|(kρ)

2

)

× exp(imθ ).

In comparison with Eq. (1), we then have

a+
m =

√
2

ωε0
H0fm, (26)

a−
m = a+

m + sm, (27)

where

fm = i|m|

2
exp(−iφm). (28)

Below we will use the symbols f, a+, a−, and s to denote the
column vectors with components fm, a+

m , a−
m , and sm defined

above, respectively.
We define a matrix1 L that connects s and a+ as s = La+,

and applying Eq. (27) we have

L = S − I. (29)

As a result, the total scattered and absorbed powers are

Psct = s†s = (a+)†L†La+, (30a)

Pabs = (a+)†a+ − (a−)†a− = (a+)†(I − S†S)a+. (30b)

Following the definition of the scattering and absorption
cross section as Csct ≡ Psct/I0 and Cabs ≡ Pabs/I0, where I0 =
1
2

√
μ0

ε0
|H0|2 is the intensity of the incident plane wave, we have

Csct = 2λ

π
f†L†Lf, (31a)

Cabs = 2λ

π
f†(I − S†S)f. (31b)

E. Approximation of background scattering
matrix for small scatterer

When the scatterer is much smaller than the wavelength,
there is no scattering contribution from the direct pathway.
In this case, the background scattering matrix B can be
approximated as

B = I,

1Note that the matrix L is different from the T matrix defined in
Refs. [29,30].
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and therefore

L = ddT Ô

iω0 − iω + γ + γ0
. (32)

Thus, the amplitudes for the scattered field are

s = La+ = dT Ôa+

iω0 − iω + γ + γ0
d. (33)

Equation (33) shows that the scattered field has the same
angular distribution as the radiation coefficients of the res-
onance mode. The angular distribution of the scattered field is
therefore independent of the incident angle.

Furthermore, from Eq. (22) the resonant radiation coeffi-
cients are constrained by

Ôd∗ = −d, (34)

that is, d−m
∗ = −dm. By applying Eqs. (32) and (34) into

Eqs. (31), the scattering and absorption cross sections can be
simplified as

Csct = 2λ

π

2γ

(ω0 − ω)2 + (γ + γ0)2 |d†f|2, (35a)

Cabs = 2λ

π

2γ0

(ω0 − ω)2 + (γ + γ0)2 |d†f|2. (35b)

Equations (35a) and (35b) show that for a small scatterer
supporting a single resonance, the cross section spectra always
have a Lorentzian line shape, and the maximum cross sections
occur at the resonant frequency. The resonance linewidth is
determined by the leakage rate and the intrinsic loss rate.

F. Angular sum rule for the scattering and absorption
cross sections of small scatterers

For a scatterer without cylindrical symmetry, as we vary
the angle of incidence φ as shown in Fig. 1, the scattering and
absorption cross sections will vary as a function of φ. However,
below we show that the such a variation is constraint by an
angular sum rule.

To prove the angular sum rule, we note that starting from
Eq. (28) we have∫ 2π

0
(dT f)

†
(dT f)dφ = π

2
‖d‖2 = πγ,

where the column vectors f depend on the angle of incidence
φ as shown in Eq. (28). Consequently, integrating Eqs. (35)
over φ, we have the angular sum rule for the scattering and
absorption cross sections:∫ 2π

0
Csctdφ = 4λ

γ 2

(ω0 − ω)2 + (γ + γ0)2 , (36a)

∫ 2π

0
Cabsdφ = 4λ

γ0γ

(ω0 − ω)2 + (γ + γ0)2 . (36b)

Equations (36) show that the sum of the scattering and
absorption cross sections over all angles has maxima of 4λ

and λ at the resonant frequency, when γ0 = 0 and γ0 =
γ , respectively. A similar result has been derived for the
transmission cross section of a single metallic slit aperture [26].

Moreover, Eqs. (36) indicate the difference of the scattering
property between a rotationally symmetric scatterer and an
asymmetric scatterer. For a rotationally symmetric scatterer
with a single resonance, the scattering and absorption cross
sections are both independent of the incident angle, and
have maxima of 2λ/π and λ/2π , respectively. In contrast,
the electromagnetic cross section of a small nonsymmetric
scatterer can exceed such a limit for some specific incident
angles. We note that the existence of such a sum rule is a direct
consequence of having only a single resonance. One could
overcome the constraint here by aligning multiple resonances
at the same frequency, as shown in Refs. [16,17].

III. NUMERICAL VALIDATION

To validate of our theory we compare the theoretical
predictions to numerical simulations of a metallic scatterer that
has no rotation symmetry. Figure 2 shows the schematic of the
scatterer, where the dark and light gray parts correspond to the
metal and dielectric regions, respectively. The permittivity of
dielectric is εd = 12.96, and the metal is described by a Drude
model εm = 1 − ω2

p/(ω2 + iγdω), where ωp and γd are the
plasma frequency and the damping rate, respectively.

We first make the comparison for the lossless case where
γd = 0. For this purpose we first use a mode-solving routine
in a finite element method (FEM) package2 to calculate the the
frequency and leakage rate of a resonance in the scatterer. The
structure in Fig. 2(a) has a resonant mode at the frequency of
ω0 = 0.14417ωp, and the external leakage rate of the resonant
mode is γ = 1.2065 × 10−4ωp. Figure 2(b) shows the Hz field
distribution of the resonant mode.

To apply the temporal coupled-mode theory, we need
to identify the resonant radiation coefficients d and the
background scattering matrix B for this system. Since the
size of the scatterer is less than one tenth of the wavelength,
we adopt the small-scatterer approximation that B = I. This
approximation will be explicitly validated below.

To determine the resonant radiation coefficients d, we first
expand the resonant radiation field into cylindrical waves
in a form as shown in Eq. (14). We note that numerically
determined radiation field has an arbitrary overall complex
amplitude as seen in Eq. (14). However, the norm of d is
related to the leakage rate of the resonance Eq. (19). Also,
we recall from Eq. (34) that dm = −d−m

∗, thus d0 is purely
imaginary. These two constraints are sufficient to allow us to
fix the overall complex amplitude of the radiation field, and
hence dm for all m.

For this structure in Figs. 2(a) and 2(c) shows the amplitude
and the phase of the resonant radiation coefficients dm thus
determined for the order −5 � m � 5, respectively. The am-
plitudes of dm are significant for −2 � m � 2. Therefore the
resonance cannot be approximated as either a monopole or a
dipole mode. Also, since the resonant mode has even symmetry
about the x axis, dm should satisfy dm = d−m. Therefore all
dm with m �= 0 should be purely imaginary. In Fig. 2(c) we
indeed observe that the phases of all the dm with m �= 0 that
have significant amplitudes are close to π/2, consistent with

2Here we use the commercial software COMSOL.
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FIG. 2. (Color online) (a) Schematic of a scatterer with a
rounded-corner triangle shape. The dark and light gray areas
correspond to a plasmonic metal and a dielectric, respectively. The
permittivity of dielectric is εd = 12.96, and the metal is described by
a Drude model εm = 1 − ω2

p/(ω2 + iγdω). Here λp corresponds to
the plasmon wavelength of 2πc/ωp , where c is the velocity of light
in vacuum. Inset: We generate the outer boundary of the scatterer
by rounding corners of an isosceles triangle with a tip angle of 30◦.
The equal sides of the triangle and the radius of the round corner are
a = 1λp and r = 0.15λp , respectively. The inner boundary is created
by scaling the outer boundary by a factor of 0.6. (b) The real part of
Hz field for the resonant mode at the frequency of ω0 = 0.14417ωp .
(c) The amplitude (solid line) and phase (dotted line) of the resonant
radiation coefficient dm.

the requirements for both the mirror symmetry and the small-
particle approximation in the temporal coupled-mode theory.

Having determined all the parameters in the temporal
coupled-mode theory, we now compare the prediction of

(a)

(b)

(c)

(d)

(e)

(f)
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FIG. 3. (Color online) (a)–(c) The amplitude of the scattering
field calculated by the temporal coupled-mode theory (CMT) for a
plane wave with the incident angles of φ = 0◦, 45◦, and 90◦. (d)–(f)
The results from the FEM solver.

this theory to the numerical calculations of scattering and
absorption cross sections of this system. We first compare the
scattered fields for three different incident angles φ = 0◦, 45◦,
and 90◦, with the incident wave at the resonant frequency. We
see excellent agreement between the results from temporal
coupled-mode theory [Figs. 3(a)–3(c)], and the numerical
calculations [Figs. 3(d)–3(f)].

For a small scatterer, with the assumption of B = I, the
scattered field is solely determined by the radiation field of
the resonant mode, which is independent of the angle of
incidence, as shown in Eq. (33). Numerically we indeed see
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FIG. 4. (Color online) The far-field amplitude of the scattering
field for a plane wave with the incident angles of φ = 0◦, 45◦, and 90◦.
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FIG. 5. (Color online) The scattering cross section spectra of
the lossless scatterer for three different incident angles φ = 0◦, 45◦,
and 90◦.

that the scattered field has the same angular distribution from
the different angle of incidence we consider here, in agreement
with the temporal coupled-mode theory analysis (Fig. 4).

In Fig. 5 we compare the spectra of the scattering cross
sections for the three angles of incidence, and again obtain
excellent agreement between the theory and the FEM simula-
tions. Moreover, we observe that the scattering cross section
for this structure decreases the angle of incidence increase.
This is consistent with the results in Fig. 4, which shows that
the coupling between the incoming wave and the resonance
decreases with the increasing incident angle.

Finally we check the theory for the lossy case. Here we
set that the damping rate of the plasmonic material is γp =
0.0001ωp. The solid and dashed lines in Fig. 6 correspond
to the spectra of the scattering and absorption cross sections
for the normal incident case through the FEM calculation. By
fitting these curves through Eq. (35a), we obtain that a resonant
frequency for the the lossy case is still ω0 = 0.144167ωp,
and γ0 + γ is 1.6857 × 10−4ωp. Here we assume that the
resonant radiation coefficients and the external leakage rate
of the resonant mode do not change from the lossless case.
So the intrinsic loss rate is γ0 = 4.802 × 10−5ωp. The cross
section spectra by the coupled-mode theory are plotted as the
circle and dotted lines in Fig. 6. It shows that there is also
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FIG. 6. (Color online) The spectra of the scattering and absorp-
tion cross sections for the lossy scatterer with the damping rate
γd = 0.0001ωp .

a good agreement between the coupled-mode theory and the
FEM results in the lossy case.

To summarize this section, we obtain excellent agreements
between the temporal coupled-mode theory formulas and
exact electromagnetic simulations. We emphasize that
the agreements here are not a curve fit of theoretical
results to numerical simulations. Instead, to determine the
parameters for the temporal coupled-mode theory, only a
single calculation on the resonance mode is needed. (For
the lossy case, two calculations on the resonant modes are
required in order to separate out γ and γ0.) The temporal
coupled-mode theory can then be used to reliably predict the
behavior of the structure over all angles of incidence, and
for all frequencies in the vicinity of the resonant frequency,
with no further need for numerical simulations. Thus, the use
of temporal coupled-mode theory can greatly simplify the
task for computational characterization of the scattering and
absorption properties of a small particle, and provide important
insights regarding the behaviors of these particles in general.

IV. THE THEORY FOR SCATTERING
IN THREE DIMENSIONS

We now adapt the above theory to three-dimensional (3D)
cases. Instead of cylindrical waves used in the 2D case, the total
field in the 3D case is expanded on the basis of spherical waves
labeled by (l,m,σ ). Here l is the total angular momentum,
m corresponds to the angular momentum component along
the z direction and is subject to −l � m � l, and σ labels
polarizations. At each angular momentum (l,m), there are
two orthogonal polarizations: transverse magnetic (TM) and
transverse electric (TE). The total electric and magnetic
field outside the scatterer are the superposition of these two
polarizations and can be written as

E = ETE − 1

iωε0
∇ × HTM, (37)

H = 1

iωμ0
∇ × ETE + HTM, (38)

where ETE (HTM) is the transverse electric (magnetic) field.

HTM = 4

√
ε0
μ0

∇ × r̂�TM and ETE = 4

√
μ0

ε0
∇ × r̂�TE. Here �TM

(�TE) is the electric (magnetic) potential and satisfies the scalar
wave equation in the spherical coordinate [31]:

�σ =
∞∑
l=1

l∑
m=−l

Al,m

[
a+

l,m,σ h
(2)
l (kr) + a−

l,m,σ h
(1)
l (kr)

]
×P

|m|
l (cos θ ) exp(imφ), (39)

where a+
l,m,σ and a−

l,m,σ are, respectively, the incoming and out-
going wave amplitudes, (r,θ,φ) are the spherical coordinates
oriented at the center, k is the wave number in air, h

(1)
l (h(2)

l )
is the lth order spherical Hankel function of the first (second)
kind, and P m

l is the associated Legendre function of the first
kind. With the choice of the normalization constant as

Al,m = k

√
1

2π

(2l + 1)

l(l + 1)

(l − |m|)!
(l + |m|)! , (40)

|a+
l,m,σ |2 and |a−

l,m,σ |2 represent the power of the incoming and
outgoing spherical waves in the (l,m,σ )th channel with the
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unit of Watt [17]. When a scatterer supports a single resonant
mode, the potential for the radiation field can be written as

�eigen
σ = c

∞∑
l=1

l∑
m=−l

Al,mdl,m,σ h
(1)
l (kr)P |m|

l (cos θ ) exp(imφ),

(41)

where c corresponds to the amplitude of the resonance. Similar
to the 2D case, here we will define a vector d with its
components being the resonant radiation coefficients dl,m,σ .

Now we consider a plane wave with an electric field Einc =
E0êinc exp(ik · r) incident upon a scatterer. By an expansion
onto the basis of spherical waves, the incident field can be
described by a potential as

�inc
σ =

∞∑
l=1

l∑
m=−l

Al,mgl,m,σ jl(kr)P |m|
l (cos θ ) exp(imφ), (42)

where jl is the lth order spherical Bessel function. The
expansion coefficients gl,m,σ are

gl,m,σ = λ 4

√
ε0

μ0

√
1

2π
E0fl,m,σ , (43)

where fl,m,σ are

fl,m,TM = −
√

(2l + 1)

l(l + 1)

(l − |m|)!
(l + |m|)! i

l êinc · B−ml(θi,φi), (44a)

fl,m,TE =
√

(2l + 1)

l(l + 1)

(l − |m|)!
(l + |m|)! i

l êinc · C−ml(θi,φi). (44b)

θi and φi are the azimuth and horizon angle of the incident
wave vector, respectively, and the vectors B and C are [29]

Bml =
[

d

dθ
P

|m|
l (cos θ )êθ + im

sin θ
P

|m|
l (cos θ )êφ

]
exp(imφ),

(45a)

Cml =
[

im

sin θ
P

|m|
l (cos θ )êθ − d

dθ
P

|m|
l (cos θ )êφ

]
exp(imφ).

(45b)

Correspondingly, the scattered field Esct can be described by a
potential as

�sct
σ =

∞∑
l=1

l∑
m=−l

Al,msl,m,σ h
(1)
l (kr)P |m|

l (cos θ ) exp(imφ),

(46)

where sl,m,σ corresponds to the amplitude of the scattered field.
Therefore, for the total field Etot = Einc + Esct, the coefficients

of the incoming and outing waves are

a+
l,m,σ = gl,m,σ

2
, (47a)

a−
l,m,σ = gl,m,σ

2
+ sl,m,σ . (47b)

Having defined the incoming and outgoing wave am-
plitudes in the spherical basis, the temporal coupled-mode
equations (13), the theoretical constraints on the parameters
of the temporal coupled-mode theory Eqs. (19) and (23), and
the general form of the scattering matrix Eq. (24), can now
all be directly applied to the three-dimensional case. Using
the definition of the scattering and absorption cross sections:
Csct ≡ Psct/I0 and Cabs ≡ Pabs/I0, where I0 = 1

2

√
ε0/μ0|E0|2

is the intensity of the incident plane wave, we have

Csct = λ2

4π
f†L†Lf, (48a)

Cabs = λ2

4π
f†(I − S†S)f. (48b)

Here f is a column vector with components fl,m,σ defined in
Eqs. (44), and the scattering matrix S and the matrix L have the
same form as the two-dimensional case of Eqs. (24) and (29).

V. SUMMARY AND OUTLOOK

In summary, we show that on the basis of cylindrical
(spherical) waves in the 2D (3D) case, the light scattering
by arbitrarily shaped scatterer with a single resonance can
be modeled by a temporal coupled-mode theory formalism.
By introducing the background scattering matrix and the
resonant radiation coefficients, the light scattering response
for any incident angle or wave shape can be directly evaluated,
which provides a general formula for the scattering and
absorption cross sections. We validate the analysis with
numerical simulations for a metallic scatterer that does not
have any rotation symmetry.

We note that the present theory can be generalized for
scatterers supporting multiple resonances. In this case, the
dynamics of the multiple resonances are described by a matrix
[32]. The off-diagonal term of the matrix is in part determined
by the overlap between the radiation pattern of resonances,
and can be directly evaluated from the resonant radiation
coefficients for each resonance.
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