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Abstract: We present a dynamical analysis of lossless intensity modu-
lation in two different ring resonator geometries. In both geometries, we
demonstrate modulation schemes that result in a symmetrical output with
an infinite on/off ratio. The systems behave as lossless intensity modulators
where the time-averaged output optical power is equal to the time-averaged
input optical power.

© 2012 Optical Society of America

OCIS codes: (230.0230) Optical devices; (140.4780) Optical resonators; (350.4238) Nanopho-
tonics and photonic crystal.

References and links
1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4,

518–526 (2010).
2. A. Liu, R. Jones, L. Liao, D. Samara-Rubio1, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed

silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
3. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon

Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
4. L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, and N. Izhaky, “40 Gbit/s

silicon optical modulator for highspeed applications,” Electron. Lett. 43, 1196–1197 (2007).
5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical

modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
6. X. Chen, Y.-S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pj/bit silicon-slot photonic

crystal waveguide modulator,” Opt. Lett. 34, 602–604 (2009).
7. H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “25 Gb/s hybrid silicon switch using a capacitively loaded traveling

wave electrode,” Opt. Express 18, 1070–1075 (2010).
8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,

325–327 (2005).
9. D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai,

C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS-compatible Si-ring modulator,” IEEE Photon.
Technol. Lett. 21, 200–202 (2009).

10. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator
with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009).

11. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon mi-
croring modulator,” Opt. Express 18, 18235–18242 (2010).

12. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol.
Lett. 14, 483–485 (2002).

13. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling
modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).

14. T. Ye and X. Cai, “On power consumption of silicon-microring-based optical modulators,” J. Lightwave Technol.
28, 1615–1623 (2010).

15. Z. Pan, S. Chandel and C. Yu, “Ultrahigh-speed optical pulse generation using a phase modulator and two stages
of delayed Mach-Zehnder interferometers,” Opt. Eng. 46, 075001 (2007).

16. C. Schmidt-Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber Commun. Rep. 2, 86–114
(2005).

17. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753
(2008).

#156102 - $15.00 USD Received 4 Nov 2011; revised 20 Jan 2012; accepted 30 Jan 2012; published 7 Feb 2012
(C) 2012 OSA 13 February 2012 / Vol. 20, No. 4 / OPTICS EXPRESS  4280



18. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd

ed. (Artech House, 2005).
20. Q. Reed, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3,

406–410 (2007).
21. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Tech-

nol. 23, 4222 – 4238 (2005).
22. Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17, 20783–20793 (2009).

1. Introduction

Integrated photonics has attracted a great deal of attention in recent years because of its poten-
tial to realize faster and less power-consuming photonic devices. One key required functionality
in integrated photonics is optical modulation [1]. For this purpose, electro-optic intensity mod-
ulators have been experimentally demonstrated in a variety of geometries such as the Mach-
Zehnder interferometer [2–7] and resonators [8–11]. In particular, micro-ring resonator modu-
lators are attractive because of their potential to achieve compact, low power-consumption and
high-speed modulation [1]. A common way of performing optical modulation in these previ-
ously studied geometries is by operating around a lossy state where the transmission through
the system is near zero. For example, in systems consisting of a micro-ring coupled to a waveg-
uide [12–14], optical modulation is usually performed by operating around the critical coupling
state where the ring resonator’s intrinsic loss rate is equal to its waveguide coupling rate. How-
ever, operation around such a lossy state can result in a significant loss of optical power in these
modulation schemes.

In this paper, we propose an alternative mechanism that achieves lossless intensity modula-
tion. As an illustration, we consider lossless resonant all-pass filters consisting of a waveguide
side-coupled to either a single-ring resonator or coupled-ring resonators. For such a system,
when we input into the waveguide a continuous-wave (CW) signal, the steady state transmission
coefficient is always unity, independent of the resonance frequency or the coupling constants
of the system. Nevertheless, we show that significant intensity modulation of the system output
can be achieved when the system parameters such as the resonant frequencies are modulated at
a rate comparable to the waveguide coupling rate. In fact, the modulation on/off ratio, defined
as the ratio of the maximum to minimum output power, can be infinity. This system behaves
as a lossless intensity modulator where the time-averaged output optical power is equal to the
time-averaged input optical power. Thus, the peak power of the modulated output signal is in
fact higher than the input CW signal peak power. We also show that in the case of a coupled-
three-ring system, a clear symmetric output pulse shape can be generated by only modulating
the ring resonance frequency. Examples of possible applications of our intensity modulation
schemes include optical clock signal generation and optical sampling [15, 16].

2. Photon dynamics in a modulated system

The conventional way of describing optical intensity modulation is by imagining a device
whose steady state transmission spectrum T varies as a function of some parameter x [Fig. 1(a)].
For example, in the simple case of a single-ring modulator [12–14] shown in Fig. 2(a), x can
either be the ring’s resonance frequency, its radiative loss rate or its waveguide coupling rate.
At some operating frequency ω of the system, the steady state transmission spectrum has a
value of Tmax for some x = x1 and a value of Tmin for some x = x2. Modulating x between x1 and
x2 [Fig. 1(b)] at some frequency Ω then results in the intensity modulation of an input optical
beam between the Tmax state and the Tmin state [Fig. 1(c)] at the same frequency Ω. If we return
back to our example of the single-ring modulator [Fig. 2(a)], the modulation of x here can be
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carried out such that the single-ring system is modulated between (i) the critical coupling state
where T = Tmin = 0, and (ii) away from the critical coupling state where T = Tmax ≈ 1.
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Fig. 1. Conventional way of describing intensity modulation which is only valid in the
adiabatic regime: (a) transmission T of system as a function of some system parameter x,
(b) modulation performed on x as a function of time, (c) resultant modulation of the system
transmission T as a function of time.

It is important to realize that the schematic in Fig. 1 in fact is generally not an accurate
description of the modulation process [14,17]. In particular, this description implicitly assumes
that the system responds instantaneously to any variation of the control parameter. However,
such an instantaneous response is only valid in the adiabatic regime, when the modulation rate
is far below the frequency scale of every important dynamic process of the system. A more
accurate description of the modulation process requires the system dynamics to be taken into
account [14, 17]. In the following two sections, we study the dynamics in two types of lossless
resonant all-pass filters: (i) a single lossless ring resonator coupled to a waveguide, and (ii) a
lossless coupled-three-ring resonator system coupled to a waveguide. We show that in both ring
systems, when we input into the waveguide a CW signal at the system resonance frequency, a
symmetric modulated output with infinite on/off ratio can be achieved by modulating some
parameter in the system. Both systems behave as lossless intensity modulators where the time-
averaged output optical power is equal to the time-averaged input optical power.

3. Single-ring system

We first consider the system shown in Fig. 2(a), consisting of a single ring coupled to a waveg-
uide. The system can be described by the following coupled-mode theory (CMT) equations
which have been previously shown to accurately describe the propagation of light in resonator
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systems [18]:

da(t)
dt

= j ωo a(t) − [
γcoup(t) + γloss

]
a(t)+ j

√
2γcoup(t)Sin(t)

Sout(t) = Sin(t) + j
√

2γcoup(t)a(t). (1)

Equation (1) describes the dynamics of the amplitude a(t) of a ring resonator with the
modal profile normalized such that |a(t)|2 gives the energy in the mode. γloss is the ring
resonator’s amplitude-radiative loss rate, ωo is the resonance frequency of the ring, and
Sin(t) [Sout(t)] denotes the amplitude of the incoming [outgoing] wave in the waveguide with
|Sin(t)|2 and |Sout(t)|2 giving the power in the waveguide mode. γcoup(t) is the time-dependent
waveguide-ring amplitude coupling rate, related to the waveguide-ring power coupling ratio
1− ∣

∣exp
(−γcoup L/v

)∣∣2, where L =circumference of the ring and v = speed of light in the
ring [12].
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Fig. 2. Analysis of a single-ring system: (a) shows the schematic of the system where a(t)
is the ring modal amplitude, ωo is the ring resonance frequency, Sin(t) [Sout(t)] are the
incoming [outgoing] waveguide modal amplitude and γcoup(t) is the waveguide coupling
rate. (b) and (c) show the system output power at t � 1

γo
for a modulated coupling rate

γcoup(t) = [0.069+0.025sin(Ωt)]Ω and γcoup(t) = [6.43+2.92sin(Ωt)]Ω, respectively.
In both (b) and (c), ωo = 2π(193THz), Sin = exp( jωot) and Ω = 2π(20GHz). Circles in
(b) show the output power using the approximation of Eq. (5).

In the case of a CW input Sin(t) = exp( j ω t) and static coupling rate γcoup(t) = γcoup, the
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transmission spectrum of the single-ring system is:

T (ω) =
Sout

Sin
=

ω − ωo + j
(
γcoup − γloss

)

ω − ωo − j
(
γcoup + γloss

) .

If we further assume the system is lossless (i.e. γloss = 0), the power transmission coefficient of
the system is |T (ω)| = 1 for all values of the coupling rate γcoup and ring resonant frequency
ωo. Thus, the conventional description of intensity modulation in Fig. 1, which neglects the
system dynamics, predicts that for the lossless ring system in Fig. 2, modulating any parameter
at any modulation frequency will not result in the intensity modulation of an input optical beam.

We next examine the dynamical behavior of such a lossless ring system in the case of some
time-dependent coupling rate γcoup(t) and CW input Sin(t) = exp( jωo t) operating at the ring
resonance frequency ωo. From Eq. (1) we can derive the following analytical form of the system
output:

Sout(t) = [1+B(t)]exp( jωo t), (2)

B(t) = j
√

2γcoup(t)A(t), (3)

A(t) = j exp

[
−
∫ t

0
γcoup(t

′)dt ′
]∫ t

0

√
2γcoup(τ) exp

[∫ τ

0
γcoup(t

′)dt ′
]

dτ,

where the resonator amplitude a(t) = A(t) exp( jωo t). The output Sout(t) in Eq. (2) can be
described as having a carrier frequency ωo and an envelope 1+ B(t). The envelope results
from the interference between a direct pathway of unity amplitude and an indirect pathway
ring resonance assisted amplitude B(t). The expression for B(t) in Eq. (3) consists of inte-
grals which contains memory effects as discussed in Ref. [17]. In the discussion below, we will
demonstrate that these memory effects, which are significant only when the modulation is in
the non-adiabatic regime, can give rise to lossless intensity modulation.

In the following examples, we specialize to a sinusoidal modulation of the waveguide cou-
pling rate at a modulation frequency Ω = 2π(20GHz):

γcoup(t) = γo +Δγ sin(Ωt) (4)

where γo is the mean coupling rate amplitude and Δγ is the modulation amplitude. We numer-
ically solve the single-ring system CMT equations [Eq. (1)] for the output Sout(t). Figure 2(b)
and 2(c) show the output power solutions at t � 1

γo
for the cases (γo = 0.069Ω, Δγ = 0.025Ω)

and (γo = 6.43Ω, Δγ = 2.92Ω), respectively. In both of these examples, the output power
is modulated between a maximum amplitude state and a zero amplitude state (i.e. infinite
on/off ratio) with a modulation frequency equivalent to the coupling rate modulation frequency
Ω = 2π(20GHz). Qualitatively, the maximum amplitude state in Fig. 2(b) and (c) occurs when
there is constructive interference between the direct pathway amplitude and the resonance as-
sisted indirect pathway amplitude in Eq. (2), while the zero amplitude state occurs when there
is destructive interference between the pathways. In general, for any mean coupling rate ampli-
tude γo � ωo in Eq. (4), an infinite modulation on/off ratio can be achieved by an appropriate
choice of the modulation amplitude Δγ .

We also see that a symmetrical output envelope is obtained in the weak coupling rate regime
[Fig. 2(b)] where γo,Δγ � Ω and Δγ < γo in Eq. (4). In this weak coupling rate regime, assum-
ing a sinusoidal modulation of the coupling rate [Eq. (4)], the indirect pathway amplitude B(t)
in Eq. (3) at t � 1

γo
can be approximated as:

B(t)≈ 2

√
γcoup(t)

γo

[(
Δγ
4γo

)2

−1

]

. (5)
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The circles in Fig. 2(b) shows a plot of the output power [Eq. (2)] using the approximation
in Eq. (5). We see that there is excellent agreement with the unapproximated form (solid line)
using Eq. (2) and (3). In Eq. (5), the resonator amplitude a(t) within the original B(t) expression
[Eq. (3)] has been approximated by a constant. This constant energy within the resonator results
in the modulation of the output envelope [Eq. (2)] being only driven by the

√
γcoup(t) term in

Eq. (5). Hence, the output envelope is symmetrical in the weak coupling regime. Equation (5)
also shows that for any mean coupling rate γo in this weak coupling regime, an infinite on/off
ratio can be achieved by using a modulation amplitude Δγ ≈ 0.73γo.

On the other hand, strong coupling to the waveguide results in an asymmetrical output en-
velope [Fig. 2(c)]. For our sinusoidal modulation of the coupling rate in Eq. (4), the resonator
amplitude a(t) within the B(t) expression [Eq. (3)] generally oscillates with the same period-
icity as the coupling rate. However, in the strong coupling regime, the ratio of the variance to
the mean value of |a(t)| is significant. Hence, the modulation of the output envelope is driven
by the product of a

√
γcoup(t) term and a non-constant resonator amplitude term in Eq. (3).

In general, within a modulation cycle of the coupling rate, there is a time delay between the
maximum points and between the minimum points of both these driving terms. Consequently,
the output envelope is asymmetrical in the strong coupling regime.

We also emphasize that our above discussion of lossless optical modulation in either the weak
coupling regime [Fig. 2(b)] or the strong coupling regime [Fig. 2(c)] is different as compared to
the modulation schemes studied in Ref. [12–14]. In particular, the modulation schemes in Ref.
[12–14] involve operation around the critical-coupling state which can result in a significant
loss of optical power.

One common way of implementing the coupling modulation scheme in Fig. 2(a) is using ei-
ther a composite interferometer [Fig. 3] or a simple directional coupler as outlined in Ref. [12].
However, such an implementation can result in a longer device length scale, and also higher
power consumption [1, 14].

3dB

coupler

3dB

coupler
MZI

(t)

(t)

Ring resonator

Input Output

Fig. 3. Example implementation of waveguide coupling rate modulation in a single-ring
system using a composite interferometer (CI) [12]. The CI consists of a Mach-Zehnder
interferometer (MZI) sandwiched between two 3dB couplers. The MZI is driven in a push-
pull configuration with modulated propagation phases ±Δθ(t) that modulate the waveguide
coupling rate.

4. Coupled-three-ring system

To overcome the length scale and power consumption issues associated with the structure
shown in Fig. 3, we next introduce a modulation scheme based on coupled-ring resonators,
where the system’s effective waveguide coupling rate and, hence, output power can be mod-
ulated by modulating the resonance frequencies of a pair of resonators. In addition, we show
that the resulting modulated output envelope of the system can be symmetrical with an infinite
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on/off ratio. Our system (Fig. 4) consists of a pair of side ring resonators with modal amplitudes
p(t) and q(t), coupled to a central ring resonator with modal amplitude a(t). The coupling rate
between each side ring and the central ring is κ , and the side rings are not directly coupled to
each other. The central ring has a static resonance fequency ωo while the two side rings have dy-
namic resonance frequencies ωo +Δ(t) and ωo −Δ(t), respectively. The central ring is coupled
to a waveguide and this central-ring-waveguide part of the system has the same geometry as the
single-ring system discussed in Section 3. The coupled-three-ring system can be described by
the following CMT equations:

da(t)
dt

= j ωo a(t) + j κ [p(t) + q(t)]− (
γcoup + γloss

)
a(t)+ j

√
2γcoup Sin(t)

dp(t)
dt

= j [ωo + Δ(t)] p(t) + j κ a(t) − γloss p(t)

dq(t)
dt

= j [ωo − Δ(t)]q(t) + j κ a(t) − γloss q(t)

Sout(t) = Sin(t) + j
√

2γcoup a(t). (6)

Fig. 4. Schematic of the coupled-three-ring system where a(t), p(t) and q(t) are the rings’
modal amplitudes, Sin(t) [Sout(t)] is the incoming [outgoing] waveguide modal amplitude,
κ is the inter-ring coupling rate, γcoup is the waveguide coupling rate, ωo is the central ring
resonance frequency, and Δ(t) is the side ring detuning.

In the case of a CW input Sin(t) = exp( jωt) and a static side ring resonance frequency
detuning Δ(t) = Δ, the transmission through the system is:

T (ω) =
Sout

Sin
=

ω − ωo + y + j
(
γcoup − γloss

)

ω − ωo + y − j
(
γcoup + γloss

)

y =
2κ2 (ω − ωo − j γloss)

Δ2 − (ω − ωo − j γloss)
2 .

If we further assume the system is lossless (i.e. γloss = 0), the absolute transmission of the
system is |T (ω)| = 1 for all values of the detuning Δ. On the other hand, the spectra of energy
stored in each of the three resonators in Fig. 4 varies with Δ.

As a direct check of the CMT model [Eq. (6)], we simulate a coupled-three-ring system by
solving Maxwells equations using the finite-difference time-domain (FDTD) method [19]. For
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the FDTD simulations, the straight waveguide in Fig. 4 is chosen to have a width of 0.127 μm,
such that the waveguide supports only a single mode in the 1.55 μm wavelength range. Each
ring resonator waveguide has the same width as the straight waveguide, and a ring radius of
2 μm (measured from the center of the ring to its outer circumference). The center-to-center
separation between the central ring and the straight waveguide is 2.417 μm while the center-to-
center separation between the central ring and each side ring is 4.653 μm. The center-to-center
separation between the side rings is 6.581 μm. The straight waveguide and side rings have a
refractive index of 3.5, while the central ring has a refractive index of 3.500491. This results in
all three rings having an identical resonance frequency ωo = 2π(193THz) when the side ring
detuning is Δ = 0. The inter-ring coupling rate between the central ring and each side ring is
κ = 2π(17.9GHz), the waveguide coupling rate is γcoup = 2π(18.7GHz), and each ring has a
very low amplitude-radiative loss rate of γloss = 2π(38.6MHz). The circles in Fig. 5 show the
FDTD simulation results for the energy spectra |a(ω)|2 within the central ring at three different
side ring detunings. Also shown in Fig. 5 are the spectras (solid lines) from the CMT model of
the system [Eq. (6)] with identical values of the system parameters as in the FDTD simulations.
Both the analytical CMT plots and FDTD simulation results show excellent agreement.

We next briefly comment on the spectras at the three different side ring detunings in Fig. 5:
at zero detuning [Fig. 5(a)], the energy in the central ring is zero at its resonance frequency ωo,
and hence the system at this resonance frequency is at a dark state that is completely decou-
pled from the waveguide. When the side ring detuning Δ is non-zero [Fig. 5(b) and 5(c)], the
spectrum of the energy in the central ring has a peak centered at its resonance frequency. In
addition, the width of this peak increases as Δ is increased. This behavior is similar to varying
the waveguide coupling rate in a single-ring system [Section 3] [12]. Namely, changing the
waveguide coupling rate in the single-ring system also results in a variation of the resonator
amplitude spectra width, while the peak center of the spectra stays fixed at the resonance fre-
quency. This analogy suggests that varying the side ring detuning in Fig. 5 is similar to varying
the effective waveguide coupling rate of the coupled-three-ring system.

The steady state analysis that was just presented motivates us to consider the possibility of
modulating the system output by modulating the side ring detuning around the dark state. We
next present a dynamical analysis of such a modulation process in a lossless coupled-three-ring
system.

The modulation scheme we use in the following discussion involves a push-pull configuration
where there is a π phase diferrence between the detunings Δ(t) of the side rings. This push-
pull configuration can be shown to result in zero chirp in the output Sout(t) [Eq. (6)] for an
input Sin(t) operating at the resonance frequency ω = ωo. We note that a chirpless output is
also a characteristic of a waveguide-coupling modulated single-ring system [Eq. (2)]. We also
specialize to a Ω = 2π(20GHz) sinusoidal Δ(t) modulation:

Δ(t) = δω sin(Ωt) (7)

where δω is the resonance frequency modulation amplitude.
We numerically simulate the modulation process using the FDTD method. The FDTD simu-

lation setup is identical to the setup for obtaining the central ring spectras in Fig. 5. We therefore
operate in a non-adiabatic regime where the side ring detuning modulation rate Ω is compara-
ble to the system coupling rates γcoup and κ . Figure 6 shows the FDTD result (circles) of the
system output power at t � 1/γcoup for the case of a CW input Sin(t) = exp( jωo t) operating
at the resonance frequency ωo = 2π(193THz) of the central ring, and a side ring modulation
amplitude δω = 2π(27.65GHz) in Eq. (7). We emphasize that the time-averaged output optical
power in Fig. 6 is equal to the time-averaged input optical power. In addition, the modulated
output waveform is symmetrical with an infinite on/off ratio, and an output modulation fre-
quency of 40GHz that is twice the side ring modulation frequency. Also shown in Fig. 6 is the
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Fig. 5. Plots of the normalized spectra of energy |a(ω)|2 of the central ring resonator in
the coupled-three-ring system (Fig. 4) from both FDTD simulations (circles) and the CMT
model (solid line). The three spectras are at different side ring detunings Δ.

result (solid line) from numerically solving the system’s CMT equations [Eq. (6)]. The CMT
simulation has identical values of the system paramaters as in the FDTD simulation, except for
a slight adjustment of the side ring detuning modulation amplitude to δω = 2π(26.3GHz) in
order to fit the FDTD results. We also note that the phase of Sout(t) in Eq. (6) is zero at all times
during the modulation.

We next provide a qualitative explanation of the modulated output waveform in Fig. 6 based
on the CMT model [Eq. (6)] of the system. Similar to the dynamics of the single-ring system
discussed earlier, the output amplitude Sout(t) of the coupled-three-ring system (Fig. 4) is the
interference between a direct-path amplitude and an indirect-path amplitude, where the latter
amplitude is now a coupled-three-ring resonance assisted indirect-path amplitude. Starting from
any maximum output point in Fig. 6, the modulated output power trajectory in half a modulation
period consists of the following three characteristic states whose electric field plots are shown
in Fig. 7: (a) a maximum output power state, (b) a dark state and (c) a zero output power state.
The maximum output power state [Fig. 7(a)] occurs when the direct-path amplitude interferes
constructively with the indirect-path amplitude, while the zero output power state [Fig. 7(c)]
occurs when there is destructive interference between the two pathways. In between this max-
imum and zero output power states is the dark state shown in Fig. 7(b) where the central ring
amplitude a(t) is zero. At this dark state, the central ring is completely decoupled from the
waveguide, and the system ouput consists of only the direct-path amplitude [Sout(t) = Sin(t)].

We also note that the output envelope in Fig. 6 has a modulation rate that is double the side
ring modulation rate Ω [Eq. (7)]: within one modulation period 2π/Ω of the side ring detuning
Δ(t), the coupled-three-ring system states at times t = t1 and t = t2 = t1 +π/Ω are identical up
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Fig. 6. Plot showing the 40GHz modulated output power for the coupled-three-ring system
(Fig. 4) at t � 1/γcoup from both CMT (solid line) and FDTD (circles) simulations. The
side ring resonance frequency detuning Δ(t) is modulated at a frequency 20GHz and ampli-
tude δω = 2π(27.65GHz), while the other parameters are as follows: κ = 2π(17.9GHz),
γcoup = 2π(18.7GHz), ωo = 2π(193THz), and Sin(t) = exp( jωot).

to a flip in the sign of the detunings in both side resonators. Consequently, the system output
has identical values at both times t1 and t2 within a modulation period, resulting in two identical
output pulses for every one modulation cycle of the side ring detuning. This frequency doubling
can be avoided by using a modulation Δ(t) in Eq. (6) that is always positive, for example.

t = 24.6 ps

t = 20.3 ps

t = 30.9 ps

(a)

(b)

(c)

Fig. 7. Coupled-three-ring system electric field plots from FDTD simulations around the
(a) maximum output power state, (b) dark state, and (c) zero output power state in Fig. 6.
The electric field is polarized normal to the page.
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5. Conclusion

In this paper, we presented a dynamical analysis of lossless modulation in two different res-
onator geometries: a single-ring system and a coupled-three-ring system. In both geometries,
we demonstrated modulation schemes that result in a symmetrical output with an infinite on/off
ratio. Both systems behave as lossless intensity modulators where the time-averaged output op-
tical power is equal to the time-averaged input optical power. Although we only considered ring
resonators with negligible intrinsic loss, the addition of intrinsic loss to the resonators results
in little loss of optical power during the modulation process, as long as the resonator intrinsic
loss rate is much smaller than the coupling rates of the system. For example, for a ring res-
onator with intrinsic loss rate of γloss = 0.65GHz [20], both systems can be designed to have a
time-averaged output optical power that is > 90% of the time-averaged input optical power.

In the coupled-three-ring system, lossless output modulation was achieved by performing
push-pull modulation of the side ring detuning Δ(t) around the dark state of the system. In
our numerical simulation example (Fig. 6), modulation of Δ(t) requires a fractional refractive
index tuning of ∼ 10−4 which can be implemented using free carrier injection/depletion in
silicon [20–22]. Ref. [22] also includes an example implementation for modulating the two
side rings in parallel within a simple integrated circuit that allows for fast modulation of the
side ring detuning.
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