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Dynamically tuned coupled-resonator delay lines
can be nearly dispersion free
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We investigate dispersion effects in dynamically tuned, coupled-resonator delay lines. Provided that the sys-
tem is tuned to a zero-bandwidth state, a signal can be delayed indefinitely with almost no dispersion. We
present a theoretical analysis of such a light-stopping system and verify the results using numerical

simulations. © 2006 Optical Society of America
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Controlling the group velocity of light is of great in-
terest in classical and quantum information
processing.”” For this purpose, static delay lines
based on cascaded optical resonators have been
widely studied.®*® In general, such structures are
fundamentally hmlted by the delay—bandwidth prod-
uct constraint.>® The maximum delay for a structure
of given length is inversely proportional to the sys-
tem bandwidth. Moreover, it has been pointed out
that the use of sharp resonances can lead to strong
group-velocity dispersion.’™ % As a result, the spread
of the pulse width increases with propagation dis-
tance and hence, delay. Recently, it was shown that
the delay- bandw1dth constraint of resonator del Iy
lines can be overcome with a dynamic process.
The key idea is to compress the system bandwidth
through refractive index modulation while the signal
is in the system. Compared with a static delay line
with the same length, and hence similar storage ca-
pacity, the result is a much larger signal delay. In
this Letter, we show that by further requiring the
system bandwidth to be compressed to zero, disper-
sion can be strongly suppressed. In such a light-
stopping process, the delay time can be increased ar-
bitrarily without increasing dispersion. Thus, a
properly designed, dynamically tuned, coupled-
resonator delay line can be nearly dispersion free.
We first examine the performance of a static
coupled-resonator delay line. The dispersion relation
w(k) can be expanded around a wave vector %, as
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where w = d"w(k)/dk"|;-;,. Consider a Gaussian

pulse W1th frequency centered at w(k,), with an ini-
tial width in time A¢;,. (The width is defined as the
amplitude standard deviation of the pulse.) The delay
time 7 is related to the system length L by 7=L/v,,
where v,= w(l) is the group velocity. The final width at
the output Atout is given by
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and increases with delay time. As a result, the maxi-
mum achievable delay in a static lossless delay line is
dispersion limited.
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In contrast, a properly designed, dynamic delay
line can overcome such dispersion limitations. The
line is described by a time-varying dispersion rela-
tion w(k,t). We assume that w(k,?) results from a
translationally invariant tuning process, so that each
signal wave vector component is preserved.'”! Ex-
panding around %,
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where | )(t)— Tk, )/ k" jop, . v(£)=w} () is the
group velomty The spatial proﬁle of the 51gnal can be
written as
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We now specialize to a light stopping process, in
which the system bandw1dth s adiabatically and re-
versibly compressed to zero.'* In the zero-bandwidth
state, the group velocity vanishes. Assume that the
band is compressed during a time 7, held for a time
7, and then decompressed during an additional time
T. The total delay 7=2T+ 7' can be made arbitrarily
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long by increasing the holding time, 7. Because 7’ is
independent of the initial signal bandwidth, the con-
ventional delay—bandwidth constraint for static reso-
nator delay lines does not apply.™

The evolution of the pulse during the light-
stopping process can be inferred from Eqgs. (4)—(8).
During bandwidth compression, the pulse slows
down as v,(#) is reduced to zero, and the pulse width
slightly increases. During the holding time, v,(¢) is
identically zero, and the signal pulse remains
stopped. Moreover, since »\?(¢) as well as all higher-

c

order derivatives are zero, no pulse spreading occurs.
During bandwidth decompression, the pulse speeds
up, returning to its original group velocity and
spreading slightly. Using Eq. (8), the output signal
width in time is
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This result is in contrast to the static resonator de-
lay line result [Eq. (2)]. In the static delay line, the
signal width increases throughout the entire propa-
gation process. In the dynamically tuned light-
stopping system, the signal width increases only
while the pulse is being slowed down (bandwidth
compression) or sped up (bandwidth decompression).
For the majority of the delay time, the pulse does not
spread at all.

Below, we verify these results using the example
light-stopping system shown in Fig. 1. The unit cell
consists of two main resonators with mode ampli-
tudes, ¢;(t) and r;(t), and one side resonator with
mode amplitude s;(¢#). Each main resonator has a
static resonance frequency wy, while the side resona-
tor has a dynamic resonance frequency w,(¢). The
coupling rate between neighboring main resonators
is «, while the coupling rate between neighboring
main and side resonators is «,; non-adjacent resona-
tors do not couple directly. The system can be de-
scribed by the following equations, which have been

Fig. 1. A section of the example coupled-resonator light-
stopping system. The unit cell has length L.
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Fig. 2. Band structure for the dynamic system shown in
Fig. 1. (a) Detuning A=-9.43 X 10~%w,. (b) Detuning A=0.

shown to accurately describe light propagation in dy-
namic photonic-crystal resonator systems,1
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Using the discrete translational invariance, the dis-
persion relation can be derived:
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Figure 2 shows the band structure for two different
detuning conditions. (Similar band structures have
been calculated for quantum well Bragg
structures.'® In Fig. 2(a), the upper two bands de-
scribe propagating modes that are concentrated in
the main resonators and have relatively large band-



widths. o, was chosen to place w,=2mc/(1.55 um) in
the linear region of the second band (indicated by a
solid line); (wy—w.)/ w,=8 % 107¢. The detuning of the
side resonator is A= w,—wy=-9.43 X 10%w,. For this
value, the side resonator is detuned far from the
main resonators and gives rise to a nearly flat band
in the band structure at w,. We assume a lattice con-
stant L=4.8 um, a reasonable value for photonic
crystal implementations. The coupling constant «
=1.89 X 1075w, was chosen such that the second band
would accomodate a signal of nanosecond time width.
Figure 2(b) shows the band structure for a detuning
A=0. (Tuning to A=0 requires a refractive index
modulation of ~1074, which can be achieved by free
carrier injection.'®) Following the procedure in Ref.
11, one can prove that the band at w, is completely
flat. Furthermore, it can be shown that the separa-
tion between the flat band and either of the two other
bands is =«,. k,=3« was chosen large enough to pre-
vent energy loss to other bands during tuning.

By dynamically varying the system from Fig. 2(a)
to Fig. 2(b), one can stop a light pulse. To study pulse
propagation, Eqs. (11)—(13) were solved numerically
for a system of N=43 unit cells. A Gaussian input sig-
nal with A¢;,=0.5 ns was used [Fig. 3(a)l. The detun-
ing was reduced from its initial to final value on a
time scale of 8/«. (To maintain the adiabatic condi-
tion, the modulation time needs to bel* >1/k.) After a
finite holding time, the dynamic process was applied
in reverse to retrieve the signal. The solid curve in
Fig. 3(b) shows the pulse output. Notice that the
pulse is still Gaussian. For comparison, the circles in
Fig. 3(b) are obtained from the analytical model of
Egs. (3) and (4), in which w(k) was expanded up to
second order. Figure 3(c) shows the output of a static
coupled-resonator delay line corresponding to the
system of Fig. 2(a). Note that the delay time is far
shorter. While a longer static structure [N=13286 in
Fig. 3(d)] achieves a comparable delay to the dynamic
structure, the pulse disperses and becomes distorted.
Figure 4(a) shows the ratio of output- to input-signal
width for both the dynamic and static systems. In the
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Fig. 3. Signal profiles: (a) input signal, (b) signal at output

of dynamic light-stopping system with N=43, (c) signal at

output of static line with N=43, and (d) output pulse for a

static line with N=13286.
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Fig. 4. Ratio of output- to input-signal width: (a) dynamic
light-stopping system with N=43. Delay is increased by in-
creasing the holding time. (b) Static line. Delay is increased
by increasing the length N.

light-stopping system, the ratio is constant with in-
creasing delay, since pulse spreading occurs only dur-
ing bandwidth compression and decompression. In
contrast, for the static line, the pulse width increases
arbitrarily with increasing delay [Fig. 4(b)].

In conclusion, a light-stopping delay line made
from dynamically tuned coupled resonators strongly
suppresses dispersion effects when a zero-bandwidth
state is used. In contrast, significant dispersion ef-
fects have been observed in a dynamic system lacking
a zero-bandwidth state.'® Thus, the correct design of
the system is crucial for realizing the potential of dy-
namic resonator systems.
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