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Quantum critical coupling conditions for zero single-photon transmission through a coupled
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The quantum critical coupling conditions, where single-photon transmission goes to zero, for systems of a
coupled ring resonator and atom in a one-dimensional single-mode waveguide are discussed. The quantum critical
coupling conditions could be achieved even with nonvanishing intrinsic losses of the resonator and the atom, with
intermode backscattering between the whispering-gallery modes of the ring resonator, and with time-reversal
symmetry breaking. The energy transfer efficiency from the waveguide to the resonator and the atom is also
discussed.

DOI: 10.1103/PhysRevA.82.021802 PACS number(s): 42.50.Ct

For a system of coupled waveguides and resonators in gen-
eral, the critical coupling is defined as when the transmission of
the classical input signal at resonance goes to zero at the output
port [1–3]. The notion of critical coupling is fundamental to
any systems of coupled waveguides and resonators, and conse-
quently, has important applications in both engineering [4–11]
and fundamental science [12–19]. With recent advances
in efficient on-demand single-photon sources [20–22], and
proposals of using single photons for quantum information
processing, a practical question naturally arises: When a quan-
tum system includes atomic degrees of freedom that couple
to single photons, what are the criteria for the single-photon
transmission to be zero? Such quantum critical coupling
conditions would be of crucial importance, for example, in the
designs of single-photon devices that regulate single-photon
transport for photon-based quantum information processing,
and in quantum optics experiments probing photon-photon
correlations [18,23–25], where one often desires to completely
eliminate single-photon transmission so that the signatures
of two-photon correlated transmission is most prominent.
In this paper, we investigate this problem and present
the quantum critical coupling conditions for single-photon
transmission.

The critical coupling conditions for a general system of cou-
pled waveguides and resonators involves the intricate balance
between the characteristics of the constituents: The internal
modes and the intrinsic dissipations of the resonators, the
interresonator couplings, the resonator-waveguide coupling,
and the frequency detuning between resonators and the photon.
It should be pointed out that it is not always possible to
achieve the critical coupling conditions. To illustrate this
point, consider the simplest case of a standing-wave cavity
side-coupled to a single-mode waveguide. When the intrinsic
loss of the cavity is present, zero transmission is not possible,
regardless if an atom is coupled to the cavity or not [26]; in
contrast, for a ring resonator, without an atom, coupled to a
waveguide, the critical coupling can be achieved when the
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intrinsic dissipation of the resonator matches the coupling to
the waveguide [1–3].

Here we show that, in a general system involving a
waveguide side-coupled to a ring resonator that couples to
an atom (Fig. 1), there exists a wide range in the parameter
space wherein critical coupling conditions can be satisfied
by continuously varying the experimental parameters. In
particular, the critical coupling can be achieved with or without
the intrinsic dissipations of the resonators. Moreover, we show
that the maximal energy transfer from the waveguide to the
resonator in general does not occur simultaneously with the
quantum critical coupling conditions; the energy transfer is
maximal at critical coupling only for special cases, such as
a lossy ring resonator with small backscattering and with the
atom decoupled.

The system considered in this paper is shown in Fig. 1:
A two-level atom interacts with a whispering-gallery-type res-
onator which is side-coupled to a single-mode waveguide. The
two-level atom can be implemented using either a real atom or
a quantum dot with appropriate energy levels; the whispering-
gallery type resonator possesses azimuthal rotational sym-
metry and supports a pair of degenerate counterpropagating
whispering-gallery modes (WGM’s), such as a ring resonator,
microtoroid, microdisk, microsphere, or a two-dimensional
dielectric cylinder. In the following we will simply use “atom”
and “ring resonator” for brevity. Such a configuration has
been extensively studied both theoretically and experimen-
tally [17,18,24,27–32] in the context of quantum optics,
cavity quantum electrodynamics, single-atom manipulation
and detection, and biochemical sensing. Moreover, such a
system of coupled oscillators could have potential applications
in future chip-scale integrated photonic circuits such as modu-
lators, optical filters, sensors, optical switches, and dispersion
engineering [3,33].

The single-photon transmission amplitude t(ω) of the
coupled system in Fig. 1 is given in Ref. [34], where the
possibility of zero transmission for the special on-resonance
case (i.e., the ring resonator and the atom are in-tuned) is
briefly mentioned. In this paper, we provide a comprehensive
discussion of the underlying physics that results in zero
transmission.
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The explicit form of t(ω) is [34]
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where ωc is the is the resonance frequency of the WGM’s, � is
the atomic transition frequency, and 1/τc ≡ γc and 1/τq ≡ γq

are the intrinsic dissipation rates of each WGM of the ring
resonator and of the atom, respectively. ga and gb are the
resonator-atom coupling strength for WGM a and b modes,
respectively (see Fig. 1). � is the external linewidth of each
WGM due to waveguide-cavity coupling. h is the intermode
backscattering strength between the two degenerate WGM’s,
due to, for example, the imperfection of the resonator. ga , gb,
and h, in general, are complex numbers. G2

+ ≡ |ga|2 + |gb|2.
G2

− ≡ |ga|2 − |gb|2. G2
− �= 0 signifies the breaking of the

time-reversal symmetry in the atomic degrees of freedom [34],
which occurs, for example, when the degeneracy of the atomic
energy levels (in fine or hyperfine manifolds) is lifted by
an external magnetic field, such that the transition between
the two energy levels of interest couples only to σ+ or σ−
circularly polarized light [35]. We note that the reflection
amplitude r is directly proportional to the excitation amplitude
of WGM b mode which is induced by h and by coupling to
the atom [34], and therefore is generally nonzero at critical
coupling conditions when the transmission is zero.

The quantum critical coupling conditions are given by
solving t(ω) = 0. Setting both the real and imaginary parts
to zero yield the following conditions

γq�
2 + G2

−� = γq

(|h|2 + γ 2
c − �2

c

) + γcG
2
+ − 2γc�c�q,

(2a)

FIG. 1. (Color online) Schematics of the system. A two-level
atom (gray sphere) is coupled to a ring resonator (green ring)
which is side-coupled to a single-mode waveguide (blue channel).
The two degenerate whispering-gallery modes are labeled by a

(counterclockwise) and b (clockwise), respectively. The coupling
between the atom and each WGM is ga and gb, respectively. The
coupling strength of each WGM to the waveguide is V . The strength
of the intermode scattering between two WGM’s is h. The intrinsic
loss of the atom and of each WGM is γq and γc, respectively. t and r

are the transmission and reflection amplitude, respectively.
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where �c ≡ ω − ωc and �q ≡ ω − � are the frequency
detuning with the resonator and with the atom, respectively.
Equations (2a) and (2b) are the most general form of the quan-
tum critical coupling conditions for the system. Depending
upon the values of the parameters, the set of equations may or
may not have real solutions for ω.

To have a better understanding of the rather complicated
critical coupling conditions Eqs. (2a) and (2b) and to gain
deeper insights of the properties of the system at such
conditions, we first examine some special cases.

(1) Lossless resonator, atom decoupled, with backscattering
(γc = 0, ga = gb = 0, h �= 0): In this case, Eqs. (2a) and (2b)
reduce to the following single condition:

�2
c = |h|2 − �2. (3)

For |h| > �, there exists two solutions for �c and thus, in
general, there are two dips in the transmission spectrum,
with a spectral separation 2|�c| = 2

√
|h|2 − �2; the two dips

merge when |h| = �. The critical coupling conditions cannot
be satisfied when |h| < �. The intermode backscattering h

induces the clockwise WGM b mode; together with the
counterclockwise WGM a mode, they form a stationary
and nonrotating cavity-like mode that gives rise to the zero
transmission [26]. The reflection amplitude is proportional to
the amplitude of the WGM b mode (which is ∝ h) and is, in
general, nonzero.

(2) Lossy resonator, atom decoupled, with backscattering
(γc �= 0, ga = gb = 0, h �= 0): When the resonator is lossy,
Eqs. (2a) and (2b) reduce to a pair of conditions

�2 = γ 2
c + |h|2, (4a)

�c = 0. (4b)

Thus, when the ring resonator becomes lossy, the critical
coupling could be achieved only at ω = ωc, the resonance
frequency of the resonator.

Figure 2 plots a phase diagram on the γc − |h| plane that
summarizes the ring resonator-waveguide case. The black
thick line denotes the “critical coupling curve” on which the
critical coupling conditions are satisfied: On the circular arc
part (γc �= 0) of the critical coupling curve, defined by Eq. (4a),
there is only one critical frequency at ω = ωc at which the
single-photon transmission is zero; on the vertical part of the
curve (γc = 0 and |h| > �), there are two critical frequencies
given by Eq. (3), as shown by the transmission spectra plotted
at several different values of γc and |h|.
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FIG. 2. (Color online) The phase diagram for the system of
coupled ring resonator-waveguide. The black thick line denotes the
critical coupling curve where the critical coupling conditions are
satisfied [dashed: Eq. (3); solid: Eq. (4a)]. The transmission spectra
for several different values of parameters are plotted.

Another important quantity of practical interest is the
energy transfer from the waveguide to the resonator [36],
which is proportional to W(ω) ≡ |ea(ω)|2 + |eb(ω)|2, where
ea and eb are the excitation amplitude of WGM a and
b modes, respectively. On the circular arc part, when the
critical coupling conditions of Eqs. (4a) and (4b) are satisfied,
W(ωc) = vg/(γc + �). This energy, however, in general is not
the maximum energy that could be carried by the resonator.
On the circular arc part, for example, the condition for
the resonator to carry the maximum energy at ω = ωc is
3|h|2 < (γc + �)2, given by ∂2W(ωc)/∂ω2 < 0, which is
different from the critical coupling condition of Eq. (4a).
Only at the special cases when h = 0, the resonator carries the
maximum energy at critical frequency [1–3,36], withW(ωc) =
2vg�/(γc + �)2 > W(ω �= ωc). When 3|h|2 > (γc + �)2, the
frequency of maximum power transfer occurs at �2

c =
2|h|

√
|h|2 + (γc + �)2 − |h|2 − (γc + �)2. At these two fre-

quencies, W(ω = ωc ± |�c|) = 1/4[|h|
√

|h|2 + (γc + �)2 −
|h|2]. A classical analysis has been discussed in Ref. [15].
Note that cases (1) and (2) also apply to the case where the
input is a weak cw laser.

(3) Lossless resonator, lossless atom, no backscattering
(γc = 0, γq = 0, h = 0): When a lossless atom is coupled, the
critical coupling conditions Eqs. (2a) and (2b) reduce to

G2
− = 0, (5a)

�q

(
�2 + �2

c

) = �cG
2
+. (5b)

Equation (5a) indicates that the time-reversal symmetry
breaking term G2

− must be zero for a lossless system at critical
coupling. Equation (5b) can be rewritten as a cubic polynomial
for �c (using �q = �c + ωc − �):

�3
c + (ωc − �)�2

c + (�2 − G2
+)�c + �2(ωc − �) = 0,

(6)
of which the criterion for the number of solutions could
be easily determined from the standard discriminant crite-
rion [37]. For the special case of ωc = �, Eq. (6) yields the
simple criterion that Eq. (6) has three different solutions for
ω when G2

+ > �2, and thus the transmission spectrum has
three dips; the three dips merge when G2

+ = �2. In the latter
case, the atom induces a clockwise WGM b mode which,
together with a counterclockwise WGM a mode, form a
stationary, nonrotating cavity-like mode that gives rise to the
zero transmission.

(4) Lossless resonator, lossless atom, with backscattering
(γc = 0, γq = 0, h �= 0): When h �= 0, Eqs. (2a) and (2b)
reduce to

G2
− = 0, (7a)

�q

(
�2 − |h|2 + �2

c

) = �cG
2
+ + g∗

agbh + gag
∗
bh

∗, (7b)

which also yield a cubic polynomial for �c and can be analyzed
in the same fashion.

(5) Lossy resonator, lossy atom, with backscattering (γc �=
0, γq �= 0, h �= 0): For general cases with lossy resonator and
atom, quantum critical coupling conditions can be attained if
the set of equations Eqs. (2a) and (2b) yield real values for
�c and �q , which in turn determines either � or ωc, when the
other is fixed. For example, if the atomic resonance frequency
� can be fine-tuned, then by adjusting the atomic resonance
frequency to � = �c − �q + ωc would yield zero single-
photon transmission at frequency ω = �c + ωc(= �q + �).
Figure 3 plots the transmission spectra at quantum critical
coupling for the general cases. In Fig. 3(a), the intrinsic
atomic dissipation γq is increased from 0.5� to 3�, while
G2

− = 0. For the parameters used, γq has a critical value at
4�, with (�q,�c) = (0,0). Beyond the critical value γq > 4�,
quantum critical coupling cannot be reached. Figure 3(b)
shows the cases when G2

− �= 0. For a system without time-
reversal symmetry, quantum critical coupling is possible only
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FIG. 3. Transmission spectra at quan-
tum critical coupling. (a) The cases for in-
creasing the intrinsic atom dissipation rate
γq . (�q,�c,γq ) = (3.05081,0.527939,0.5)
for thick line, (3.11734,0.423615,1) for
dashed line, (2.31748,0.175762,3) for dot-
ted line. G2

− = 0 for all three curves;
(b) The cases for time-reversal sym-
metry breaking G2

− �= 0. (�q,�c,G
2
−) =

(3.05081,0.527939,0) for thick line as a ref-
erence, (2.31142,0.304428,1) for dashed line,
(3.16926,0.773354, − 1) for dotted line. γq =
0.5 for all three curves. (γc,G

2
+,|h|,g∗

agbh +
gag

∗
bh

∗) = (0.5,4,0.5,0) is used for all curves
in (a) and (b). � is the frequency unit. The
insets show the details around the dips.
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if dissipations are present in the system. With all other
parameters fixed in this case, G2

− has an upper critical value
1.75�, beyond which quantum critical coupling cannot be
reached. The critical values, if they exist, in general have to
be found by numerically scanning through Eqs. (2a) and (2b).
Moreover, we have also numerically confirmed that, when
the atom is coupled, at quantum critical coupling, the energy
carried by the resonator at critical frequencies in general is not
the maximum energy.

We now discuss the experimental feasibility. Each of the
set of two critical coupling equations, Eqs. (2a) and (2b),
respectively, defines a hyper-surface in the multidimensional
parameter space; the critical coupling is achieved when the
two hyper-surfaces intersect. In experiments, some parameters
are tunable so the system response can be fine-tuned to meet
the critical coupling conditions. For example, the waveguide-
resonator coupling � could be varied by changing the distance
between the waveguide and the ring resonator [12,14,17]; the
resonator frequency ωc could be thermally tuned by varying
the temperature of the ring resonator [17], while the loss of
the resonator γc could also be tuned via, for example, carrier
injection [38,39] or laser pumping [7], depending upon the

realization; the atomic transition frequency � could be tuned
via external magnetic field or electric field; the phase of ga

and gb depend upon the angular position of the atom relative
to the ring resonator [34]. For example, the tuning capability
for resonator resonance frequency ωc reported in Ref. [17]
is 3 MHz per mK of temperature change, while �/2π is ap-
proximately 6.9 MHz [17,34]. The explicit form of the critical
coupling conditions makes it possible to systematically adjust
as few parameters as possible to achieve the critical coupling
conditions, and moreover, at a frequency where the resonance
is of atomic nature. The latter capability is crucially important
for observing strong photon-photon correlations [34].

In summary, we presented the quantum critical coupling
conditions for the systems of coupled ring resonator and atom.
With the capability of tuning the experimental conditions over
a finite range, and the capability of precise control of them, zero
single-photon transmission can be achieved and modulated
even for complicated coupled systems. As a final remark, we
note that the quantum critical coupling conditions could also
be derived for more complicated cases consisting of cascaded
multiresonators and multiatoms, which would be useful for
future photonic integrated circuits.
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