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Two-photon transport in a waveguide coupled to a cavity in a two-level system
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We study two-photon effects for a cavity quantum electrodynamics system where a waveguide is coupled to a
cavity embedded in a two-level system. The wave function of two-photon scattering is exactly solved by using
the Lehmann-Symanzik-Zimmermann reduction. Our results about quantum statistical properties of the outgoing
photons explicitly exhibit the photon blockade effects in the strong-coupling regime. These results agree with
the observations of recent experiments.
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I. INTRODUCTION

The Jaynes-Cummings (JC) system, involving cavity quan-
tum electrodynamics (QED) for a two-level atom inside a
cavity, is of most importance for quantum optics [1] and
its applications. In the past decade, the JC system has been
very extensively studied due to its potential applications for
both quantum information processing and quantum device
physics [2]. The latter is usually based on some solid-state
systems, such as the superconducting circuit QED systems [3]
and optomechanical architectures [4–6]. Recent experiments
about various JC systems include demonstrations of on-chip
cavities coupling to atoms or atomlike objects [7–12], and
the integration of such atom-cavity systems with waveguides
[13–15].

Recently, many experiments displayed a photon blockade
phenomenon [16–18] in the JC system [19–21]. The photon
blockade effect is an analogy of the “Coulomb blockade”
effect. The strong Coulomb interaction between electrons
results in the Coulomb blockade effect, however, according
to QED, the direct interaction between photons vanishes.
In order to generate a strong photon-photon interaction, in
1997 Imamoglu et al. proposed using the four-level nonlinear
medium to realize the strong interaction between photons. In
such systems, the excitation of the nonlinear medium by a
first photon blocks the transport of a second photon, which
is the photon blockade effect. As a result, after scattering
by the nonlinear medium, the outgoing antibunched photons
effectively repulse each other and show the sub-Poissonian
statistics. Subsequently, a sequence of theoretical works
[22–24] predicted the perfect antibunching behaviors in some
nonlinear systems. In the experimental works, some profound
results have been explored, for example, the photon blockade
effect has been observed in a single-exciton recombination
enclosed in a photonic cavity [25]. Furthermore, the strong-
coupling regime of the JC system was achieved in the
microcavity with a single quantum dot [26,27], thus, one
studied the photon blockade in the JC system [19–21] in
the strong-coupling regime. Recently, photon blockade effects
have also been extensively studied in circuit QED systems [28],
optical nanocavity systems [29], strong correlated systems
[30], and cold atom systems [31].

In this paper, we focus on the photon blockade ef-
fects observed in the experiment [19]. The authors utilized
the JC system as the nonlinear medium to generate the

strong-coupling effect of photons. They found that when
the driven light resonated with the single-photon dressed
states of the JC system, the outgoing photons exhibit the
manifested antibunching behaviors. The experiments have thus
demonstrated nonlinearity at a single-photon level, which is
crucial for generating [16] and detecting single photons. For
comprehensive understanding of the photon blockade effect of
the JC system, we need to study the intensity and coherence
properties of transmitted or reflected light, when a few photons
are injected into the system through a waveguide. In Refs.
[19,32], the quantum states inside the cavity were expanded
on a basis of photon number states. Truncating the number of
basis states then reduced the master equations to an ordinary
differential equation which can be solved numerically. This
system has also been simulated by using the quantum trajectory
approach [33]. Analytically, closed-form formulas regarding
the transmission and coherence properties have been obtained,
either in the weak excitation limit where the atom is assumed
to be mostly in the ground state [34,35], or in a mean-field-like
approach where the expectation value of the operator product
is taken as the product of operator expectation values [36].
Given that the JC systems will be ultimately used for quantum
information processing and quantum optics, understanding
their response to few-photon states other than coherent states
is very important, especially for understanding the photon
blockade effect regarding a single-photon source and the
detecting apparatus at a single-photon level.

Here, in contrast to most existing theoretical works that
used coherent-state input, we focus on the two-photon and
few-photon input. The two-photon transports can be con-
sidered as a scattering process. To study the statistics of
the outgoing photons, we need the scattering matrix which
transforms the in state to the out state. Fortunately, the
scattering matrix relates the Green function of photons by
the Lehmann-Symanzik-Zimmermann (LSZ) [37] reduction in
quantum field theory, and the Green function can be obtained
exactly for the linear waveguide photons. The field-theoretic
techniques [38], without any approximation, provide an exact
analytic formula for the two-photon scattering in the system
shown in Fig. 1. Our results for two photons show that
in the strong-coupling case the outgoing photons exhibit
strong antibunching behaviors, which can explain the photon
blockade phenomenon observed in the experiment [19]. We
emphasize that the antibunching behaviors and sub-Poissonian
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FIG. 1. (Color online) Two kinds of coupling structures and the
schematic of the energy spectrum. (a) The side-coupled waveguide.
(b) The direct-coupled waveguide. (c) The schematic for the energy
spectrum of the JC model in the subspaces n = 0, 1, and 2.

statistics result from the incommensurate energy spectrum of
the JC systems.

II. TRANSPORT MODEL AND S MATRIX

Two configurations [39,40], where the atom-cavity system
is either side coupled [41–44] or directly coupled [19,32] to
a waveguide, are schematically shown in Figs. 1(a) and 1(b),
respectively. In this paper, we focus on the side-coupling case.
The system in Fig. 1(a) is described by a Hamiltonian H =
HW + HJC + HI containing three parts: (a) the waveguide
Hamiltonian

HW =
∑

k

εka
†
kak, (1)

where ak (a†
k) denotes the annihilation (creation) operators of

the photon; εk = v|k| is the waveguide dispersion relation, and
we take the speed of light v as unity; (b) the JC Hamiltonian for
the coupling of the cavity field to the two-level system (TLS)

HJC = ωca
†a + �|e〉〈e| + g(a†|g〉〈e| + a|e〉〈g|), (2)

where a (a†) denotes the annihilation (creation) operators of
the photon in the cavity with frequency ωc, |e〉 (|g〉) denotes
the excited (ground) state of the TLS with energy-level spacing
�, and g is the coupling constant of the TLS and the cavity
field; and (c) the term

HI = V√
L

∑
k

(a†
ka + H.c.) (3)

describing the coupling between the cavity and the waveguide.
Here, V is the waveguide-cavity coupling constant and L is the
length of the waveguide. In the following, for convenience, we
use the fermion representation of the TLS, i.e., |e〉〈e| = f

†
e fe

and |g〉〈e| = f
†
g fe, by two fermion annihilation (creation)

operators fe and fg (f †
e and f

†
g ), respectively. Notice that

for the TLS, the constraint f
†
e fe + f

†
g fg = 1 is required.

With respect to the bonding and antibonding waveguide
modes defined by

ek = 1√
2

(ak + a−k),

(4)

ok = 1√
2

(ak − a−k),

H is decomposed into two parts:

He =
∑
k>0

ke
†
kek + Ṽ√

L

∑
k>0

(e†ka + H.c.) + HJC, (5)

and Ho = ∑
k>0 ko

†
kok , where Ṽ = √

2V . For the antibonding
part, the LSZ reduction [38] is used to calculate the S-matrix
elements with input and output photon momenta k = k1,...,kn

and p = p1,...,pn.
Using the diagrammatic analysis, we find that the Feynman

diagram of S-matrix elements for two incident photons with
momenta, i.e., k1 and k2, and two outgoing photons with
momenta, i.e., p1 and p2, can be reduced to three kinds of
disconnected diagrams, (a), (b), and (c) as shown in Fig. 2.
By summing up the contributions from these disconnected
diagrams, we obtain the two-photon S-matrix element

Sp1p2k1k2 = Sp1k1Sp2k2 + Sp2k1Sp1k2 + iTp1p2k1k2 , (6)

which is determined by the single-photon S-matrix ele-
ment Spk = δpk + iTpk and the two-photon T -matrix element
Tp1p2k1k2 , where Tpk is the single-photon T -matrix element.

(a)

(b) (c)

FIG. 2. (Color online) The diagrammatic constructions of the
two-photon S-matrix element: There exist three kinds of disconnected
diagrams, (a), (b), and (c). The red wavy line denotes the free photon
propagator. The gray dark circles denote the S-matrix elements and
the blue bright circle denotes the two-photon T-matrix elements.
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Generally, the intrinsic relation

T[p;k] = i(2π )nG[p;k](ωp,ωk)∏n
j=1[G0(ωpj

,pj )G0(ωkj
,kj )]

, (7)

between the T -matrix element T[p;k] and the connected Green
function

G[p;k](ωp,ωk) =
∫ n∏

j=1

[
dtj dt ′j

2π

]
G[p;k](t′,t)

×
n∏

j=1

[− exp(iωpj
t ′j − iωkj

tj )] (8)

is given by the LSZ reduction approach, where ωpj
= pj ,

ωkj
= kj , and

G0(ωp,p) = i

ωp − εp + i0+ (9)

is the bare Green function. Since we focus on the two photons
scattering in vacuum, the zero-temperature Green function
G[p;k](t′,t),

G[p;k](t′,t)

= δ2n ln Z[ηk,η
∗
k ]

δη∗
p1

(t ′1) · · · δη∗
pn

(t ′n)δηk1 (t1) · · · δηkn
(tn)

∣∣∣∣∣ ηk = 0
η∗

k = 0

, (10)

is considered for t = t1,...,tn and t′ = t ′1,...,t
′
n, where in order

to obtain G[p;k](t′,t), we use the functional integral approach
[38], which is widely applied in quantum optics [45,46], to
write the generating functional

Z[ηk,η
∗
k ] =

∫
D[ek]D[e∗

k ]D[a]D[a∗]D[σ ]

× exp

{
i

∫
dt

[
Le +

∑
k>0

(η∗
kek + H.c.)

]}
,

(11)

which is the vacuum-vacuum transition amplitude. The func-
tional measure

D[σ ] = D[fe]D[f ∗
e ]D[fg]D[f ∗

g ]δ(f ∗
e fe + f ∗

g fg − 1) (12)

for the variables of the TLS is a bit complex, because we need
to consider the constraint f

†
e fe + f

†
g fg = 1 in the fermion

representation of TLS. Here, we have used the c numbers
(ek and a) and the Grassmann numbers (fe and fg), and the
Lagrangian is

Le = i
∑

k

e∗
k∂t ek + ia∗∂ta + i

∑
σ=e,g

f ∗
σ ∂tfσ − He. (13)

By integrating out the photon field ek , we obtain

ln Z[ηk,η
∗
k ] = ln Zeff[ξ,ξ ∗] − i

∫
dω

∑
k

|ηk(ω)|2
ω − εk + i0+ ,

(14)

with the effective functional

Zeff[ξ,ξ ∗] =
∫

D[a]D[a∗]D[σ ]

× exp

{
i

∫
dt Leff + i

∫
dt(ξ ∗a + ξa∗)

}
,

(15)

where we define the effective Lagrangian

Leff = ia∗∂ta + i
∑

σ=e,g

f ∗
σ ∂tfσ − Heff, (16)

and the effective non-Hermite Hamiltonian

Heff = αa∗a + �f ∗
e fe + g(a∗f ∗

g fe + H.c.). (17)

We introduce α = ωc − iṼ 2/2, and a new external source
ξ (t) = ∫

dω ξ (ω)e−iωt /
√

2π by

ξ (ω) = Ṽ√
L

∑
k

ηk(ω)

ω − εk + i0+ . (18)

A. Single-photon scattering

For the single-photon case, Eq. (7) leads to

iTpk = 2πGpk(ωp,ωk)G−1
0 (ωp,p)G−1

0 (ωk,k)|ωp=εp,ωk=εk

(19)

by cutting the external legs G0(ωp,p) and G0(ωk,k) for the
exact Green’s function Gpk(ωp,ωk), where iG−1

0 (ωp,p) =
ωp − εp + i0+ is the free propagator of photon and

Gpk(ωp,ωk) =
∫

dt dt ′

2π
Gpk(t ′,t)eiωpt ′−iωkt . (20)

From Eq. (10), we obtain the two-point time-ordering con-
nected Green’s function

Gpk(t ′,t) = − δ2 ln Z[η,η∗]

δη∗
p(t ′)δηk(t)

∣∣∣∣∣
η=η∗=0

. (21)

Together with Eqs. (14)–(18), Eq. (21) leads to

Gpk(ωp,ωk) = G0(ωk,k)δpkδ(ωk − ωp)

− Ṽ 2

2π
G0(ωp,p)G0(ωk,k)Gc(ωp,ωk), (22)

where we defined

Gc(ωp,ωk) =
∫

dt ′ dt

2π
eiωpt ′−iωktGc(t ′,t), (23)

by the correlation function of photon in the cavity as

Gc(t ′,t) = − δ2 ln Zeff[ξ,ξ ∗]

δξ ∗(t ′)δξ (t)

∣∣∣∣
ξ=ξ∗=0

= 〈T a(t ′)a†(t)〉. (24)

Here, a(t) = eiHeff t ae−iHeff t and a†(t) = eiHeff t a†e−iHeff t . Fi-
nally, Eq. (19) leads to

iTpk = −Ṽ 2
∫

dt ′ dt

2π
eipt ′−ikt 〈T a(t ′)a†(t)〉, (25)

where 〈T ...〉 is the time-ordered average on the state |0〉c|g〉
with |0〉c being the vacuum state of the cavity field.
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B. Two-photon scattering

For the two-photon case, the T -matrix element is

iTp1p2k1k2 = G{pi };{ki }({ωpi
},{ωki

})

×
∏

i=1,2

[2πG−1
0 (ωpi

,pi)G
−1
0 (ωki

,ki)]

∣∣∣∣∣
ωpi

= εpi
,

ωki
= εki

.

(26)

Here, we denote {ωpi
} = {ωp1 ,ωp2}, {pi} = {p1,p2}, and

G{pi };{ki }({ωpi
},{ωki

})
=

∫
dt ′1 dt ′2 dt1 dt2

(2π )2
eiωp1 t ′1+iωp2 t ′2−iωk1 t1−iωk2 t2

×G{pi };{ki }(t
′
1,t

′
2,t1,t2). (27)

The four-point time-ordering connected Green’s function is

G{pi };{ki }(t
′
1,t

′
2,t1,t2)

= δ4 ln Z[η,η∗]

δη∗
p1

(t ′1)δη∗
p2

(t ′2)δηk1 (t1)δηk2 (t2)

∣∣∣∣∣
η=η∗=0

, (28)

and Eqs. (14)–(18) lead to

G{pi };{ki }({ωpi
},{ωki

}) = Ṽ 4

(2π )2
Gc({ωpi

},{ωki
})

×
∏

i=1,2

[G0(ωpi
,pi)G0(ωki

,ki)], (29)

where we define

Gc({ωpi
},{ωki

}) =
∫

dt ′1 dt ′2 dt1 dt2

(2π )2
Gc({t ′i },{ti})

× eiωp1 t ′1+iωp2 t ′2−iωk1 t1−iωk2 t2 (30)

by the connected correlation function of photons in the
cavity as

Gc({t ′i },{ti}) = δ4 ln Zeff[ηk,η
∗
k ]

δξ ∗(t ′1)δξ ∗(t ′2)δξ (t1)δξ (t2)

∣∣∣∣
ηk=η∗

k=0

= 〈T a(t ′1)a(t ′2)a†(t1)a†(t2)〉 ≡ G4. (31)

Finally, Eq. (26) leads to

iTp1p2k1k2 = Ṽ 4

2π

∫ ⎛
⎝ ∏

j=1,2

dtj dt ′j eipj t
′
j −ikj tj

⎞
⎠ G4. (32)

C. Exact T -matrix elements

In an invariant subspace with the eigenvalue n of the
excitation number operator

N = |e〉〈e| + a†a, (33)

Heff is diagonalized with the eigenstates

|λn±〉 = Nn±{−√
ng|n − 1〉e|e〉

+ [� + (n − 1)α − λn±]|n〉e|g〉}, (34)

and the corresponding eigenvalues

λn± = 1
2 {� + (2n − 1)α

± [(� − α)2 + 4ng2]1/2}, (35)

where Nn± are the normalization constants. The schematic
for the spectrum of the JC model is shown in Fig. 1(c). We
notice that the eigenstates |λn±〉 are not orthogonal to each
other. Thus, in the following calculations, we need to use the
biorthogonal basis approach [47] with the eigenstates

|λ∗
n±〉 = Nn±{−√

ng|n − 1〉e|e〉
+ [� + (n − 1)α∗ − λ∗

n±]|n〉e|g〉}, (36)

of H ∗
eff = Heff|α→α∗=ωc+iṼ 2/2 corresponding to the eigenval-

ues λ∗
n±. The orthogonal relations are 〈λ∗

n∓|λn±〉 = 0 and
〈λ∗

n±|λn±〉 = 1.
In the above biorthogonal basis, we can evaluate the

correlations 〈T a(t ′)a†(t)〉 and G4, to obtain the single-photon
and two-photon T matrices and S matrices. The results are
listed as follows: (1) For the bonding modes, the single-
photon S matrix is Spk = tkδkp, where tk = exp(−i2δk) and
phase shift δk = arg[(k − λ1+)(k − λ1−)]. The antibonding
modes are free of coupling, and thus possess the S-matrix
element S

(o)
pk = δkp. (2) Then the single-photon reflection

and transmission coefficients are obtained as r̄k = (tk − 1)/2
and t̄k = (tk + 1)/2, which agree with Ref. [39]. (3) The
two-photon T -matrix elements are determined by Eq. (32), and
obviously the Fourier transformation of G4. The time-ordered
Green function G4 can be calculated straightforwardly in the
Schrödinger representation, since the energy spectrum and
the eigenstates of Heff are both obtained. A sophisticated
calculation leads to

iTp1p2k1k2 = iṼ 4g4(E − α − �)δp1+p2,E

π
∏

s=±(E − λ2s)

× [(E − 2�)(E − 2α) − 4g2]∏
s=±

∏
i=1,2(ki − λ1s)(pi − λ1s)

, (37)

where E = k1 + k2 is the total energy of the incident photons.
The system thus exhibits two-photon background fluorescence
T2 = |Tp1p2k1k2 |2 in the bonding mode.

III. TWO-PHOTON WAVE FUNCTIONS AND
PHOTON STATISTICS

LetaR(x1) [aL(x2)] denote the annihilation operators of
right- (left-) moving photons [48]. It follows from Eqs. (6)
and (37) that the outgoing state |Xout〉 = |tout〉 + |rout〉 + |rtout〉
for two incident right-moving photons with momenta k1 and
k2 contains three parts: (a) the quantum state of the two
transmitted photons,

|tout〉 =
∫

dx1 dx2 t2(x1,x2)a†
R(x1)a†

R(x2)|0〉|g〉, (38)

explicitly defined by the two-photon wave function

t2(x1,x2) = 1

2π
eiExc [t̄k1 t̄k2 cos(
kx) − F (λ,x)], (39)
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where 
k = k1 − k2 and

F (λ,x) = Ṽ 4g4 ∑
s=± s(E − 2λ1s) exp[i(E

2 − λ1,−s)|x|]
4(λ1+ − λ1−)

∏
s=±[(E − λ2s)

∏
i=1,2(ki − λ1s)]

,

(40)

and x = x1 − x2 and xc = (x1 + x2)/2 are the relative and
center-of-mass coordinates, respectively; (b) the quantum state
of the two reflected photons,

|rout〉 =
∫

dx1 dx2 r2(x1,x2)a†
L(x1)a†

L(x2)|0〉|g〉, (41)

explicitly defined by

r2(x1,x2) = 1

2π
e−iExc [r̄k1 r̄k2 cos(
kx) − F (λ,x)]; (42)

and (c) the left-right entangled two-photon state

|rtout〉 =
∫

dx1 dx2 rt2(x1,x2)a†
L(x1)a†

R(x2)|0〉|g〉 (43)

describing the scenario where one photon is transmitted while
the other is reflected. Here,

rt2 = 1

2π
ei(E/2)x[(t̄k1 r̄k2e

2i
kxc + t̄k2 r̄k1e
−2i
kxc )

− 2F (λ,2xc)]. (44)

Photon statistics can be studied through the coherence
functions [1] g(2)(τ ) = G(2)(τ )/|G(1)(0)|2, where

G(1)(τ ) = 〈Fout

∣∣a†
F (x + τ )aF (x)

∣∣Fout〉,
G(2)(τ ) = 〈Fout

∣∣a†
F (x)a†

F (x + τ )aF (x + τ )aF (x)
∣∣Fout〉,

(45)

and F = R and L correspond to the transmitted photons and
reflected photons, respectively, with |Rout〉 = |tout〉/〈tout|tout〉
and |Lout〉 = |rout〉/〈rout|rout〉. We have g(2)(τ ) = C(τ )/D,
where C(τ ) = |t2(x,x + τ )|2 for photons in transmission,
and |r2(x,x + τ )|2 for photons in reflection, which is inde-
pendent of x and D is the normalization constant.

A. Strong-coupling regime

To explore the physical consequence of the result above,
we first consider the strong-coupling regime with Ṽ 2 < g <

�. The two-photon background fluorescence T2 and the
correlation function g(2)(τ ) are shown in Fig. 3. We assume
that the atom and cavity are on resonance, i.e., ωc = �, and
the same energy for the two incident photons, i.e., 
k = 0.
When the average energy of two photons E/2 = λ

(0)
1±, T2 has

one sharp peak at 
k = 
p = 0, and the four peaks emerge
[see Fig. 3(a)] for E = λ

(0)
2±.

In Fig. 3(b), the single-photon reflection probability |r̄E/2|2
and g(2)(0) as the functions of energy E/2 per photon are
shown for the two reflected photons, respectively. The two re-
flected photons exhibit sub-Poissonian statistics [g(2)(0) 
 1]
for E/2 = λ

(0)
1±, and super-Poissonian statistics [g(2)(0) � 1]

for E/2 = λ
(0)
2±/2 or �. For E/2 = λ

(0)
1±, the correlation func-

tions g(2)(τ ) of two reflected [solid (blue) curve in Fig. 3(c)]
and transmitted [dashed (red) curve in Fig. 3(d)] photons
exhibit antibunching and bunching behaviors, respectively.
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FIG. 3. (Color online) The two-photon background fluorescence
and the correlation functions for the strong-coupling regime g = 5,
where the system parameters are ωc = � = 10 and Ṽ is taken as
unit: (a) two-photon background fluorescence for E = λ

(0)
2s ; (b) g(2)(0)

of the reflected [solid (blue) curve] photons, and the single-photon
reflection probability |r̄E/2|2 [dashed (green) curve]; (c) g(2)(τ ) of the
reflected [solid (blue) curve] photons for E/2 = λ

(0)
1s and transmitted

[dashed (red) curve] photons for E/2 = �; (d) [g(2)(τ ) − 1]/1015 of
the reflected [solid (blue) curve] photons for E/2 = � and [g(2)(τ ) −
1]/106 of transmitted [dashed (red) curve] photons for E/2 = λ

(0)
1s .

When E/2 = �, g(2)(τ ) of two reflected [solid (blue) curve
in Fig. 3(d)] and transmitted [dashed (red) curve in Fig. 3(c)]
photons exhibit large bunching and antibunching behaviors,
respectively.

In Ref. [19], the authors used the directly coupled cavity
[Fig. 1(b)] to study the photon blockade effects. And in
Fig. 2(a) of Ref. [19], they show that when the incident
photons resonate with the single-photon dressed states λ

(0)
1±,

the photon transmission coefficient reaches the maximum and
the transmitted antibunched photons exhibit sub-Poissonian
statistics. On the other hand, when each incident photon has
the frequency λ

(0)
2±/2 or �, the transmitted bunched pho-

tons exhibit super-Poissonian statistics. Comparing Fig. 2(a)
in Ref. [19] with Fig. 3(b) in our paper, we find that our
results for the two reflected photons in the case of a side-
coupled cavity exactly agree with that for the transmitted
photons observed in the experiment [19] that used a directly
coupled cavity. This agreement is not accidental, since there
is a dual theorem [39] about these two configurations: the
transmitted photon states in the direct-coupled case can be
mapped into the reflected photon states in the side-coupled
case. Using a transformation [39], we can prove the dual
theorem by relating the right-moving and left-moving modes
in the side-coupling waveguide [Fig. 1(a)] to the photon
modes in the left waveguide and the right waveguide for
the direct-coupling waveguide [Fig. 1(b)]. This transforma-
tion is also used in the low-dimensional condensed-matter
system [49].

In the side-coupled structure considered here, the reflected
light arises purely from the dressed TLS. Thus, single-photon
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reflection peaks at the energy levels λ
(0)
1± of one-photon

dressed states in the cavity. Similarly, g(2)(0) for two-photon
reflection peaks when the two-photon energy is λ

(0)
2±, where

the cavity supports two-photon dressed states. However, since
λ

(0)
2± �= 2λ

(0)
1±, two photons each with energy E/2 = λ

(0)
1± is off

resonance from the two-photon dressed states. In such a case,
the reflection of each photon reaches the maximum |r̄E/2|2 =
1, and the single excitation by the first photon in fact prevents
the second photon from entering the cavity, resulting in the
photon-blockade effect and the generation of the antibunching
photons (single photons) in reflection. Therefore, in contrast
to the case of direct coupling where the photon-blockade
effect manifests as a vanishing two-photon transmission, in
the side-cavity case the photon blockade effect manifests as
a vanishing two-photon reflection effect. When E/2 = �,
the single-photon reflection coefficient vanishes [39]. The
two-photon reflection is due purely to the correlation induced
by the TLS, which creates a two-photon bound state, and hence
generates a large bunching effect [32]. The strong antibunching
in reflection implies that this system in the strong-coupling
regime might be used as a single-photon source. Our analysis
shows that the photon-blockade effect and the generation
of antibunching photons originate from the incommensurate
energy spectra [Fig. 1(c)] of the cavity and the TLS. Here, the
incommensurate energy spectra means that the energy level of
the system cannot be expressed as En = nω0 with the integer
n. Thus, when the first photon of the incident energy εR on
resonance with the single excitation of the system is absorbed,
the system would not like to absorb the second photon with the
same incident energy εR , since the 2εR is not resonant with any
energy level of the system due to the incommensurate energy
spectrum. We, therefore, provide an exact analytic formula
for the photon correlation function, the special case of which
completely agrees with the existing experimental data.

B. Weak-coupling regime

We now examine the weak-coupling regime with g < Ṽ 2.
As shown in Fig. 4, unlike the strong-coupling case [Fig. 3(a)],
here the background fluorescence exhibits a single peak when
E = λ

(0)
2±.

We find that g(2)(0) of the two reflected photons [Fig. 4(b)]
has a simple structure with one peak at E/2 = � and always
satisfies g(2)(0) � 1, which means that the statistics of reflected
photons cannot be sub-Poissonian and the photon blockade
effect vanishes in the weak-coupling regime. The bunching
behaviors exhibited by g(2)(τ ) of two reflected photons for
E/2 = λ

(0)
1± [solid (blue) curve in Fig. 4(c)] and � [solid

(blue) curve in Fig. 4(d)] also illustrate the vanishing of the
photon blockade effect. In addition, g(2)(τ ) of antibunched and
bunched transmitted photons for E/2 = � and λ

(0)
1± are shown

by the dashed (red) curve in Figs. 4(c) and . 4(d).

IV. CONCLUSION

We have analytically studied the two-photon transport in a
waveguide coupled to the cavity containing TLS, and explored
the conditions for the photon blockade effect and single-
photon generation in reflection. The two-photon statistical
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FIG. 4. (Color online) The two-photon background fluorescence
and the correlation functions for the weak-coupling regime; the
system parameters are the same as that in Fig. 2: (a)–(c) represent the
same physical meaning in Fig. 2; (d) [g(2)(τ ) − 1]/1011 of the reflected
[solid (blue) curve] photons for E/2 = � and [g(2)(τ ) − 1]/1010 of
transmitted [dashed (red) curve] photons for E/2 = λ

(0)
1s .

characteristics of the outgoing photons obtained from an
exactly analytic formula agree with the observations of a
recent experiment [19]. Our theoretical approach can also
be generalized to the scattering problems in systems with
artificial atoms [50]. Using the LSZ approach developed in
our paper, we can study the multiphoton processes and explore
the mechanism [16,23] for the single-photon source. On the
other hand, we can also generalize the LSZ approach to study
the quantum state transfer of photons in the complex quantum
network.
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APPENDIX: LSZ REDUCTION FOR
PHOTON SCATTERING

In this Appendix, we briefly review how the LSZ reduction
approach works in quantum optics. In quantum optics, we
constantly consider how the optical systems, e.g., the linear or
nonlinear cavity, affect the quantum properties of the incident
photons. Usually, one can use the input-output theory, the
quantum trajectory method, the master equation method, and
so on. Here, we consider the problem by scattering method,
i.e., solving the S matrix for the incident photons scattered by
the optical systems and obtaining the scattering wave function.
By the wave function of outgoing photons, we can investigate
the quantum statistics of the output photons. Fortunately, the
LSZ reduction approach relates to the Green function and S

matrix for photons, and we can obtain an S matrix by solving
the Green function of photons. For some special case, e.g.,
the linear dispersion of the scattering photons, the photonic
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−−

FIG. 5. (Color online) The Feynman diagrams for LSZ reduction:
The red wavy line denotes the free photon propagator. The gray dark
circles denote the S-matrix elements and the blue bright circles denote
the T-matrix elements. The Feynman diagram of the S-matrix element
is constructed by all kinds of disconnected diagrams, and each of the
disconnected diagrams contains some connected diagrams.

Green function can be exactly calculated, so that the S matrix
is analytically obtained.

First, we need to give their definitions for discussing the
LSZ reduction explicitly. The 2n-point Green’s function

Gp1,...,pn;k1,...,kn
(t ′1,...,t

′
n; t1,...,tn)

= 〈�|T ap1(t
′
1) · · · apn

(t ′n)a†
k1

(t1) · · · a†
kn

(tn)|�〉 (A1)

is defined by the time-ordering product T of the photon
creation (annihilation) operator a

†
k(ak) in the Heisenberg

picture. Here, � denotes the ground state of the Hamiltonian
H of the system.

The S-matrix element

out〈f |i〉in = in〈f |S|i〉in (A2)

is defined through the overlap of incident state |i〉in and
outgoing scattering state |f 〉out, where the incoming state is

|i〉in = a
†
k1

· · · a†
kn

|0〉. (A3)

In the interaction picture, the S matrix is given by

S = T exp

(
−i

∫ +∞

−∞
dt Hint(t)

)
. (A4)

Here, Hint denotes the interaction between the photons and the
optical systems.

It follows from the diagrammatic analysis that the Feynman
diagram of the S-matrix element is contributed from all
kinds of disconnected diagrams as shown in Fig. 5. Here,
each of these disconnected diagrams contains some connected
diagrams corresponding to the T -matrix elements.

For the single-photon case, the S-matrix element

Sp;k = δkp + iTp;k (A5)

(a) (b)

FIG. 6. (Color online) The diagrammatic constructions of the
single-photon S-matrix element: There exist two kinds of dis-
connected diagrams, (a) and (b). The red wavy line denotes the
free photon propagator. The gray dark circle denotes the S-matrix
elements and the blue bright circle denotes the single-photon T-matrix
elements.

is defined by the T -matrix element for the single photon,
where k and p are the momenta of the incoming and outgoing
photons. In this case, there exist two kinds of disconnected
diagrams, (a) and (b), as shown in Fig. 6. For the two-photon
case, the S-matrix element

Sp1p2;k1k2 = Sp1k1Sp2k2 + Sp2k1Sp1k2 + iTp1p2;k1,k2 (A6)

is reduced by the T -matrix element of two photons, where
kr and pr (r = 1,2) are the momenta of the incoming and
outgoing photons. We have shown the two-photon reduction
processes in the text. Obviously, the multiphoton S matrix is
totally determined by the connected T matrix, so we only find
the T matrices.

The intrinsic relation

iT2n = G2n

n∏
r=1

[
2π G−1

0 (kr )G−1
0 (pr )

]∣∣∣∣∣
os

(A7)

between the n-photon T -matrix element

T2n = Tp1,...,pn;k1,...,kn
(A8)

and Green’s function

G2n = Gp1,...,pn;k1,...,kn
(A9)

is given by the LSZ reduction formula, where

G0(kr ) = i

ωr − εkr
+ i0+ (A10)

is the Green function of the free photon and Gp1,...,pn;k1,...,kn
is

the Fourier transformation of Eq. (A1). Here, the subscript os
denotes the on-shell limit ω → εk . Finally, the multiphoton S-
matrix elements are determined by Green’s functions entirely.
For some special cases, e.g., the linear dispersion of the
incident photons, the Green function can be obtained exactly
due to the quadratic form of the action. By the exact many-
photon Green function, we can obtain the T matrix and S

matrix.
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445, 896 (2007).

[12] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and
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