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Abstract—It has been shown that a metal film with a one-
dimensional array of subwavelength cut-through slits can be accu-
rately modeled as an anisotropic and uniform metamaterial film
with nondispersive electric permittivity [ε̄] and magnetic perme-
ability [µ̄] tensors. This model has an interesting scaling prop-
erty: The values for the thickness L̄ can be chosen at arbitrarily,
provided that [ε̄] and [µ̄] are scaled accordingly. The analytical
expressions of the corrections due to near fields have also been
given. This framework provides an intuitive and precise model for
the understanding of the metal slit arrays in the subwavelength
regime.

Index Terms—Anisotropic material, metal slit, optical metama-
terial, subwavelength resonance.

I. INTRODUCTION

S TRUCTURES with a period less than the wavelength of
light can have electromagnetic properties very different

from those of their constituent materials. In particular, periodic
metallic structures with subwavelength features have been ac-
tively researched in the recent years. The subwavelength res-
onances in these structures are responsible for their unique
properties as novel metamaterials. Notable examples include
effective plasmons in media [1]–[7], three-dimensional metal-
lic crystals [8], negative refractive index [9]–[13], and spoof
plasmons on metal surfaces [14].

Recently, it was shown that a metal slab of finite thickness
with subwavelength cut-through slits (Fig. 1) can be regarded
as a new metamaterial system [15]. In this system with thick-
ness L, which is not necessarily subwavelength, the slits are
filled with a nonmetallic material with an electric permittivity
εc and a magnetic permeability µc . When the slit width a is
sufficiently narrow compared to the subwavelength period d, it
was shown that all electromagnetic properties of the system can
be accurately described using a simple, isotropic, nonmagnetic
(µ = 1) model with a large dielectric constant that is frequency
independent [15]. In fact, the model and the exact analytical
description of the same system asymptotically approach each
other in the limit d/a → ∞. For smaller d/a ratios (<∼4), it was
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Fig. 1. Metal slit array system and coordinates.

also shown that the isotropic model starts to deviate from the
exact analytical description [15].

Given that the slit structure is anisotropic, a natural step fur-
ther is to consider an anisotropic metamaterial model. Here, we
introduce the appropriate anisotropic model, where the system
is described by an electric permittivity tensor [ε̄] and a magnetic
permeability tensor [µ̄] that are both frequency independent. The
model coincides with the isotropic one in [15] when d/a → ∞.
In addition, it also provides a very good description of the sys-
tem even when d/a is small, in which case the isotropic model
is no longer valid. It has also been shown that there in fact exists
a whole class of anisotropic models that are equivalent to one
another, if the thickness of the layer in the model is allowed
to vary. The model is verified by comparing it to the analytic
solution of the metal slit array, and the difference between the
two is quantified.

II. ANISOTROPIC MODEL

The goal is to describe the structure shown in Fig. 1 with a
uniform effective medium. With the choice of the coordinate
system in Fig. 1, each axis lies on a high-symmetry direction
of the structure. The diagonal forms for the effective electric
permittivity and magnetic permeability tensors can be assumed
as

[ε̄] =


 ε̄x 0 0

0 ε̄y 0
0 0 ε̄z


 [µ̄] =


 µ̄x 0 0

0 µ̄y 0
0 0 µ̄z


 . (1)
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Following [15], which showed that the main effect arises from
the existence of a subwavelength propagating mode in the slits,
the primary focus here is on the transverse magnetic (TM) po-
larization. This polarization has the electric field (E field) in the
zx plane, and the magnetic field (H field) parallel to the y di-
rection. Thus, the only relevant parameters for this polarization
are ε̄x , ε̄z , and µ̄y . (For the rest of the paper, variables with a bar
are assumed to be quantities related to the effective medium.)

A. Derivation of an Anisotropic Model

For the moment, it is assumed that the effective medium has
the same thickness as the real system (L̄ = L). It will be shown
that the following relations regarding the effective medium hold :

ε̄x = d/a

ε̄z = ∞
µ̄y = a/d

L̄ = L. (2)

(A similar conclusion has been reached for a different system
consisting of a periodic arrangement of parallel grooves in
a metal substrate [16]. Here, we focus on cut-through slits.)
These equations are deduced by finding the effective indices
(n̄xy and n̄zy ) and the effective impedance (η̄). n̄xy (n̄zy ) is the
effective index for the polarization, where the E field is in the
x(z) direction and the H field is in the y direction.

The effective refractive indices can be derived by comparing
the field configurations inside the metal slits with those inside
the effective medium. For a TM wave with a given frequency
(ω) and a given tangential wavenumber (kx), the fields inside a
metal slit can be formulated as follows:

Hy = Hy0e
ikz z

Ex =
kz

ωεc
Hy0e

ikz z

Ez = 0. (3)

The above is in fact the transverse electromagnetic (TEM) mode
of a rectangular metallic waveguide, which is the only propagat-
ing mode inside the slit in the subwavelength regime. In contrast,
inside the effective medium, the most general form for a TM
wave can be expressed as

H̄y = H̄y0e
ik̄z z eikx x

Ēx =
k̄z

ωε̄x
H̄y0e

ik̄z z eikx x

Ēz =
−kx

ωε̄z
H̄y0e

ik̄z z eikx x . (4)

An important feature of the metal slit system is that Ez is zero
inside the slits. To have zero Ēz inside the effective medium as
well, ε̄z needs to be infinite. Another important feature of (3) is
that the field inside a slit is independent of kx . Consequently,
the dispersion relation

ω2 =
k2

z c2

εcµc
≡ k2

z c2

n2
c

(5)

where c is the speed of light, is also independent of kx . Compar-
ing (5) with the dispersion relation of the anisotropic effective
medium

ω2 =
k̄2

z c2

ε̄x µ̄y
+

k2
xc2

ε̄z µ̄y
≡ k̄2

z c2

n̄2
xy

+
k2

xc2

n̄2
zy

(6)

one can immediately observe that the two dispersion relations
can be made to have the same form, provided that again we set
ε̄z = ∞. Then, the dispersion relations become

kz c = ω
√

εcµc

k̄z c = ω
√

ε̄x µ̄y . (7)

In addition, assuming that the length of the effective medium
is the same as the length of the physical medium (L̄ = L), and
the phase accumulation over the thickness of the structure is the
same (k̄z L̄ = kzL), the transverse effective index is obtained as√

ε̄x µ̄y =
√

εcµc i.e., n̄xy = nc. (8)

Equation (8) gives only the product of µ̄y and ε̄x . To deter-
mine them individually, their ratio is also needed. This ratio is the
square of the effective transverse impedance. This impedance
can be calculated from the continuity conditions across the in-
terface between the structure and the surrounding medium, for
the tangential E field and the normal component of Poynting
vector. The continuity of the tangential E field is a direct result
of the Maxwell’s equations, and the continuity of the normal
component of the Poynting vector comes from the steady-state
assumption and the energy conservation law. The continuity of
these quantities between the surrounding medium and the sys-
tem, whether the system is the metallic structure or the effective
medium, requires that the quantities should be the same for the
metallic structure and the effective medium at the interface. By
matching the average tangential E field (Ex) in (3) and (4), we
get

k̄z

ωε̄x
H̄y0 =

a

d

kz

ωεc
Hy0. (9)

By matching the average normal Poynting vector, we get

k̄z

ωε̄x
|H̄y0|2 =

a

d

kz

ωεc
|Hy0|2. (10)

From (7), (9), and (10), we conclude that√
µ̄y

ε̄x
=

a

d

√
µc

εc
i.e., η̄ =

a

d
ηc . (11)

Thus, based on first-principle and heuristic considerations, we
now have a complete knowledge of the effective medium for the
TM polarization: The effective impedance (η̄) and indices (n̄xy

and n̄zy ), or, equivalently, the effective electric permittivities
(ε̄x and ε̄z ) and magnetic permeability (µ̄y ), as described in (2).

B. Test of the Anisotropic Model

This anisotropic model, though simple, provides a very ac-
curate description of the system for d/a ratios from infinity
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Fig. 2. Waveguide dispersion for metal films with various slit widths. (a)
d/a = 10 (narrow slit). (b) d/a = 4, and (c) d/a = 2 (wide slit). The dotted,
black solid, and gray solid lines are from the analytic, the anisotropic, and the
isotropic models, respectively.

down to around unity. One nontrivial prediction of the metama-
terial model is that a metal slab with subwavelength cut-through
slits can support guided modes [15]. These modes have fields
decaying exponentially outside the slab. Its dispersion relation
ω(k) lies below the light line (ω = ck). Here, we compare the
dispersion relation of such guided modes, as predicted by the
anisotropic metamaterial model, with those from exact analytic
calculations [15] for d/a equal to 10, 4, and 2 (Fig. 2). A good
agreement is clearly observed. A similar agreement can be also
seen in the transmission spectrum for light externally incident

Fig. 3. Transmission of a normally incident plane wave through the metal
slit structure with thickness 25d/4. The dotted and the solid lines are from the
analytical and the anisotropic models, respectively.

upon the slab (Fig. 3). This good agreement can be intutively
understood by noting that the electric field inside the metallic
system averaged over one period of the structure is exactly the
same as the electric field inside the effective medium, for a plane
wave with a given kx . The amplitude is the same and so is the
direction (parallel to the interface). Moreover, the wavevector
is the same for the two systems, as the normal component of
the wavevector does not depend on the transverse component in
both the systems and their values are the same since we chose
the normal effective index (n̄xy ) to be the same as the index of
the slit-filling material. In addition, the reflection coefficient of a
plane wave at the interface between the system and the surround-
ing medium is the same, since we have made the impedance the
same as well while deriving the anisotropic model. For a sym-
metric slab structure, most of the electromagnetic characteristics
are determined by the round trip phase and the amplitude factor,
or equivalently, the wavenumber and the reflection coefficient,
for a plane wave propagating inside the slab. From these ob-
servations, it can be argued that the anisotropic model is valid
for describing the property of the metal slit structures in most
physical experiments.

C. Nonuniqueness of the Model

A very unusual characteristic of the anisotropic model, the
thickness of the effective medium (L̄) can, in fact, be chosen
to have any value, provided that we scale the dielectric and
magnetic properties accordingly. Specifically, we can multiply
ε̄x , µ̄y , and 1/L̄ with an arbitrary real scaling factor s

ε̄′x = sε̄x

ε̄′z = ∞
µ̄′

y = sµ̄y

L̄′ = L̄/s (12)

and the resulting effective medium has exactly the same trans-
mission and waveguiding properties. Moreover, the field outside
the slab varies identically as a function of distance from the
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slab surfaces. Consequently, most electromagnetic experiments
would not be able to differentiate between choices of L̄ as long
as we scale other parameters accordingly.

This scale invariance is a consequence of an infinite ε̄z and
the film geometry. A film structure is unique in the sense that the
half space on one side of the film can “communicate” with the
other half space on the other side only through the film. Thus, it
is not the thickness of the film by itself (L̄), but the round trip
phase accumulation (2k̄z L̄), that is of importance. By scaling
ε̄x and µ̄y according to L̄, k̄z is also scaled with the same factor
as k̄z = ω

√
ε̄x µ̄y and k̄z L̄ remain the same. The transverse

impedance does not change since µ̄y /ε̄x is the same. Hence, the
scaling does not affect the outcome of the physical experiments.
As all these models are equivalent, in the following discussion
for concreteness, the model with L̄ = L (2) will be referred to
as the anisotropic model.

D. Isotropic Approximation

When d/a is large, the metal structure can be approximated
with an isotropic model, as first pointed out in [15]

ε̄x =
(

d

a

)2

ε̄z =
(

d

a

)2

µ̄y = 1

L̄ =
a

d
L. (13)

As seen in Fig. 2(a), the results from the isotropic model are
close to those from the anisotropic model or the actual analytical
model when d/a = 10. From the discussion on scale invariance,
the anisotropic model is equivalent to

ε̄x = (d/a)2

ε̄z = ∞
µ̄y = 1

L̄ =
a

d
L. (14)

Between (13) and (14), the only difference is in the choice of
ε̄z , and the difference becomes unimportant when d/a is large.
Physically, the electric field inside the isotropic medium is nearly
parallel to the interface for large d/a-ratio cases since the con-
tinuous quantities are the tangential E field and the normal D
field. Thus, the field configuration is not very different from
the anisotropic medium. The isotropic approximation, however,
fails to work in the case of smaller d/a ratios, as can be seen
in Fig. 2(b) and (c). In these cases, the electric field inside the
isotropic model has considerable amount in the normal direc-
tion. Also, the wavenumber in the normal direction strongly
depends on the tangential wavenumber, while the anisotropic
model shows no dependence.

III. COMPARISON OF THE ANISOTROPIC MODEL

AND AN ANALYTICAL MODEL

Having shown that the anisotropic model provides a very
good description of the slit array system, the focus is now on
clarifying its regime of validity by comparing it to the analytical
description of the problem. For this purpose, we first show that
a set of (ω, kx)-dependent effective medium parameters can
exactly replicate the analytical description, and use them as a
reference for checking the validity of the use of nondispersive
parameters in the anisotropic model.

As discussed earlier, most of the optical properties of the
metal slit film are determined by the wavenumber of the fun-
damental TEM mode and the mode’s reflection coefficient at
the boundary. The choice of effective refractive indices for the
anisotropic model is such that the wavenumber inside the effec-
tive medium is the same as that of the TEM mode. The same
parameter will be used for the reference, dispersive effective
medium as well

nref
zy = ∞

nref
xy = nc. (15)

The main focus will be on finding the value of the dispersive
impedance.

For a given frequency and kx , a TEM wave inside the slit, in-
cident on the boundary, has a well-defined reflection coefficient,
which is, in general, complex. Any complex reflection coeffi-
cient can be modeled as a reflection from a boundary between
two uniform media. From the reflection coefficient, one can de-
duce the impedance of one medium provided that the properties
of the other medium are known. In other words

r =
η2

kz 2
n2

− ηref
1

kz 1
nc

η2
kz 2
n2

+ ηref
1

kz 1
nc

(16)

can be solved for ηref
1

ηref
1 = η2

nckz2

n2kz1

1 − r

1 + r
(17)

for given η2, n2, kz2, nc , kz1, and r. (The surrounding medium
will be denoted as medium 2, and the dispersive effective
medium will be labeled “ref.”) The resulting ηref

1 is, in gen-
eral, complex and depends on the frequency and the incident
angle.

To assess the dependence, the form of the reflection coef-
ficient for the metal slit system resulting from the analytical
calculation is analyzed. It can be found by expressing the
field outside the structure with a superposition of plane waves
(diffraction orders due to periodicity), and the inside field with
a TEM wave [15]. The resulting expression for the reflection
coefficient appears very much like a reflection coefficient from
a boundary between uniform media

r =
η2

kz 2
n2

− ηcgk

η2
kz 2
n2

+ ηcgk
(18)
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Fig. 4. Real (black) and imaginary (gray) part of the relative impedance cor-
rection for (a) normal incidence, (b) oblique incidence, and (c) total internal
reflection. The left subpanel is for d/a = 4, and the right, 10.

except that the parameter g is dispersive

g = f


sin c(fp0) − i

∑
p �=0

kz2

αp
sin c(f(p + p0))




f = a/d, p0 = kxd/2π

αp =
[
(2πp/d + kx)2 − n2

2ω
2/c2

]1/2
. (19)

The integer p designates the diffraction order of the modes
outside the structure (Only p = 0 can be a propagating plane
wave for λ > d), and αp (p �= 0) is the decaying constant in
the z direction for higher order modes. f is the ratio of the slit
width a to the period d.

By comparing (16) and (18), the effective impedance is read-
ily found to be

ηref
1 = ηcg. (20)

In the low frequency limit (λ � d), 2π/d is far larger than any
of n2ω/c, kz2, or kx , assuming that only kx is being considered,
which is of the same order as k2. Therefore, kz2/αp is negli-
gible and sin c(fp0) approaches unity. Correspondingly, the
effective medium parameter g approaches f . Thus, this more
elaborate model gives the same conclusion about the effective
impedance and the dispersion as the anisotropic model: η̄ = ηcf
and k̄z = n̄xy k, as can be seen in the low frequency limit in
Fig. 4.

Without the low frequency approximation, however, the
impedance takes a complex value: η̄t = ηcg (g is complex).
One can better understand the (ω, kx) dependence of ηref

1 by
looking at the contributions to the g factor from the zeroth-order

and higher order diffraction waves separately

g = f (1 + δ)

δ = sin c(fp0) − 1 − i
∑
p �=0

kz2

αp
sin c(f(p + p0)). (21)

The first two terms in δ arise from the zeroth-order scattering
while the third term is due to all higher order scattering. As
pointed out earlier, in the long-wavelength limit, δ approaches
zero.

The behavior of δ is different in the two regimes (it is assumed
that nc and n2 are real):

1) Regime 1: normal or oblique incidence with propagating
modes in both the media;

2) Regime 2: total internal reflection.
In regime 1, kz2 is real. Thus, the zeroth-order scattering con-
tributes to the change of the real part of the impedance while
higher order scattering leads to the change of the imaginary part.
In regime 2, kz2 is purely imaginary, hence the correction δ is
real. In either regime, it is useful to look at the real part δr and
the imaginary part δi of the relative correction of the effective
impedance.

δr and δi are plotted as a function of frequency in Fig. 4,
for three choices of ckx/ω: 1) normal incidence (kx = 0);
2) oblique incidence below the critical angle (kx = 0.5ω/c);
and 3) total internal reflection (kx = 1.2ω/c). The left subpanel
of each panel is for slits with width a = 0.25d, and the right
subpanel is for narrower slits (a = 0.1d). From the figures, it
is evident that, in the low-frequency limit, both δr and δi con-
verge to zero, and the reference effective medium model can be
successfully substituted with the much simpler, dispersionless
anisotropic model.

For higher frequencies, the deviation of the effective
impedance from the low-frequency value becomes noticeable.
In regime 1, the correction is largely imaginary, while, in regime
2, it is entirely real. Regardless of the regime, the relative cor-
rection grows larger than unity eventually at high frequencies,
and this behavior is the same regardless of the slit width. Thus,
for a given wavelength, making the slit narrow alone does not
guarantee the validity of the anisotropic model, if the periodicity
is not reduced as well.

The sensitivity of different optical properties to the impedance
of the film varies widely. For example, the cutoff frequency of
the waveguide modes are exactly predicted by the anisotropic
model. This is because the impedance deviation in regime 2
is purely real. The cutoff frequency is not affected by the ab-
solute value of a purely real impedance and is solely deter-
mined by the thickness and the effective index of the film.
In contrast, the curvature of the dispersion curve is strongly
influenced by the real-valued impedance correction. Also,
the transmission amplitude spectrum is more sensitive to the
real part of the impedance correction rather than the imagi-
nary part, especially for films with thickness larger than the
period.

In the actual metal slit array structure, there exists a finite
Ez field that decays into the metal slit. The effective medium
model cannot take this into account. One can think of assigning
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a plasmonic form for the ε̄z to simulate the decaying behavior
of Ez , but Maxwell’s equations show that ε̄z is more related
to the propagation constant in the x direction and that ε̄x is
responsible for the decaying or propagating behavior in the z
direction (6). In other words, the effective medium has only one
mode for the same polarization and only one wavenumber for
that mode, whether it is real or imaginary. Fortunately, the effect
of this decaying Ez is small for most cases, especially when the
thickness is not subwavelength.

IV. FINAL REMARKS

The derivation in this paper assumed a perfect conductor, and
it is readily applicable to real metals in the microwave frequency
range. The other polarization (transverse-electric waves, TE),
though not dealt with earlier, can be successfully modeled with
a plasmonic form of the dielectric constant

µ̄x =
8
π2

(a

d

)
µc

µ̄z = ∞

ε̄y =
π2

8

(
d

a

)[
1 −

ω2
p

ω2

]
εc (22)

where ωp(= πc/a) is the cutoff frequency of the slit. The deriva-
tion parallels that of the TM polarization. However, the differ-
ence is that the dominant field inside the metal slit is now the
lowest order TE wave

Ey = Ey0 cos
(π

a
x
)

e−αz z

Hx = −i
αz

ωµc
Ey0 cos

(π

a
x
)

e−αz z

Hz = i
π/a

ωµc
Ey0 sin

(π

a
x
)

e−αz z . (23)

As for the TM case, the field inside a slit is independent of kx .
A TE wave inside the effective medium can be expressed as

Ēy = Ēy0e
−ᾱ z z eikx x

H̄x = −i
ᾱz

ωµ̄x
Ēy0e

−ᾱ z z eikx x

H̄z = − kx

ωµ̄z
Ēy0e

−ᾱ z z eikx x . (24)

With similar derivations, we obtain

µ̄z = ∞

ε̄y µ̄x = εcµc −
(π/a)2

ω2
. (25)

In this case, µ̄z = ∞ arises purely from the fact that the disper-
sion relation in the effective medium as well as the metal slit
array is independent of kx . As a result, in the effective medium,
H̄z is zero, while Hz does not vanish in the slit array. Continuity
conditions for the tangential E field

Ēy0 =
2
π

a

d
Ey0 (26)

and the normal component of Poynting vector

ᾱz

ωµ̄x
|Ēy0|2 =

a

2d

αz

ωµc
|Ey0|2 (27)

uniquely determine parameters as shown in (22).
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