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1 The convolutional PML (CPML) [9] that is widely
a b s t r a c t

We show that the performance of frequency-domain solvers of Maxwell’s equations is
greatly affected by the kind of the perfectly matched layer (PML) used. In particular, we
demonstrate that using the stretched-coordinate PML (SC-PML) results in significantly fas-
ter convergence speed than using the uniaxial PML (UPML). Such a difference in conver-
gence behavior is explained by an analysis of the condition number of the coefficient
matrices. Additionally, we develop a diagonal preconditioning scheme that significantly
improves solver performance when UPML is used.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The perfectly matched layer (PML) is an artificial medium initially developed by Bérenger that absorbs incident electro-
magnetic (EM) waves omnidirectionally with virtually no reflection [1]. Because EM waves incident upon PML does not
reflect back, a domain surrounded by PML simulates an infinite space. Thus, the use of PML has been essential for simulating
spatially unbounded systems, such as an infinitely long waveguide [2] or an isolated structure in an infinite vacuum region
[3].

Bérenger’s original PML was followed by many variants. In the finite-difference time-domain (FDTD) method of solving
Maxwell’s equations [4], the uniaxial PML (UPML) [5] and stretched-coordinate PML (SC-PML) [6–8] are the most popular,
both resulting in similar numerical performance.1

In frequency-domain methods such as the finite-difference frequency-domain (FDFD) method and finite-element method
(FEM), on the other hand, UPML and SC-PML result in the systems of linear equations
Ax ¼ b ð1:1Þ
with different coefficient matrices A. In general, it is empirically known that the use of any PML leads to an ill-conditioned
coefficient matrix and slows down the convergence of iterative methods to solve (1.1) [10–14]. Yet, to the best of our knowl-
edge, no detailed study has been conducted to compare the degree of deterioration caused by different PMLs in frequency-
domain numerical solvers, except [15] that briefly mentions empirical observations.
. All rights reserved.
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used in time-domain simulation is in essence SC-PML.
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In this paper, we demonstrate that the choice of PML significantly influences the convergence of iterative methods to
solve the frequency-domain Maxwell’s equations. In particular, we show that SC-PML leads to far faster convergence than
UPML. We also present an analysis relating convergence speed to the condition number of the coefficient matrix.

The paper is organized as follows. In Section 2 we review the basic formulations of UPML and SC-PML for the frequency-
domain Maxwell’s equations. Then, in Section 3 we demonstrate that SC-PML gives rise to much faster convergence of iter-
ative methods than UPML for realistic three-dimensional (3D) problems. In Section 4 we show that SC-PML produces a much
better-conditioned coefficient matrix than UPML. Finally, we introduce a diagonal preconditioning scheme for UPML in Sec-
tion 5; the newly developed preconditioning scheme can be very useful in situations where UPML is easier to implement
than SC-PML.

We use the FDFD method throughout the paper to construct coefficient matrices. However, the arguments we present
should be equally applicable to other frequency-domain methods including FEM.

2. Review of SC-PML and UPML for the frequency-domain Maxwell’s equations

In this section, we briefly review the use of PML in the frequency-domain formulation of Maxwell’s equations.
Assuming a time dependence e+ixt, the frequency-domain Maxwell’s equations reduce to
Fig. 2.1
directio
r� l�1r� E�x2eE ¼ �ixJ; ð2:1Þ
where e and l are the electric permittivity and magnetic permeability; x is the angular frequency; E and J are the electric
field and the electric current source density, respectively. Throughout this paper, we assume that l = l0, which is the mag-
netic permeability of a vacuum; this is valid for most nanophotonic simulations.

The FDFD method discretizes (2.1) by using finite-difference approximations of continuous spatial derivatives on a grid
such as the Yee grid [16–18] to produce a system of linear equations of the form (1.1):
Ae ¼ �ixj; ð2:2Þ
where e and j are column vectors that represent discretized E and J, respectively.
To simulate an infinite space, one surrounds the EM system of interest with PML as illustrated in Fig. 2.1. As a result, the

governing equation is modified from (2.1). For an EM system surrounded by UPML, the governing equation is the UPML
equation
r� ð��lsÞ�1r� E�x2��esE ¼ �ixJ; ð2:3Þ
where the 3 � 3 tensors ��es and ��ls are
��es ¼ e

sysz

sx
0 0

0 szsx
sy

0

0 0 sxsy

sz

26664
37775; ��ls ¼ l

sysz

sx
0 0

0 szsx
sy

0

0 0 sxsy

sz

26664
37775: ð2:4Þ
On the other hand, for an EM system surrounded by SC-PML, the governing equation is the SC-PML equation
rs � l�1rs � E�x2eE ¼ �ixJ; ð2:5Þ
. An example of an EM system surrounded by PML. In the four corner regions where the x- and y-normal PMLs overlap, waves attenuate in both
ns. If the EM system is in a 3D simulation domain, PMLs can overlap up to three times. PML is either UPML or SC-PML.
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where
rs ¼ x̂
1
sx

o

ox
þ ŷ

1
sy

o

oy
þ ẑ

1
sz

o

oz
: ð2:6Þ
In both equations, the PML scale factors sw for w = x,y,z are
swðlÞ ¼ 1� is00wðlÞ ¼
1� i rwðlÞ

xe0
inside the w-normal PML;

1 elsewhere;

(
ð2:7Þ
where l is the depth measured from the PML interface; rw(l) is the PML loss parameter at the depth l in the w-normal PML; e0

is the electric permittivity of a vacuum. The w-normal PML attenuates waves propagating in the w-direction. In regions such
as the corners in Fig. 2.1 where multiple PMLs overlap, sw(l) – 1 for more than one w. Also, here for simplicity we have cho-
sen Re{sw(l)} = 1; the conclusion of this paper, however, is equally applicable to PML with Re{sw(l)} – 1.

For theoretical development of PMLs, rw(l) is usually assumed to be a positive constant that is independent of l. In numer-
ical implementation of PMLs, however, rw(l) gradually increases from 0 with l to prevent spurious reflection at PML inter-
faces. Typically, the polynomial grading scheme is adopted [4] so that
rwðlÞ ¼ rw;max
l
d

� �m

; ð2:8Þ
where d is the thickness of PML; rw,max is the maximum PML loss parameter attained at l = d; m is the degree of the poly-
nomial grading, which is usually between 3 and 4. If R is the target reflection coefficient for normal incidence, the required
maximum loss parameter is
rw;max ¼ �
ðmþ 1Þ ln R

2g0d
; ð2:9Þ
where g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
is the vacuum impedance.

The modulus of sw(l) increases with l, so jsw(d)j is typically much larger than jsw(0)j = 1, as can be seen in the following
example. Consider a uniform finite-difference grid with grid edge length D. For a typical 10-layer PML with d = 10D,
m = 4, R = e�16 ’ 1 � 10�7, we have rw,max = 4/g0D. In the finite-difference scheme, the wavelength inside an EM medium
should be at least 15D to approximate spatial derivatives by finite differences accurately [19]. Therefore, if the medium
matched by PML is a vacuum, the vacuum wavelength k0 corresponding to x should satisfy k0 P 15D, which implies that
s00wðdÞ ¼
rw;max

xe0
¼

4
g0D

2p
k0

c0e0
¼ 2k0

pD
P

30D
pD
’ 9:549; ð2:10Þ
where c0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffil0e0
p

is the speed of light in a vacuum. Therefore, jswðdÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s00wðdÞ

2
q

is at least about 10. In nanophotonics
where deep-subwavelength structures are studied, the use of D = 1nm for a vacuum wavelength k0 = 1550 nm is not uncom-
mon [20]. In these cases, jsw(d)j is nearly 1000.

Depending on the kind of PML used, we solve either (2.3) or (2.5) throughout the entire simulation domain (both inside
and outside PML). Because the UPML and SC-PML equations are different, they produce different systems of linear equations,
which are respectively referred to as
Aux ¼ b; ð2:11Þ
Ascx ¼ b; ð2:12Þ
where b is common to both systems if the same J drives the EM fields of the two systems. We refer to Au and Asc as the UPML
and SC-PML matrices, respectively.

In the following sections, we will see that (2.12) is much more favorable to numerical solvers than (2.11).

3. Convergence speed of iterative methods to solve the UPML and SC-PML equations

In this section, we apply UPML and SC-PML to realistic 3D EM systems, and compare the two PMLs in terms of conver-
gence speed of iterative FDFD solvers.

The first EM system that we examine is a 90� bend of a slot waveguide formed in a thin metal film (Fig. 3.1(a)). Metallic
slot waveguides are a subject of active research in nanophotonics due to their capability of guiding light at a deep-subwave-
length scale [20].

We simulate the propagation of an EM wave at the telecommunication wavelength k0 = 1550 nm through the bend. A J
source plane is placed near x = 0 to launch the fundamental mode of the waveguide. To simulate an infinitely long metallic
slot waveguide immersed in a dielectric medium, all six boundary faces of the Cartesian simulation domain are covered by
PML. The solution obtained by the FDFD method is displayed in Fig. 3.1(b).

The second EM system that we simulate is a rectangular dielectric waveguide (Fig. 3.2(a)). We launch the fundamental
mode in the dielectric waveguide.



Fig. 3.1. The FDFD simulation of wave propagation through a metallic slot waveguide bend. In (a), the structure of the bend is illustrated. A narrow slot is
formed between two pieces of the thin silver (Ag) film immersed in a background of silica (SiO2). The waveguide is bent 90�. The vacuum wavelength and
relevant dimensions of the structure are indicated in the figure. The red arrows specify the directions of wave propagation. In numerical simulation, all the
x-, y-, z-normal boundary faces of the Cartesian simulation domain are covered by PML. In (b), Re{Hz} calculated by the FDFD method is plotted on two
planes: the horizontal z = 0 plane bisecting the film thickness, and the vertical y = (const.) plane containing the central axis of the input port. Red indicates
Re{Hz} > 0, and blue indicates Re{Hz} < 0. Only the z P 0 portion is drawn by virtue of mirror symmetry, and the PML regions are excluded. The sharp
transition from blue to red near x = 0 is due to the J source plane there. The thin orange lines slightly above the z = 0 plane outline the two metal pieces. The
electric permittivities of silver [21] and silica [22] at k0 = 1550 nm are eAg = (�129 � i3.28)e0 and eSiO2 ¼ 2:085e0, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The last system is an array of metallic pillars (Fig. 3.2(b)). We launch a plane wave toward the pillars and observe how it is
scattered by them; the detailed analysis is described in [3].

For each of the three EM systems, we construct two systems of linear equations by the FDFD method: one with UPML and
the other with SC-PML. The number of the grid cells in the finite-difference grid used to discretize each EM system is shown
in Table 3.1, together with the grid edge lengths in the x-, y-, z-directions.

The constructed systems of linear equations are solved by the quasi-minimal residual (QMR) iterative method [24].2 At
the ith step of the QMR iteration, an approximate solution xi is generated. As i increases, xi eventually converges to the exact
solution of the system of linear equations Ax = b. We assume that convergence is achieved when the residual vector
2 The
number
ri ¼ b� Axi ð3:1Þ
satisfies krik/kbk < s, where k � k is the 2-norm of a vector and s is a user-defined small positive number. In practice, s = 10�6

is sufficient for accurate solutions.
Fig. 3.3 shows krik/kbk versus the iteration step i for the three EM systems, each simulated with the two different types of

PMLs. For all three EM systems, SC-PML significantly outperforms UPML in terms of convergence speed.
The three EM systems tested above are chosen deliberately to include geometries with different degrees of complexities,

and different materials such as dielectrics and metals. Therefore, Fig. 3.3 suggests that SC-PML leads to faster convergence
speed than UPML for a wide range of EM systems. Moreover, the result is not specific to QMR; we have observed the same
behavior for other iterative methods, such as the biconjugate gradient (BiCG) method [26]. Hence, we conclude that the sig-
nificant difference in convergence speed originates from the intrinsic properties of UPML and SC-PML, and is independent of
the kind of the iterative method used.

In the next section, we relate the significantly different convergence speeds to the very different condition numbers of the
UPML and SC-PML matrices.

4. Condition numbers of the UPML and SC-PML matrices

In this section, we present a detailed analysis of the condition numbers of the UPML and SC-PML matrices. The condition
number of a matrix A is defined as
jðAÞ ¼ rmaxðAÞ
rminðAÞ

; ð4:1Þ
large-scale matrix–vector multiplication required in the QMR algorithm is implemented by the PETSc library [25] with double-precision floating point
s.



Fig. 3.2. Two additional EM systems for which the convergence of QMR is tested. The materials and dimensions of the structures, the vacuum wavelengths,
and the directions of wave propagation (red arrows) are indicated in the figures. In numerical simulation, all the six boundaries of the Cartesian simulation
domain of (a) are covered by PML. On the other hand, only the two z-normal boundaries of (b) are covered by PML, while the x- and y-normal boundaries are
subject to the periodic boundary conditions so that the metallic pillars do not extend into PML. The electric permittivities of silicon (Si) [22] at k0 = 1550 nm
and gold (Au) [23] at k0 = 632.8 nm are eSi = 12.09e0 and eAu = (�10.78 � i0.79)e0, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3.1
The specification of the finite-difference grids used for the three simulated EM systems described in Figs. 3.1 and 3.2. The number of grid cells in each EM
system is NxNyNz, which results in 3NxNyNz of unknowns in a column vector x, where the extra factor 3 accounts for the three Cartesian components of the
E-field. Slot uses a nonuniform grid with smoothly varying grid edge lengths.

Slot Diel Array

Nx � Ny � Nz 192 � 192 � 240 220 � 220 � 320 220 � 220 � 130
Dx, Dy, Dz (nm) 2–20 10 5,5,20

Fig. 3.3. Convergence of QMR for the metallic slot waveguide (Slot), rectangular dielectric waveguide (Diel), and the metallic pillar array (Array), combined
with UPML (U) and SC-PML (SC). Notice that simply replacing UPML with SC-PML improves convergence dramatically for all the three EM systems.
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where rmax(A) and rmin(A) are the maximum and minimum singular values of A as we will review in Section 4.1. Matrices
with large and small condition numbers are called ill-conditioned and well-conditioned, respectively. For convenience, we
introduce notations
ru
max ¼ rmaxðAuÞ; ru

min ¼ rminðAuÞ; ju ¼ ru
max

ru
min

ð4:2Þ
for the maximum and minimum singular values and the condition number of the UPML matrix. We define rsc
max, rsc

min, and jsc

similarly for the SC-PML matrix.
The objective of this section is to show that in general UPML produces a much worse-conditioned coefficient matrix than

SC-PML, i.e., ju/jsc� 1, provided that the two PMLs enclose the same EM system. According to (4.1), the objective is accom-
plished by analyzing the extreme singular values of Au and Asc.

All EM systems simulated in Section 3 are inhomogeneous, being composed of several different EM media. For each
component medium, we can associate a corresponding infinite space that is filled homogeneously with the medium. For
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example, for an EM system of a vacuum surrounded by UPML, we can imagine an infinite space filled either with a vacuum or
with UPML homogeneously. It turns out that the extreme singular values of an inhomogeneous EM system are strongly re-
lated to the extreme singular values of the homogeneous EM media constituting the inhomogeneous EM system. Of partic-
ular interest are the homogeneous regular medium, homogeneous UPML, and homogenous SC-PML. The maximum and
minimum singular values of the three homogeneous media are studied in Sections 4.2–4.4.

In Section 4.5, we develop a theory based on a variational method to estimate the extreme singular values and
condition numbers of inhomogeneous EM systems from the extreme singular values of the component homogeneous
media. The theory predicts that ju/jsc� 1. In Section 4.6, we verify the theory numerically for two inhomogeneous
EM systems.

The conclusion of this section explains the results in Section 3, because a smaller condition number of A generally implies
faster convergence of iterative methods to solve a system of linear equations Ax = b [27]. In fact, an ill-conditioned coefficient
matrix can be detrimental to direct methods as well; it is known that the LU factorization of ill-conditioned matrices tends to
be inaccurate [28]. Therefore, the result in this section suggests that SC-PML should be preferable to UPML for solving the
frequency-domain Maxwell’s equations by both iterative and direct methods.

4.1. Mathematical background

For an arbitrary A 2 Cn�n, one can always perform a singular value decomposition (SVD) as [29]
3 The
A ¼ URV y; ð4:3Þ
where U;V 2 Cn�n are unitary; V� is the conjugate transpose of V ; R 2 Rn�n is a real diagonal matrix whose diagonal elements
are nonnegative. If A is nonsingular, the diagonal elements of R are strictly positive; the converse is also true.

The SVD can also be written as
A ¼
Xn

i¼1

riuivyi ; ð4:4Þ
where ri is the ith diagonal element of R; ui and vi are the ith column of U and V, respectively. Because U and V are unitary,
each of {u1, . . . ,un} and {v1, . . . ,vn} forms an orthonormal basis of Cn. Each ri is a singular value of A; ui and vi are the corre-
sponding left and right singular vectors, respectively.

The maximum and minimum singular values,
rmax ¼max
16i6n

ri and rmin ¼ min
16i6n

ri; ð4:5Þ
are collectively called the extreme singular values. The left and right singular vectors corresponding to rmax are denoted by
umax and vmax, and called the maximum left and right singular vectors, respectively. Similarly, the minimum left and right
singular vectors are the singular vectors corresponding to rmin, and denoted by umin and vmin.

From (4.4), it follows that
Av i ¼ riui and Ayui ¼ riv i: ð4:6Þ
Therefore, the singular values and vectors can be obtained by solving a Hermitian eigenvalue problem
HðAÞ
ui

v i

� �
¼ ri

ui

v i

� �
; where HðAÞ ¼

0 A
Ay 0

� �
: ð4:7Þ
In this paper, we solve (4.7) for the largest or smallest nonnegative eigenvalues by the Arnoldi Package (ARPACK) [30] to
numerically calculate the extreme singular values of A.3 ARPACK uses the Arnoldi iteration that only requires matrix–vector
multiplication. For the maximum and minimum singular values of A, the matrices multiplied iteratively to a vector are H(A) and
H(A)�1, respectively [32]. This means that a large system of linear equations needs to be solved repeatedly for the minimum
singular value, which is extremely costly unless the LU factors of H(A) are known. For this reason, all numerical calculations
of the singular values and vectors in Section 4 are limited to two-dimensional (2D) EM systems, for which the LU factorization
is easily performed.

The singular values and vectors also satisfy a different Hermitian eigenvalue equation
ðAyAÞv i ¼ r2
i v i ð4:8Þ
that is derived from (4.6). Because j(A�A) = j(A)2 and j(H(A)) = j(A), A�A is much worse-conditioned than H(A), so we use
(4.7) rather than (4.8) to solve for the singular values numerically. Nevertheless, (4.8) turns out to be useful in the theoretical
analysis in Sections 4.2, 4.3, and 4.4.
actual calculation of the extreme singular values is carried out using the MATLAB routine svds [31], which uses ARPACK internally.
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The extreme singular values can also be calculated by a variational method. As a consequence of (4.4) we have
rmax ¼max
x–0

kAxk
kxk and rmin ¼min

x–0

kAxk
kxk ; ð4:9Þ
where k � k is the 2-norm of a vector. Note that the quotient kAxk/kxk is maximized to rmax at x = vmax and minimized to rmin

at x = vmin. In Section 4.5, we use the variational method to estimate the extreme singular values of inhomogeneous EM
systems.

The maximum singular value of a matrix is related to the norm of the matrix. The p-norm of a matrix is defined as [29]
kAkp ¼max
x–0

kAxkp

kxkp
; ð4:10Þ
where kykp ¼
P

ijyij
p� �1=p on the right-hand side is the p-norm of a column vector y. Comparing (4.10) for p = 2 with (4.9)

reveals that
rmaxðAÞ ¼ kAk; ð4:11Þ
where the subscript 2 is omitted from k � k2 as a convention throughout this paper.
There is an inequality that holds between the matrix p-norms [29]:
kAk 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAk1kAk1

q
: ð4:12Þ
Because the 1-norm satisfies kAk1 = kATk1, (4.12) implies that
rmaxðAÞ 6 kAk1 for symmetric A: ð4:13Þ
The right-hand side of (4.13) is easily evaluated, because the 1-norm reduces to
kAk1 ¼max
16j6n

Xn

i¼1

jaijj ¼ ðthe maximum absolute column sumÞ; ð4:14Þ
where aij is the (i, j) element of A.
Finally, we note that the singular values, singular vectors, and the condition number are the properties of a matrix. Below,

however, we refer to these terms as the properties of an EM system, which are understood as those of the coefficient matrix
that describes the EM system. For example, ‘‘the maximum singular value of a homogeneous vacuum’’ means ‘‘the maximum
singular value of the coefficient matrix describing a homogeneous vacuum.’’

4.2. Maximum singular values of homogeneous media

In this section, we investigate the maximum singular values of a homogeneous regular medium, homogeneous UPML, and
homogeneous SC-PML. Here, a homogeneous medium is defined as an infinite space described by translationally invariant
EM parameters; for a regular medium it means that e is constant over all space, and for PML it means that the PML scale
factors sw for w = x,y,z, as well as e, are constant over all space.

For simplicity, we consider PML with only one attenuation direction, which, without loss of generality, is assumed to be
the x-direction. Hence, we have sy = sz = 1 and
sx ¼ 1� is00x with s00x � 1; ð4:15Þ
where the assumption s00x � 1 is due to the discussion following (2.10). Eq. (4.15) implies that
sx ’ �is00x and jsxj ’ s00x � 1: ð4:16Þ
We use the notations ru0
max and rsc0

max for the maximum singular values of the homogeneous UPML and SC-PML to distinguish
them from ru

max and rsc
max of inhomogeneous EM systems. In addition, the maximum singular value of the homogeneous reg-

ular medium is denoted by rr0
max.

Because the homogeneous EM system is spatially unbounded, discretizing the governing differential equation results in
the coefficient matrix of an infinite size. To avoid dealing with an infinitely large matrix, we first examine the maximum sin-
gular values of the original differential operators used in (2.1), (2.3), and (2.5); we take the effect of finite-difference discret-
ization into account later. The differential operators for the homogeneous regular medium, UPML, and SC-PML are
Tr
0ðEÞ ¼ r � l�1r� E�x2eE; ð4:17aÞ

Tu
0ðEÞ ¼ r � ð��lsÞ�1r� E�x2��esE; ð4:17bÞ

Tsc
0 ðEÞ ¼ rs � l�1rs � E�x2eE; ð4:17cÞ
respectively. Below, we refer to them as T when we discuss properties that are common to all three operators.
Because T is a translationally invariant operator, the composite operator T��T is also translationally invariant, which im-

plies that its eigenvector, and hence the right singular vector of T, has the form [33,34]
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EkðrÞ ¼ Fke�ik�r; ð4:18Þ
where k is real and Fk is constant.
By applying Tr

0, Tu
0, and Tsc

0 to Ek, we obtain
Tr
0ðEkÞ ¼ �k� l�1k� Ek �x2eEk � Tr0

k Ek; ð4:19aÞ

Tu
0ðEkÞ ¼ �k� ð��lsÞ�1k� Ek �x2��esEk � Tu0

k Ek; ð4:19bÞ

Tsc
0 ðEkÞ ¼ �ks � l�1ks � Ek �x2eEk � Tsc0

k Ek; ð4:19cÞ
where ks ¼ x̂ðkx=sxÞ þ ŷðky=syÞ þ ẑðkz=szÞ with sy = sz = 1; Tr0
k , Tu0

k , and Tsc0
k are 3 � 3 matrices operating on the vector

[Ek,x, Ek,y Ek,z]T. To facilitate computation, without loss of generality, we choose a coordinate system such that k lies in
the xy-plane. (We recall that the attenuation direction of PML is x̂.) Then,
Tr0
k ¼

k2
y

l �x2e � kxky

l 0

� kxky

l
k2

x
l �x2e 0

0 0 k2
x
l þ

k2
y

l �x2e

266664
377775; ð4:20aÞ

Tu0
k ¼

k2
y

sxl�
x2e

sx
� kxky

sxl 0

� kxky

sxl
k2

x
sxl� sxx2e 0

0 0 k2
x

sxlþ
sxk2

y

l � sxx2e

266664
377775; ð4:20bÞ

Tsc0
k ¼

k2
y

l �x2e � kxky

sxl 0

� kxky

sxl
k2

x
s2

x l
�x2e 0

0 0 k2
x

s2
x l
þ k2

y

l �x2e

2666664

3777775: ð4:20cÞ
Note that (4.20) are the k-space representations of Tr
0, Tu

0, and Tsc
0 . Below, we refer to them as Tk when we discuss properties

that are common to all three matrices.
By solving (4.8) with A = Tk, we easily obtain one singular value rk,3 of Tk corresponding to a singular vector [001]T:
rr0
k;3 ¼

k2
x

l
þ

k2
y

l
�x2e

					
					; ru0

k;3 ¼
k2

x

sxl
þ

sxk2
y

l
� sxx2e

					
					; rsc0

k;3 ¼
k2

x

s2
xl
þ

k2
y

l
�x2e

					
					: ð4:21Þ
The subscript 3 of rk,3 indicates that the singular value is produced from the (3,3) element of Tk.
By the definition of the maximum singular value (4.5), rr0

max, ru0
max, and rsc0

max have the corresponding quantities in (4.21) as
their lower bounds. To find the maximum lower bounds, we maximize the right-hand sides of (4.21).

For a continuous medium, kx and ky are unbounded, and so are the maximum singular values according to (4.21). In a
finite-difference grid with uniform edge length D, however, the maximum wavenumber in each Cartesian direction is [19,34]
kmax ¼
p
D
: ð4:22Þ
Furthermore, when kmax is used to maximize the right-hand sides of (4.21), it turns out that we can ignore x2 terms because
D is typically far smaller than the wavelength in the PML regions. As a result,
rr0
max J 2k2

max

l
; ru0

max J jsxjk2
max

l
; rsc0

max J k2
max

l
: ð4:23Þ
Next, we derive upper bounds of rr0
max, ru0

max, and rsc0
max. The inequality (4.13) dictates that
rmaxðTÞ ¼max
k

rmaxðTkÞ 6max
k
kTkk1: ð4:24Þ
Calculating kTkk1 according to (4.14), we have
rr0
max 6

2k2
max

l
þx2jej; ru0

max 6
k2

max

jsxjl
þ jsxjk2

max

l
þ jsxjx2jej; rsc0

max 6
k2

max

jsxj2l
þ k2

max

l
þx2jej: ð4:25Þ
Using (4.16) and ignoring the x2 terms again, we obtain
rr0
max K 2k2

max

l
; ru0

max K jsxjk2
max

l
; rsc0

max K k2
max

l
: ð4:26Þ
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Because the approximate lower and upper bounds indicated in (4.23) and (4.26) are the same for each of rr0
max, ru0

max, and rsc0
max,

we have
rr0
max ’

2k2
max

l
; ru0

max ’
jsxjk2

max

l
; rsc0

max ’
k2

max

l
; ð4:27Þ
and therefore
ru0
max ’

jsxj
2

rr0
max and rsc0

max ’
1
2
rr0

max: ð4:28Þ
The result indicates a large contrast between the maximum singular values of the homogeneous UPML and SC-PML; ru0
max is

much larger than rr0
max, whereas rsc0

max is smaller than rr0
max.

We note that each estimate in (4.27) is realized by the corresponding rk,3 in (4.21) with appropriate k; the estimate of
rr0

max is achieved for k such that jkxj = jkyj = kmax, and the estimates of ru0
max and rsc0

max are achieved for k such that kx = 0 and
ky = ±kmax. Therefore, k ¼ �½x̂kmax � ŷkmax	 is an approximate wavevector of the maximum right singular vector correspond-
ing to rr0

max, and k ¼ �ŷkmax is an approximate wavevector of the maximum right singular vectors corresponding to ru0
max and

rsc0
max.

So far, when deriving the estimates of rr0
max, ru0

max, and rsc0
max, we have incorporated the effect of the finite-difference grid by

simply imposing the upper bound kmax on wavevectors. By considering the finite-difference approximations of Tr
0, Tu

0, Tsc
0 in

(4.17), we can obtain the following exact estimates:
rr0
max ’

2ð2=DÞ2

l
; ru0

max ’
jsxjð2=DÞ2

l
; rsc0

max ’
ð2=DÞ2

l
: ð4:29Þ
We note that the exact results in (4.29) differ from the approximate results in (4.27) by only a factor of (2/p)2. Thus the
approximate results presented in this section, which are simpler to derive, are in fact rather accurate. In particular, the main
conclusion (4.28) of this section, which is obtained from the approximate results, turns out to hold for the exact results (4.29)
as well.
4.3. Minimum singular values of homogeneous media

In this section, we investigate the minimum singular values of a homogeneous regular medium, homogeneous UPML, and
homogeneous SC-PML denoted by ru0

min, rsc0
min, and rr0

min, respectively. Here, in addition to the assumptions sx ¼ 1� is00x and
sy = sz = 1 made about the PML scale factors in Section 4.2, we assume that the media have no gain, i.e., e = e0 � ie00 satisfies
e00 P 0.

As in the previous section, here we also use the k-space representations Tr0
k , Tu0

k , and Tsc0
k of (4.20). We find rr0

min, ru0
min, and

rsc0
min as the minima of rmin Tr0

k

� �
, rmin Tu0

k

� �
, and rmin Tsc0

k

� �
over k, respectively.

First, we derive the conditions for Tr0
k , Tu0

k , and Tsc0
k to be singular. Tr0

k is singular when det Tr0
k

� �
¼�x2eðk2

x=lþk2
y=

l�x2eÞ2¼ 0, or equivalently
k2
x þ k2

y ¼ x2le: ð4:30Þ
Similarly, Tu0
k and Tsc0

k are singular when
k2
x

s2
x
þ k2

y ¼ x2le: ð4:31Þ
Now, suppose that e is positive (e0 > 0, e00 = 0). We see that (4.30) is satisfied by infinitely many real k lying on a circle in the k-
space, and (4.31) is satisfied by only two real k, i.e., k ¼ �ŷx ffiffiffiffiffiffilep

, because s2
x has a nonzero imaginary part. Since a singular

matrix has 0 as a singular value as pointed out in Section 4.1, each of rmin Tr0
k

� �
, rmin Tu0

k

� �
, and rmin Tsc0

k

� �
is zero for some real

k, which implies that
ru0
min ¼ rsc0

min ¼ rr0
min ¼ 0 for positive e: ð4:32Þ
On the other hand, in cases where e is either negative (e0 < 0, e00 = 0) or complex (e00 > 0), Tr0
k , Tu0

k , and Tsc0
k are nonsingular for

all real k, because no real k satisfies (4.30) or (4.31). Therefore, we have
ru0
min;r

sc0
min;r

r0
min > 0 for negative or complex e: ð4:33Þ
From (4.32) and (4.33), we conclude that the minimum singular values of the homogeneous media with positive e (e.g.,
dielectrics and PMLs matching dielectrics) are always less than the minimum singular values of the homogeneous media
with other e satisfying e00 P 0 (e.g., metals and PMLs matching metals).



W. Shin, S. Fan / Journal of Computational Physics 231 (2012) 3406–3431 3415
4.4. Minimum singular values of homogeneous media with e > 0 in a bounded domain

In Section 4.3, we have shown that the minimum singular values of the homogeneous regular medium, UPML, and SC-
PML are all zero for e > 0. The result has been obtained for homogeneous media in an infinite space. However, simulation
domains are always bounded. In this section, we show that the minimum singular values of the homogeneous media deviate
from 0 in a bounded domain, even if e > 0. We also compare the amount of deviation for different homogeneous media.

Throughout this section, we use the notation c ¼ 1=
ffiffiffiffiffiffilep

; note that c > 0 because e is assumed positive in this section.
For simplicity, suppose that the bounded domain in the xy-plane is a rectangle whose sides in the x- and y-directions are

Lx and Ly, respectively. We impose periodic boundary conditions on the x-and y-boundaries of the bounded domain. Then, kx

and ky are limited to the quantized values in the sets
Fig. 4.1
functio
are bot
indicate
square
zeros o
Kx ¼
2pnx

Lx
: nx 2 Zþ


 �
and Ky ¼

2pny

Ly
: ny 2 Zþ


 �
; ð4:34Þ
respectively, where Zþ is the set of nonnegative integers; due to mirror symmetry of the homogeneous UPML and SC-PML, it
is sufficient to consider kx P 0 and ky P 0. For later use we also define the set of all quantized k:
K ¼ fx̂kx þ ŷky : kx 2 Kx; ky 2 Kyg: ð4:35Þ
When there is no k 2 K satisfying (4.30) and (4.31), all of rr0
min, ru0

min, and rsc0
min deviate from 0 for a bounded domain, but by

different amounts. Fig. 4.1 shows rmin Tr0
k

� �
, rmin Tu0

k

� �
, and rmin Tsc0

k

� �
in a portion of the k-space where they are close to zero.

It shows that rmin Tu0
k

� �
< rmin Tsc0

k

� �
for all displayed k except k ¼ ŷðx=cÞ for which both are zero. Therefore, in general we

expect mink2Krmin Tu0
k

� �
< mink2Krmin Tsc0

k

� �
, or equivalently ru0

min < rsc0
min. On the other hand, rmin Tr0

k

� �
can be either above or

below each of rmin Tu0
k

� �
and rmin Tsc0

k

� �
in the figure. Hence, rr0

min ¼mink2Krmin Tr0
k

� �
can be either less or greater than each of

ru0
min and rsc0

min, depending on the size of the bounded domain.
We now estimate an upper bound of ru0

min=r
sc0
min for a bounded domain. For that purpose, we examine the plots of rmin Tu0

k

� �
and rmin Tsc0

k

� �
in Fig. 4.1 in more detail. Fig. 4.2(a) displays the same rmin Tsc0

k

� �
shown in Fig. 4.1, but as a contour plot over an

extended range of kx. In Fig. 4.2(a), we notice the following important features of rmin Tsc0
k

� �
:

First, rmin Tsc0
k

� �
has a global minimum of zero at k ¼ ŷðx=cÞ due to the argument following (4.31); accordingly, the con-

tours in the vicinity of the global minimum point form enclosing curves (cyan contours in Fig. 4.2(a)).
Second, the surface of rminðTsc0

k Þ has a ‘‘valley’’, where rmin Tsc0
k

� �
is close to zero, along a curve in the kxky-plane. The shape

of the curve can be derived from (4.31), which describes the condition for rmin Tsc0
k

� �
to be singular. Because of (4.16), the

condition (4.31) is approximated by
� k2
x

s00x
2 þ k2

y ¼
x2

c2 : ð4:36Þ
Hence, for k satisfying (4.36), Tsc0
k is nearly singular and has a close-to-zero singular value. Eq. (4.36) thus describes the bot-

tom of the valley of the rmin Tsc0
k

� �
surface. The curve described by (4.36), which is a hyperbola that is indicated by a black

dashed line in Fig. 4.2(a), agrees well with the actual location of the bottom of the valley as can be seen from the contour plot.
Third, rmin Tsc0

k

� �
varies much more slowly in kx than in ky; note that the scale of the ky axis in Fig. 4.2(a) is exaggerated.

This can be shown mathematically by examining (4.20c). We notice that interchanging kx/sx and ky only swaps the (1, 1) and
. The 3D plot of rmin Tu0
k

� �
; rmin Tsc0

k

� �
, and rmin Tr0

k

� �
as functions of kx and ky. The three functions are drawn in a portion of the k-space where the

ns are close to zeros. The surface of rmin Tu0
k

� �
is below that of rmin Tsc0

k

� �
for all k displayed in the figure except k ¼ �ŷðx=cÞ where the two surfaces

h zero. The surface of rmin Tr0
k

� �
, on the other hand, is neither consistently below or above the other two. The dashed lines in the rmin(Tk) = 0 plane

kx 2 Kx and ky 2 Ky, so the intersections of the dashed lines correspond to k 2 K. The rectangular simulation domain that quantizes kx and ky is a
of side length L = 1.273k0, where k0 is the vacuum wavelength corresponding to x. The specific value of L is chosen so that no quantized k is at the
f the three functions. The PML scale factor sx = 1 � i10 is used.
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(2, 2) elements of the matrix and does not change the singular values of Tsc0
k . Hence, rmin Tsc0

k

� �
is a symmetric function of kx/sx

and ky, and thus it has a stronger dependence on ky than kx since jsxj � 1.
We do not display the contour plot of rmin Tu0

k

� �
. However, rmin Tu0

k

� �
also exhibits the three features described above.

Motivated by the third observation above, we derive an approximate upper bound of ru0
min=r

sc0
min. Suppose that ku

y 2 Ky and
ksc

y 2 Ky are the y-components of the quantized k’s at which rmin Tu0
k

� �
and rmin Tsc0

k

� �
are minimized, respectively. Then, from

the definitions of ru0
min and rsc0

min for a bounded domain, we have
Fig. 4.2
additio
describ
rminðTs

k

that the
quantiz
to the w
ru0
min

rsc0
min

¼
minkx2Kx minky2Kyrmin Tu0

k

� �
minkx2Kx minky2Kyrmin Tsc0

k

� � ¼ minkx2Kxrmin Tu0
k

� �
ky¼ku

y

minkx2Kxrmin Tsc0
k

� �
ky¼ksc

y

6

minkx2Kxrmin Tu0
k

� �
ky¼ksc

y

minkx2Kxrmin Tsc0
k

� �
ky¼ksc

y

6 max
ky2Ky

minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� �( )
: ð4:37Þ
Therefore, to estimate an upper bound of ru0
min=r

sc0
min, we estimate
minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� � ð4:38Þ
for all ky. Because rmin Tu0
k

� �
and rmin Tsc0

k

� �
are slowly varying functions of kx, we use the approximation
. (a) The 2D contour plot of rminðTsc0
k Þ. The values of rminðTsc0

k Þ=x2e are overlaid on the corresponding solid contours; two cyan contours are drawn in
n to black contours to demonstrate that the contours are closed at large kx’s. The black dashed line is a hyperbola whose equation is (4.36), and
es the location of the valley very well. At the ky = 2p/L and ky = 2(2p/L) cross sections indicated by the two white dashed lines, rminðTu0

k Þ and
c0 Þ are plotted in (b) and (c). The horizontal axes are drawn using the same scale as that of (a), and the vertical axes are in a logarithmic scale. Note

functions are minimized at kx = 0 in (b), and around the ‘‘x’’ marks in (c). The horizontal locations of the small circles on the plots correspond to
ed kx. All parameters are the same as those used in Fig. 4.1. (For interpretation of the references to colour in this figure legend, the reader is referred
eb version of this article.)
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minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� � ’ minkxP0rmin Tu0
k

� �
minkxP0rmin Tsc0

k

� � ð4:39Þ
to estimate (4.38).
We estimate the right-hand side of (4.39) for ky < x/c first. To visualize the general behaviors of rmin Tu0

k

� �
and rmin Tsc0

k

� �
for such ky, in Fig. 4.2(b) we plot them along the lower white dashed line of Fig. 4.2(a). Fig. 4.2(b) indicates that rmin Tu0

k

� �
and

rmin Tsc0
k

� �
are minimized at kx = 0 for ky < x/c. In Appendix A we show that in the limit of s00x � 1, which is the numerically

relevant situation, rmin Tu0
k

� �
and rmin Tsc0

k

� �
are indeed minimized at kx = 0 for all ky < x/c. Therefore, we have
min
kxP0

rminðTkÞ ’ rminðTkÞkx¼0 for Tk ¼ Tu0
k ; T

sc0
k for ky <

x
c
: ð4:40Þ
Since Tu0
k and Tsc0

k of (4.20) are diagonalized for kx = 0, the right-hand side of (4.40) is easily calculated as
rmin Tu0
k

� �
kx¼0 ¼

1
ljsxj

x2

c2 � k2
y

� �
and rmin Tsc0

k

� �
kx¼0 ¼

1
l

x2

c2 � k2
y

� �
: ð4:41Þ
Combining (4.41) with (4.39) and (4.40), we obtain
minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� � ’ 1
jsxj

for ky <
x
c
: ð4:42Þ
Next, we consider ky > x/c. Such ky is indicated by the upper white dashed line in Fig. 4.2(a), along which rmin Tu0
k

� �
and

rmin Tsc0
k

� �
are plotted in Fig. 4.2(c). As seen in Fig. 4.2(c), at such a given ky the minima of rminðTu0

k Þ and rmin Tsc0
k

� �
occur

in the valley, with the location of the minima very well-approximated by kx ¼ s00x ½k
2
y �x2=c2	1=2 (see (4.36)); this is shown

more rigorously in Appendix A for s00x � 1. Therefore, we have
min
kxP0

rminðTkÞ ’ rminðTkÞ
kx¼s00x

ffiffiffiffiffiffiffiffiffiffi
k2

y�x2

c2

q for Tk ¼ Tu0
k ; T

sc0
k for ky >

x
c
: ð4:43Þ
By evaluating the right-hand side of (4.43) approximately, in Appendix C we show that
rmin Tu0
k

� �
kx¼s00x

ffiffiffiffiffiffiffiffiffiffi
k2

y�x2

c2

q ’ 2x2e
k2

y �x2=c2

s00x
2 þ 1

� �
k2

y �x2=c2
; ð4:44aÞ

rmin Tsc0
k

� �
kx¼s00x

ffiffiffiffiffiffiffiffiffiffi
k2

y�x2

c2

q ’ 2
s00x

x2e
k2

y �x2=c2

2k2
y �x2=c2

: ð4:44bÞ
The two ‘‘x’’ marks drawn at kx ¼ s00x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y � x2

c2

q
in Fig. 4.2(c) indicate the values determined by (4.44). The good agreement of

the marks with the actual minima in the figure validates (4.44).
Combining (4.44) with (4.39) and (4.43), we obtain
minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� � ’ 2s00xk2
y � s00xx2=c2

s00x
2 þ 1

� �
k2

y �x2=c2
for ky >

x
c
: ð4:45Þ
For ky > x/c, the right-hand side of (4.45) is an increasing function of k2
y , so its maximum is attained at ky =1. Hence,

ru0
min=r

sc0
min is bounded from above as
minkx2Kxrmin Tu0
k

� �
minkx2Kxrmin Tsc0

k

� � K 2s00x
s00x

2 þ 1
for ky >

x
c
: ð4:46Þ
Combining (4.42) and (4.46) with (4.37), we conclude that ru0
min=r

sc0
min is approximately bounded from above as
ru0
min

rsc0
min

K max
1
jsxj

;
2s00x

s00x
2 þ 1


 �
’ 2
jsxj

; ð4:47Þ
where (4.16) is used in the last approximation. The inequality (4.47) implies that ru0
min is much smaller than rsc0

min for a
bounded domain.

In summary, the minimum singular values of the homogeneous regular medium, UPML, and SC-PML for positive e are all
zero as shown in (4.32), but for a bounded domain they deviate from 0. When such deviation occurs, ru0

min is much smaller
than rsc0

min as (4.47) describes, but rr0
min can be either less or greater than each of ru0

min and rsc0
min.



Fig. 4.3. An example of an inhomogeneous EM system. The hypothetical system has a dielectric cavity (S6) side-coupled to a dielectric waveguide (S9)
immersed in a background metal (S5). The system is composed of several subdomains Si, each of which is filled with a homogeneous medium. We define Si

as a domain excluding its boundary.
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4.5. Variational method to estimate the extreme singular values and condition numbers of inhomogeneous EM systems

In this section, we provide general estimates of the extreme singular values of EM systems surrounded by either UPML or
SC-PML. An example of such EM systems is illustrated in Fig. 4.3. Because the EM system consists of regular media and PML,
we refer to it as an inhomogeneous EM system to distinguish from the homogeneous EM systems examined in the previous
sections.

We estimate the extreme singular values of an inhomogeneous EM system using the variational method introduced in
(4.9), and express them in terms of the extreme singular values of the homogeneous media examined in Sections 4.2, 4.3,
and 4.4. Using the estimates, we show that
4 Her
because
equaliti
neighbo
the vec
ru
max

rsc
max
� 1; ð4:48Þ

ru
min

rsc
min

K 1; ð4:49Þ
and therefore
ju

jsc ¼
ru

max

rsc
max

rsc
min

ru
min

� 1: ð4:50Þ
The inequality (4.50) indicates that Au is much worse-conditioned than Asc.
As inferred from the discussion following (4.9), estimation of the extreme singular values by the variational method is

closely related to estimation of the corresponding extreme right singular vectors. We use the notations vu
max, vu

min and
vsc

max, vsc
min to refer to the extreme right singular vectors of Au and Asc.

A typical inhomogeneous EM system is composed of a few homogeneous subdomains Si as illustrated in Fig. 4.3. At least
one of the EM parameters of each subdomain is different from the corresponding parameter of the neighboring subdomains.
We assume that all PML regions in the system have the same constant PML scale factors in their attenuation directions w, i.e.,
swðlÞ ¼ s0 ¼ 1� is000 and s000 � 1: ð4:51Þ
First, we estimate the maximum singular value of an inhomogeneous EM system. From (4.9), the maximum singular value
rmax = rmax(A) is the maximum of the quotient r(x) = kAxk/kxk over all x, where A is either Au or Asc. We consider the max-
imum of r(x) over x whose nonzero elements are confined in a specific homogeneous subdomain Si:
rmaxjSi
¼max

x
rðxjSi

Þ; ð4:52Þ
where xjSi
is a column vector that has the same elements as x inside Si and zeros outside. Then, by the definition of rmax we

have
rmax P max
i

rmaxjSi
: ð4:53Þ
In addition, we have4
e we use four equalities kxk2 ’ k
P

ixjSi
k2 ¼

P
ikxjSi

k2 and kAxk2 ’ k
P

iAxjSi
k2 ’

P
ikAxjSi

k2. Out of the four equalities, only k
P

ixjSi
k2 ¼

P
ikxjSi

k2 is exact
the elements of xjSi

are zeros at the boundary of Si by definition (See the caption of Fig. 4.3) so that xjSi
is orthogonal to xjSj

for i – j. The other three
es are approximate, because x and

P
ixjSi

are different at the boundaries of the subdomains, and AxjSi
is not necessarily orthogonal to AxjSj

for
ring Si and Sj. Still, the approximations hold as long as the elements of a vector at the boundaries of the subdomains contribute negligibly to the norm of
tor.
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r2
max ¼max

x

kAxk2

kxk2 ’ max
x

k
P

iAxjSi
k2

k
P

ixjSi
k2 ’max

x

P
ikAxjSi

k2P
ikxjSi

k2 ¼max
x

X
i

qiðxÞrðxjSi
Þ2

 !

6 max
x

X
i

qiðxÞðrmaxjSi
Þ2

 !
; ð4:54Þ
where
qiðxÞ ¼
kxjSi
k2P

jkxjSj
k2 : ð4:55Þ
Because
P

iqiðxÞ ¼ 1,
P

iqiðxÞðrmaxjSi
Þ2 is the weighted average of ðrmaxjSi

Þ2 over all i, so it is always less than or equal to

maxiðrmaxjSi
Þ2. Thus (4.54) leads to
r2
max K max

x
max

i
ðrmaxjSi

Þ2
� �

¼ max
i

rmaxjSi

� 
2
: ð4:56Þ
The two inequalities (4.53) and (4.56) dictate
rmax ’max
i

rmaxjSi
: ð4:57Þ
Therefore, the maximum singular value of an inhomogeneous EM system can be approximated by the largest of the maxi-
mum singular values of the homogeneous subdomains constituting the inhomogeneous system. Accordingly, the maximum
right singular vector vmax tends to be concentrated in a specific subdomain Si = S for which rmax ’ rmaxjS.

Because AxjSi
¼ AixjSi

, where Ai is the operator for the homogeneous medium used in Si; rmaxjSi
is approximated as5
rmaxjSi
’

rr0
max for Si outside the PML region;

ru0
max for Si inside the UPML region;

rsc0
max for Si inside the SC-PML region:

8><>: ð4:58Þ
Here, we ignore Si’s with overlapping PMLs (e.g., the four corners in Fig. 4.3), simply because they typically do not interact
with incident waves strongly; we will see in Section 4.6 that this assumption is consistent with direct numerical calculations.
Note that rmaxjSi

’s in (4.58) are independent of e, because rr0
max; ru0

max, and rsc0
max do not depend on e as shown in (4.29).

We apply (4.58) to (4.57) for A = Au and A = Asc separately to estimate ru
max and rsc

max. The inhomogeneous EM system con-
sists of regular media and UPML for A = Au, and of regular media and SC-PML for A = Asc. Therefore, we have
ru
max ’maxfrr0

max;r
u0
maxg ¼ ru0

max; ð4:59Þ
rsc

max ’maxfrr0
max;r

sc0
maxg ¼ rr0

max; ð4:60Þ
where the magnitudes of rr0
max; ru0

max, and rsc0
max are compared using (4.28). Eqs. (4.59) and (4.60) imply that vu

max and vsc
max tend

to be concentrated in the UPML region and the region of regular media, respectively.
From (4.59), (4.60), and (4.28), we obtain
ru
max

rsc
max
’ ru0

max

rr0
max
’ js0j

2
; ð4:61Þ
which proves (4.48).
Next, we estimate the minimum singular value of an inhomogeneous EM system. Defining rmin = rmin(A) and

rminjSi
¼minxrðxjSi

Þ, and following a process similar to (4.53)–(4.56) except that now we minimize instead of maximize,
we obtain
rmin ’min
i

rminjSi
; ð4:62Þ
which is a result parallel to (4.57). Therefore, the minimum singular value of an inhomogeneous EM system can be approx-
imated by the smallest of the minimum singular values of the homogeneous subdomains constituting the inhomogeneous
system. Accordingly, the minimum right singular vector vmin tends to be concentrated in a specific subdomain Si = S for
which rmin ’ rminjS.

Below, we make one more assumption. We assume that at least one of the PML subdomains (e.g., S8 or S10 in Fig. 4.3) is
adjacent to, and hence matches a dielectric (as opposed to metallic) subdomain. This assumption is not very restrictive, be-
cause after all, as seen in the examples in Section 3, the purpose of using PML is to simulate situations where there are waves
rmaxjSi
to be approximated well by one of rr0

max ;ru0
max, and rsc0

max, the subdomain Si needs to be sufficiently large, because each homogeneous medium
in Section 4.2 is assumed to fill an infinite space. However, as described in the discussion following (4.27), the maximum right singular vectors Ek of the
mogeneous media in Section 4.2 have jkj ¼

ffiffiffi
2
p

kmax or jkj = kmax, which correspond to the wavelengths
ffiffiffi
2
p

D or 2D that are much smaller than the usual
a subdomain. Hence, Si is in effect an infinite space when the maximum singular value is concerned, which justifies the approximation (4.58).
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propagating out of the simulation domain; such outgoing waves are supported only in the presence of a dielectric matched
by PML.

With this additional assumption, when looking for the smallest of rminjSi
’s in (4.62), we can ignore subdomains made of

metals or lossy materials, because such materials always have larger minimum singular values than lossless dielectrics, as
shown in Section 4.3. Then, in (4.62) we only need to consider subdomains Dj made of dielectrics and subdomains Pk made of
either UPML or SC-PML that match such dielectrics. For these subdomains, we have
rminjSi
’

rr0
min

		
Dj

for Si ¼ Dj;

ru0
min

		
Pk

for Si ¼ Pk inside the UPML region;

rsc0
minjPk

for Si ¼ Pk inside the SC-PML region;

8>><>>: ð4:63Þ
where rr0
minjDj

, ru0
minjPk

, and rsc0
minjPk

are the minimum singular values of the three homogeneous media in a bounded domain
examined in Section 4.4; the bounded domain in this case is either Pk or Dj.

We apply (4.63) to (4.62) for A = Au and A = Asc separately to estimate ru
min and rsc

min. The inhomogeneous EM system con-
sists of regular media and UPML for A = Au, and of regular media and SC-PML for A = Asc. Therefore, we have
ru
min ’min min

j
rr0

minjDj
;min

k
ru0

minjPk


 �
¼min rr0

minjD;r
u0
minjP

� �
; ð4:64Þ

rsc
min ’min min

j
rr0

minjDj
;min

k
rsc0

minjPk


 �
¼min rr0

minjD;r
sc0
minjP0

� �
; ð4:65Þ
where D,P, and P0 are the subdomains that minimize rr0
minjDj

, ru0
minjPk

, and rsc0
minjPk

, respectively. Eqs. (4.64) and (4.65) imply that
both vu

min and vsc
min tend to be concentrated in either a dielectric or a dielectric-matching PML. Whether they are in a dielec-

tric or PML, however, depends on the magnitude of rr0
minjD relative to ru0

minjP and rsc0
minjP0 .

For the same subdomain Pk; ðru0
minjPk

Þ=ðrsc0
minjPk

Þ 
 1 according to (4.47). Hence, we have
ru0
minjP

rsc0
minjP0

6
ru0

minjP0
rsc0

minjP0

 1; ð4:66Þ
which results in
ru
min

rsc
min

’
min rr0

minjD;r
u0
minjP

� �
min rr0

minjD;r
sc0
minjP0

� � 6 min rr0
minjD;r

sc0
minjP0

� �
min rr0

minjD;r
sc0
minjP0

� � ¼ 1: ð4:67Þ
The inequality (4.67) directly leads to (4.49).
From (4.61) and (4.67), we conclude that
ju

jsc ¼
ru

max

rsc
max

rsc
min

ru
min

J js0j
2
: ð4:68Þ
Therefore, the condition number of an inhomogeneous EM system surrounded by UPML is much larger than the condition
number of the same EM system surrounded by SC-PML in general.

We end this section with two remarks. First, (4.67) does not necessarily mean that ru
min=rsc

min is close to 1. For example,
consider a case where rr0

minjD is greater than both ru0
minjP and rsc0

minjP0 in (4.64) and (4.65). Such a case leads to
ru
min

rsc
min

’
ru0

min

		
P

rsc0
min

		
P0
6

ru0
min

		
P0

rsc0
min

		
P0

K 2
js0j

; ð4:69Þ
where the last inequality is from (4.47). The inequality (4.69) demonstrates that ru
min=rsc

min can be much smaller than 1 in-
deed. It further implies that
ju

jsc ¼
ru

max

rsc
max

rsc
min

ru
min

J js0j2

4
; ð4:70Þ
which predicts much larger ju/jsc than is expected from (4.68).
Second, as shown in (4.68), ju/jsc increases with js0j. Therefore, in nanophotonics where js0j can exceed 1000 as men-

tioned in Section 2, we expect the ratio between the condition numbers of the UPML and SC-PML matrices to be very large.
Especially, when (4.70) holds, ju/jsc can be on the order of 105.

4.6. Numerical calculation of the extreme singular values and condition numbers of inhomogeneous EM systems

In this section, we numerically validate the analysis in Section 4.5. We consider two EM systems as examples: a vacuum
surrounded by PML (Fig. 4.4(a)), and a metal-dielectric-metal (MDM) waveguide bend surrounded by PML (Fig. 4.4(b)). For
these two EM systems, we numerically calculate their extreme singular values as well as the corresponding extreme right
singular vectors. We compare the behaviors of these quantities to the discussions in the previous sections.
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We first examine the system in Fig. 4.4(a). Here, we use a constant PML loss parameter. With D = 20 nm, d = 10D, m = 0,
and R = e�16 ’ 1 � 10�7 in (2.8) and (2.9), the PML scale factor of (2.7) is
Fig. 4.4
PML, an
are ind
wavele
swðlÞ ¼ s0 ¼ 1� i9:868 ð4:71Þ
in each attenuation direction w.
Table 4.1 compares numerically calculated ru

max and rsc
max with their estimates derived in (4.59) and (4.60). The agreement

is very good with errors only about 0.1–0.2%. As a result, ru
max=rsc

max is also estimated very accurately by
ru0

max=rr0
max ’ js0j=2 ¼ 4:959, and thus (4.61) is validated.

We visualize numerically calculated vu
max and vsc

max in Fig. 4.5. Note that the figure plots the real parts of the x-, y-, z-com-
ponents of vmax; because vmax is the solution of Maxwell’s equations for the current source density j = (irmax/x)umax, the
x-, y-, z-components of vmax are well-defined as the Cartesian components of the solution E-field.

Fig. 4.5 shows that vu
max is concentrated in the UPML region, whereas vsc

max is concentrated in the vacuum region. This is
exactly what we expect from the discussion of (4.59) and (4.60). Moreover, vu

max and vsc
max are indeed quite similar to the

maximum right singular vectors of the homogeneous UPML and regular medium, respectively. Notice that both vu
max and

vsc
max exhibit fast spatial oscillations, but the oscillations have different wavevectors k. For vu

max, the dominant wavevector
in each UPML section is normal to the attenuation direction, and the wavelength is 2D. Thus, in the x-normal UPML section
for example, the dominant wavevector of vu

max is k ¼ �ŷð2p=2DÞ. On the other hand, the dominant wavevector of vsc
max is

k ¼ �½x̂ð2p=2DÞ � ŷð2p=2DÞ	. These are exactly the wavevectors of the maximum right singular vectors of the homogeneous
UPML and regular medium described in the discussion following (4.27).

We now examine the minimum singular values of the same system of Fig. 4.4(a). Table 4.2 displays numerically calcu-
lated ru

min and rsc
min as well as the ratio between the two. The ratio is clearly less than 1, validating (4.67). Note that we

do not have the estimates of the minimum singular values in the table, because in Section 4.5 we have provided only a gen-
eral bound of the ratio ru

min=rsc
min, but not detailed estimates of the individual minimum singular values.

Notice that ru
min=rsc

min in Table 4.2 is in fact close to 2/js0j = 0.2016. This is consistent with vu
min and vsc

min shown in Fig. 4.6,
where we plot the absolute values of the complex elements of each singular vector. We see that vu

min is concentrated in the
UPML region, and vsc

min is concentrated in the SC-PML region. According to the discussion of (4.64) and (4.65), this corre-
sponds to a case where rr0

minjD is greater than both ru0
minjP and rsc0

minjP0 . Then, ru
min=rsc

min satisfies (4.69) in addition to (4.67),
which explains why ru

min=rsc
min is close to the upper bound 2/js0j in (4.69). However, we note that vu

min and vsc
min are not always

concentrated in the PML region; for the same system, it is actually possible to change the wavelength or the size of the sim-
ulation domain so that they are concentrated in the region of regular media.

Combining the results in Tables 4.1 and 4.2, we obtain ju/jsc = 23.40� 1, which is consistent with our conclusion in
Section 4.5.

As a second example, we investigate the MDM waveguide bend in Fig. 4.4(b). To be consistent with the typical use of PML
in numerical simulations, we use a graded PML loss parameter rw(l). With D = 2 nm, d = 10D, m = 4, and R = e�16 ’ 1 � 10�7

in (2.8) and (2.9), the PML scale factor of (2.7) is
swðlÞ ¼ s0ðlÞ ¼ 1� i493:4
l
d

� �4

ð4:72Þ
in each attenuation direction w. Note that jsw(d)j, which is the maximum of jsw(l)j, has increased from about 10 in (4.71) to
about 500 in (4.72); the significant increase in jsw(d)j is due to two factors: the use of the graded PML loss parameter, and the
. Two inhomogeneous EM systems whose extreme singular values and condition numbers are numerically calculated: (a) a vacuum surrounded by
d (b) a metal-dielectric-metal waveguide bend surrounded by PML. The edge lengths D of the uniform grids used to discretize Maxwell’s equations

icated in the figures. Relevant dimensions of the structures are displayed in terms of D. All PMLs are 10D thick. For both EM systems, the vacuum
ngth k0 = 1550 nm is used. In (b), the electric permittivity of silver [21] at k0 is eAg = (�129 � i3.28)e0.



Table 4.1
The maximum singular values ru

max and rsc
max of the vacua surrounded by UPML and SC-PML, respectively, along with the ratio ru

max=rsc
max. Notice the excellent

agreement between the estimates and numerically calculated values. The numerically calculated maximum singular values are obtained by solving (4.7) so that
kAvmax � rmaxumaxk/kumaxk < 10�11 for A = Au,Asc. The estimates of the maximum singular values are evaluated using ru0

max and rr0
max in (4.29) with sx = s0. The

unit l�1
0 =nm2 of the singular values is the normalization factor used in our numerical solver.

ru
max ð�l�1

0 =nm2Þ rsc
max ð�l�1

0 =nm2Þ ru
max=rsc

max

Numerical 9.896 � 10�2 1.998 � 10�2 4.953
Estimated 9.919 � 10�2 2.000 � 10�2 4.959

Fig. 4.5. The maximum right singular vectors (a) vu
max of the vacuum surrounded by UPML, and (b) vsc

max of the vacuum surrounded by SC-PML. The real
parts of the x-, y-, z-components of vu

max and vsc
max are displayed. Outside the dashed boxes are PMLs matching the vacuum, and both UPML and SC-PML are

constructed with a constant PML loss parameter. Note that vu
max is concentrated in the UPML region, whereas vsc

max is concentrated in the vacuum region.
Also notice the high-frequency oscillation of both the maximum right singular vectors. The numbers along the horizontal and vertical axes in each plot
indicate the x- and y-indices of the grid points.
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reduction of D from 20 nm to 2 nm. Therefore, as discussed at the end of Section 4.5, we expect much larger ju/jsc for this
system than for the first example analyzed above.

Table 4.3 shows the numerically calculated extreme singular values of Au and Asc for the MDM waveguide bend. From the
table, we confirm that both (4.61) and (4.67) are satisfied. Also, we have much larger ju/jsc for this example than for the first
example; for the present system, we have ju/ jsc = 584.2.

In Table 4.3a, to estimate ru
max as derived in (4.59), we have used ru0

max of (4.29). Strictly speaking, (4.29) is applicable only
for UPML with a constant PML loss parameter. However, each UPML subdomain with a graded PML loss parameter can be
thought as a stack of UPML subdomains, each of which has a constant PML loss parameter. In such a stack, the outermost
UPML subdomain, which is closest to the edge of the simulation domain and described by the PML scale factor s0(d), has
the largest ru0

max. Hence, we use ru0
max in (4.29) with sx = s0(d) as an estimate of ru

max in Table 4.3a. The estimate agrees quite
well with numerically calculated ru

max. Accordingly, vu
max is expected to be concentrated in the outermost layers of the graded

UPML subdomains.
Fig. 4.7 displays vu

max and vsc
max for the MDM waveguide bend. As discussed above, vu

max is indeed concentrated in the out-
ermost UPML region, and vsc

max is also concentrated in the region of regular media as expected. In addition, both vu
max and vsc

max

exhibit the same fast spatial oscillation as seen in the first example.



Table 4.2
The minimum singular values ru

min and rsc
min of the vacua surrounded by UPML and SC-PML, respectively, along with the ratio ru

min=rsc
min. Note that ru

min=rsc
min 6 1

as expected from (4.67). The numerically calculated minimum singular values are obtained by solving (4.7) so that kAvmin � rmin umink/kumink < 10�11 for
A = Au, Asc. The unit l�1

0 =nm2 of the singular values is the normalization factor used in our numerical solver.

ru
min ð�l�1

0 =nm2Þ rsc
min ð�l�1

0 =nm2Þ ru
min=r

sc
min

Numerical 4.181 � 10�7 1.975 � 10�6 0.2117

Fig. 4.6. The minimum right singular vectors (a) vu
min of the vacuum surrounded by UPML, and (b) vsc

min of the vacuum surrounded by SC-PML. The absolute
values of the x-, y-, z-components of vu

min and vsc
max are displayed. Note that both the minimum right singular vectors are concentrated in the PML region. The

numbers along the horizontal and vertical axes in each plot indicate the x- and y-indices of the grid points.
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We also display vu
min and vsc

min for the MDM waveguide bend in Fig. 4.8. Both the minimum right singular vectors are con-
centrated in the slot region, where the electric permittivity is e0. This follows the prediction in Section 4.5 that the minimum
right singular vectors tend to be concentrated in either dielectrics or PMLs matching dielectrics.

In summary of this section, all of the detailed predictions made in Section 4.5 about the behaviors of the extreme singular
values, extreme right singular vectors, and the condition numbers are demonstrated numerically.

5. Diagonal preconditioning scheme for the UPML equation

Our results in Sections 3 and 4 strongly indicate that SC-PML is superior to UPML in solving the frequency-domain Max-
well’s equations by iterative methods. However, there are cases where one would like to use UPML for practical reasons. For
example, in FEM, UPML is easier to implement than SC-PML, because UPML is described by the same finite-element equation
as regular media, whereas SC-PML is not [10,35].

To use UPML in iterative solvers of the frequency-domain Maxwell’s equations, one needs to accelerate convergence. For
this purpose, [13] suggested to avoid overlap of UPMLs at the corners of the simulation domain, even though some reflection
occurs at the corners as a result. The primary assumption in [13] was that the factors sw1 sw2=sw3 in (2.4), which become espe-
cially large in overlapping UPML regions, resulted in an ill-conditioned coefficient matrix. However, the arguments in Sec-
tion 4.5 show that even without overlap of UPMLs the coefficient matrix is still quite ill-conditioned. In addition, Figs. 4.5 and



Table 4.3
The extreme singular values of the MDM waveguide bends surrounded by UPML and SC-PML. The extreme singular values are calculated by solving (4.7) so that
kAvi � riuik/kuik < 10�11 for A = Au,Asc. In (a), the estimates are evaluated using ru0

max and rr0
max in (4.29) with sx = s0(d). Notice that ru

max=rsc
max is much larger than

it is in Table 4.1. The unit l�1
0 =nm2 of the singular values is the normalization factor used in our numerical solver.

Fig. 4.7. The maximum right singular vectors (a) vu
max of the MDM waveguide bend surrounded by UPML, and (b) vsc

max of the same waveguide bend
surrounded by SC-PML. The real parts of the x-, y-, z-components of vu

max and vsc
max are displayed. Outside the dashed boxes are PMLs, and both UPML and SC-

PML are constructed with graded PML loss parameters. The solid lines indicate the silver-vacuum interfaces; between the solid lines is a vacuum. Note that
vu

max is squeezed toward the boundary of the simulation domain where the PML loss parameters are maximized, whereas vsc
max is concentrated in the region

of regular media. Also notice the high-frequency oscillation of both the maximum right singular vectors. The numbers along the horizontal and vertical axes
in each plot indicate the x- and y-indices of the grid points.
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4.6 illustrate that the extreme right singular vectors do not reside in the overlapping UPML regions, and thus at least for
some EM systems, overlap of UPMLs is not the reason for the large condition number of the UPML matrix.

Reference [14] reported enhanced convergence speed achieved by using an approximate inverse preconditioner to the
UPML matrix. However, the approximate inverse preconditioner requires solving an additional optimization problem, which
can be time-consuming for large 3D EM systems.

In this section, we introduce a simple diagonal preconditioning scheme for the UPML matrix to achieve accelerated con-
vergence of iterative methods. We first explore the relation between the UPML matrix and SC-PML matrix in Section 5.1.
Based on this relation, in Section 5.2 we devise the left and right diagonal preconditioners for the UPML matrix, and apply
the preconditioners to the same 3D metallic slot waveguide bend examined in Section 3 to demonstrate the effectiveness of
the preconditioning scheme.



Fig. 4.8. The minimum right singular vectors (a) vu
min of the MDM waveguide bend surrounded by UPML, and (b) vsc

min of the same waveguide bend
surrounded by SC-PML. The absolute values of the x-, y-, z-components of vu

min and vsc
max are displayed. Note that the nonzero elements of both the minimum

right singular vectors are mostly confined in the dielectric sections in the PML region. The numbers along the horizontal and vertical axes in each plot
indicate the x- and y-indices of the grid points.

W. Shin, S. Fan / Journal of Computational Physics 231 (2012) 3406–3431 3425
5.1. Relation between UPML and SC-PML with constant PML scale factors

In this section, we relate the EM fields in a system surrounded by UPML with those in the same system surrounded by SC-
PML. Both PMLs are assumed to have the same and constant PML scale factors.

Suppose that the SC-PML Eq. (2.5) has Esc as the solution for a given electric current source density Jsc. With
straightforward substitution, we can show that the following E-field and electric current source density satisfy the
UPML Eq. (2.3):
Eu ¼

sx 0 0

0 sy 0

0 0 sz

2664
3775Esc; Ju ¼

sysz 0 0

0 szsx 0

0 0 sxsy

2664
3775Jsc: ð5:1Þ
The transformations in (5.1) can also be derived by applying the coordinate transformation of Maxwell’s equations intro-
duced in [36]. It is also interesting to note that the transformation for E in (5.1) predicts the discontinuity of the normal com-
ponent of the E-field at the UPML interface described in Section 7.5.2 of [4].

We note that the transformation for E in (5.1) was derived earlier in [37,38]. However, the transformation for J in (5.1) has
been mostly ignored so far, because the electric current source is usually placed outside PML where the transformation has no
effect.

The transformations (5.1) can be written in terms of matrices and column vectors as
eu ¼ Slesc; ju ¼ Sajsc
: ð5:2Þ
In the FDFD method, Sl and Sa are diagonal matrices whose diagonal elements are the length scale factors sw and area scale
factors sw1 sw2 , respectively.
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Now, we relate Au and Asc using (5.2). Recall the systems of linear Eqs. (2.11) and (2.12). In the present notation, they are
Aueu ¼ �ixju
; ð5:3Þ

Ascesc ¼ �ixjsc
; ð5:4Þ
considering (2.2). Substituting (5.2) in (5.3), we obtain
S�1
a AuSl

� 

esc ¼ �ixjsc

: ð5:5Þ
Comparing (5.4) with (5.5), we conclude that
Asc ¼ S�1
a AuSl: ð5:6Þ
We emphasize that the simple relation (5.6) between Au and Asc holds only for PMLs with constant PML scale factors; if the
scale factors were not constant, the transformation in [36] would not transform the SC-PML equation into the UPML
equation.

5.2. Scale-factor-preconditioned UPML equation

In actual numerical simulations where PMLs are implemented with graded PML loss parameters, the equality in (5.6) does
not hold by the reason explained at the end of Section 5.1. Nevertheless, the right-hand side of (5.6) suggests a precondition-
ing scheme for the UPML matrix, which we refer to as the ‘‘scale-factor preconditioning scheme.’’ In this preconditioning
scheme, instead of solving the discretized UPML Eq. (2.11) directly, we first solve
S�1
a AuSl

� 

y ¼ S�1

a b ð5:7Þ
for y, and then recover the solution x of (2.11) as
x ¼ Sly: ð5:8Þ
The scale-factor preconditioning scheme does not change the kind of PML used in the EM system from UPML; the solution x
obtained from (5.7) and (5.8) is exactly the solution of the discretized UPML Eq. (2.11). Even so, we refer to the implemen-
tation of UPML with the scale-factor preconditioning scheme as the ‘‘scale-factor-preconditioned UPML’’ (SP-UPML).

The SP-UPML matrix, Asp ¼ S�1
a AuSl, is not equal to Asc when Sa and Sl are constructed for graded PML loss parameters.

However, we can expect it to have similar characteristics as Asc, and therefore to be much better-conditioned than Au itself.
Hence, the discretized SP-UPML Eq. (5.7) can be much more favorable to numerical solvers than the discretized UPML
equation.

As a numerical test, we solve the discretized SP-UPML equation by QMR for the 3D metallic slot waveguide bend exam-
ined in Section 3. The convergence behavior for SP-UPML is depicted in Fig. 5.1, together with those for UPML and SC-PML.
The figure demonstrates that SP-UPML performs as well as SC-PML; in fact, it achieves slightly faster convergence than SC-
PML.

To highlight the effectiveness of the scale-factor preconditioning scheme, we also plot krik/kbk for the UPML equation pre-
conditioned by the conventional Jacobi preconditioner in Fig. 5.1. The system of linear equations for the Jacobi-precondi-
tioned UPML equation is
P�1
jac Aux ¼ P�1

jac b; ð5:9Þ
where the Jacobi preconditioner Pjac is a diagonal matrix with the same diagonal elements as Au. The Jacobi preconditioning
scheme makes convergence for UPML slightly faster, but does not accelerate it as much as our proposed scale-factor precon-
ditioning scheme.

The scale-factor preconditioning scheme also has a few advantages over the approximate inverse preconditioning scheme
used in [14]. First, the scale-factor preconditioners Sa and S�1

l are determined analytically using the PML scale factors, and do
not require solving additional optimization problems. Second, the scale-factor preconditioners are diagonal, so they are
much faster to apply and more efficient to store than any approximate inverse preconditioners.

6. Conclusion and final remarks

SC-PML is more favorable to numerical solvers of the frequency-domain Maxwell’s equations than UPML. For iterative
solvers, SC-PML induces much faster convergence than UPML. For direct solvers, SC-PML promises more accurate solutions
than UPML because it produces much better-conditioned coefficient matrices; this also explains the faster convergence of
iterative solvers for SC-PML.

Nevertheless, there are cases where UPML is easier to implement than SC-PML. In such cases, the scale-factor precondi-
tioning scheme, which makes the UPML equation similar to the SC-PML equation, proves to be useful. This preconditioning
scheme is much more effective than the conventional Jacobi preconditioning scheme and more efficient than the approxi-
mate inverse preconditioning scheme.



Fig. 5.1. Convergence of QMR for the UPML equation, SC-PML equation, SP-UPML equation, and the UPML equation preconditioned by the Jacobi
preconditioner. The examined EM system is the metallic slot waveguide bend illustrated in Fig. 3.1, so the plots for the UPML and SC-PML equations are
identical to the corresponding plots in Fig. 3.3. The solid and dashed magenta lines are for the UPML equation preconditioned by some preconditioners. Note
that the convergence for the SP-UPML equation is as fast as that for the SC-PML equation, which shows the effectiveness of the scale-factor preconditioning
scheme. On the other hand, the Jacobi preconditioning scheme barely improves the convergence for the UPML equation.
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For numerical demonstrations, we constructed coefficient matrices by the FDFD method throughout the paper, but we
emphasize that the conclusions of this paper are not limited to a specific method of discretizing the frequency-domain
Maxwell’s equations. For example, the condition number analysis in Section 4 was in essence estimation of the extreme
singular values of the differential operators for homogeneous media. The scale-factor preconditioning scheme in Section 5
resulted from relating the UPML and SC-PML equations before discretization. None of these approaches depend on the
FDFD method.

In particular, our conclusion should hold for the finite-element method of discretizing Maxwell’s equations. In the major
results, the only modification for FEM is that the scale-factor preconditioners Sa and S�1

l in Section 5 may not be diagonal but
can have up to 3 nonzero elements per row, because the edge elements in FEM are not necessarily in the Cartesian directions.
This could make construction of the preconditioners somewhat more complex in FEM than in the FDFD method, but the exis-
tence of the preconditioners is still guaranteed. We can further make the preconditioners diagonal if, in 2D for example, we
use a hybrid mesh that consists of rectangular elements inside PML and triangular elements outside PML.
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Appendix A. Derivation of kx minimizing rmin Tu0
k

� �
for a given ky

In this section, we derive kx used in (4.40) and (4.43) for Tk ¼ Tu0
k . The case for Tk ¼ Tsc0

k can be treated similarly. The gen-
eral assumptions kx P 0, ky P 0, e > 0, and s00x � 1 of Section 4.4 apply here.

We first consider ky < x/c. For such ky, we show that rmin Tu0
k

� �
is an increasing function of kx, and therefore it is minimized

at kx = 0. To that end, we derive the analytic formula of rminðTu0
k Þ and examine its first derivative with respect to kx.

The analytic formula of rminðTu0
k Þ is quite complex, so we use an approximation of Tu0

k to simplify the formula. Because of
(4.16), Tu0

k of (4.20b) is approximated to
eT u0
k ¼

� k2
y�x2=c2

is00xl
kxky

is00xl
0

kxky

is00xl
� k2

xþs00x
2x2=c2

is00xl
0

0 0 � k2
xþs00x

2ðx2=c2�k2
y Þ

is00xl

266664
377775; ðA:1Þ
where c ¼ 1=
ffiffiffiffiffiffilep

.
Now, we examine the singular values of eT u0

k . The singular value of eT u0
k corresponding to the singular vector [001]T is
~ru0
k;3 ¼

1
s00xl

k2
x þ s00x

2 x2

c2 � k2
y

� �				 				; ðA:2Þ
which is an increasing function of kx for ky < x/c.



3428 W. Shin, S. Fan / Journal of Computational Physics 231 (2012) 3406–3431
The remaining two singular values of eT u0
k corresponding to the singular vectors of the form [ab0]T are
6 The
if vr is s
phase f
~ru0
k;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 � f2

p ffiffiffi
2
p

s00xl
; ~ru0

k;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 þ f2

p ffiffiffi
2
p

s00xl
; ðA:3Þ
where
f1 ¼ k2
x þ k2

y þ s00x
2 x2

c2

� 
2
þ x2

c2
x2

c2 � 2 s00x
2 þ 1

� 

k2

y

� 

;

f2 ¼ k2
x þ k2

y þ s00x
2 � 1

� 

x2

c2

� 

k2

x þ k2
y � s00x

2 þ 1
� 


x2

c2

� 
2
þ 4k2

x s00x
2 þ 1

� 

x2

c2

� �1=2

:

ðA:4Þ
Between the two singular values, we are only interested in ~ru0
k;1, the smaller of the two. By straightforward algebra, we can

show that the first derivative of f1 � f2 with respect to kx is nonnegative. Hence, ~ru0
k;1 is an increasing function of kx.

So far, we have shown that ~ru0
k;1 and ~ru0

k;3 are increasing functions of kx. Thus, rminðeT u0
k Þ ¼minf~ru0

k;1; ~ru0
k;3g is also an increas-

ing function of kx. Since we are considering kx P 0;rminðeT u0
k Þ is minimized at kx = 0.

Next, we consider ky > x/c. In this case, ~ru0
k;3 of (A.2) is minimized at kx ¼ kx0 � s00x ½k

2
y �x2=c2	1=2. In addition, since

o(f1 � f2)/okx is negative for kx < kx0 and positive for kx > kx0; ~ru0
k;1 is minimized at kx = kx0. Therefore, rminðeT u0

k Þ is minimized
at kx = kx0.

In summary, rminðeT u0
k Þ is minimized at kx = 0 for ky < x/c, and at kx = kx0 for ky > x/c. Because eT u0

k is a good approximation
of Tu0

k , we have
min
kxP0

rmin Tu0
k

� �
’min

kxP0
rmin

eT u0
k

� 

¼ rmin

eT u0
k

� 

kx¼0
’ rmin Tu0

k

� �
kx¼0 for ky <

x
c
; ðA:5Þ

min
kxP0

rmin Tu0
k

� �
’min

kxP0
rmin

eT u0
k

� 

¼ rmin

eT u0
k

� 

kx¼kx0

’ rmin Tu0
k

� �
kx¼kx0

for ky >
x
c
; ðA:6Þ
which are (4.40) and (4.43) for Tk ¼ Tu0
k , respectively.

Appendix B. First-order perturbation method for the nondegenerate singular values of symmetric matrices

In Appendix C, the singular values of symmetric matrices are calculated by a perturbation method, which we describe in
this section. The overall derivation is very similar to the derivation of the widely used perturbation method for the nonde-
generate eigenvalues of Hermitian matrices, for which we refer readers to [39].

For a symmetric matrix A 2 Cn�n such that AT = A, its SVD is known to reduce to
A ¼ V�RV y; ðB:1Þ
where V⁄ is the complex conjugate of V. In other words, U = V⁄ in (4.3) and ui ¼ v�i in (4.4). The decomposition (B.1) is called
Takagi’s factorization or the symmetric SVD [40–42].

Suppose that Að0Þ 2 Cn�n is a symmetric matrix whose SVD in the form (4.4) is
Að0Þ ¼
Xn

r¼1

rð0Þr v ð0Þ�r v ð0Þyr : ðB:2Þ
We consider a symmetric matrix A that is perturbed from A(0):
A ¼ Að0Þ þ dAð1Þ; ðB:3Þ
where d is a small number that characterizes the strength of the perturbation. We seek to calculate the singular values of A,
whose SVD is written as
A ¼
Xn

r¼1

rrv�rv
y
r : ðB:4Þ
We assume that the singular values of A and A(0) are both nondegenerate. Then, for any singular value rr of A, the correspond-
ing right singular vector vr is unique up to an arbitrary phase factor eihr with hr real [41], because vr is the unit eigenvector
corresponding to a distinct eigenvalue r2

r of the Hermitian eigenvalue problems (4.8)6; the same is true for v ð0Þr corresponding
to rð0Þr of A(0). As a result,
ðrr; v rÞ ! rð0Þr ; ei/r v ð0Þr

� �
for some real /r as d! 0 ðB:5Þ
because A ? A(0) as d ? 0. The nondegeneracy constraint is important in obtaining (B.5); without this constraint, in cases
where rð0Þq ¼ rð0Þr for q – r, vr converges to a unit vector in spanfv ð0Þq ;v ð0Þr g instead.
phase factor eihr is arbitrary for the general SVD, but in fact it is not for Takagi’s factorization [40]; the equality in (B.4) cannot be maintained for real rr

caled by a factor of eihr , unless eihr ¼ �1. The only exception arises when rr = 0, whose corresponding right singular vector vr can be freely scaled by any
actor. Unfortunately, we have to deal with such an exceptional case in Appendix C, so we allow the freedom to vary the phase factor of vr.
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For the perturbed matrix A, we want to express its pth singular value rp to first order in d. Noting that v ð0Þ1 ; . . . ;v ð0Þn

n o
is an

orthonormal basis of Cn, we expand the corresponding right singular vector vp as
vp ¼
Xn

r¼1

crv ð0Þr : ðB:6Þ
From (B.5), we see that vp ’ ei/p v ð0Þp for small d. Thus, to lowest order in d,
cr ¼
ei/p Oð1Þ ¼ Oð1Þ for r ¼ p;
OðdÞ for r – p:

(
ðB:7Þ
By applying A of (B.4) to vp and substituting (B.3) and (B.6) in the result, we obtain
rpv�p ¼ Avp () rp

Xn

r¼1

c�r v
ð0Þ�
r ¼

Xn

r¼1

cr Að0Þ þ dAð1Þ
� 


v ð0Þr : ðB:8Þ
Subsequent application of v ð0ÞTp to the right equation of (B.8) leads to
c�prp ¼ cprð0Þp þ
Xn

r¼1

dcr v ð0ÞTp Að1Þv ð0Þr

� 

; ðB:9Þ
where (B.2) is used to obtain the first term of the right-hand side. Now, because of (B.7), all terms in the sum in (B.9) are in
the order of d2 unless r = p. Hence,
c�prp ¼ cp rð0Þp þ d v ð0ÞTp Að1Þv ð0Þp

� 
h i
þ Oðd2Þ; ðB:10Þ
or equivalently
rp �
cp

c�p
rð0Þp þ d v ð0ÞTp Að1Þv ð0Þp

� 
h i
¼ Oðd2Þ: ðB:11Þ
By taking the modulus of (B.11) and using the triangle inequality, we obtain
�jOðd2Þj 6 rp � rð0Þp þ d v ð0ÞTp Að1Þv ð0Þp

� 
			 			 6 jOðd2Þj; ðB:12Þ
where jrpj = rp and jcp=c�pj ¼ 1 are used. Therefore, we have
rp ¼ rð0Þp þ d v ð0ÞTp Að1Þv ð0Þp

� 
			 			þ Oðd2Þ: ðB:13Þ
Appendix C. Estimation of the minimum of rminðTu0
k Þ over kx for a given ky > x/c

In this section, we derive (4.44a) by examining rminðTu0
k Þ. Eq. (4.44b) can be similarly derived by examining rmin Tsc0

k

� �
. The

general assumptions kx P 0, ky P 0, e > 0, s00x � 1 of Section 4.4 and the specific assumption ky > x/c apply here.
Suppose that the given ky is ky0 > x/c. Define
kx0 ¼ s00x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y0 �
x2

c2

r
ðC:1Þ
and
k0 ¼ x̂kx0 þ ŷky0: ðC:2Þ
Then, the left-hand side of (4.44a) is rminðTu0
k0
Þ, which we evaluate below.

We approximate rminðTu0
k0
Þ to first order in a small perturbation parameter d. The perturbed quantity in Tk0 is the real part

of sx of (4.15), which is written as
sx ¼ �is00xð1þ dÞ; ðC:3Þ
where
d ¼ i
s00x
: ðC:4Þ
Because jdj 
 1 due to (4.16), the approximation of rminðTu0
k0
Þ to first order in d should be an accurate estimate of rminðTu0

k0
Þ.

To obtain the approximation of Tu0
k0

, we approximate the three singular values of rminðTu0
k0
Þ one by one. The singular value

of Tu0
k0

corresponding to the singular vector [001]T is ru0
k0 ;3

, which is ru0
k;3 in (4.21) for k = k0. Because (C.3) implies
1
s2

x
¼ � 1

s00x
2ð1þ dÞ2

¼ � 1
s00x

2 ð1� 2dÞ þ Oðd2Þ; ðC:5Þ
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we have
ru0
k0 ;3
¼ jsxj �

k2
x0

s00x
2l
ð1� 2dÞ þ

k2
y0

l
�x2e

					
					þ Oðd2Þ ¼ 2jdjjsxj

k2
y0

l
�x2e

 !
þ Oðd2Þ; ðC:6Þ
where kx0 is expressed in terms of ky0 using (C.1). Substituting (C.4) in (C.6) leads to
ru0
k0 ;3
¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s00x

2 þ 1
q

s00x

k2
y0

l
�x2e

 !
þ Oðd2Þ: ðC:7Þ
The remaining two singular values of Tu0
k0

correspond to the singular vectors of the form [ab0]T. Therefore, we can derive the
two singular values by applying the perturbation method established in Appendix B to the top-left 2 � 2 block of Tu0

k0
. Using

(C.3) and
1
sx
¼ � 1

is00xð1þ dÞ
¼ � 1

is00x
ð1� dÞ þ Oðd2Þ; ðC:8Þ
we approximate the top-left 2 � 2 block of Tu0
k of (4.20b) for k = k0 as
A ¼
k2

y0
sxl�

x2e
sx

� kx0ky0
sxl

� kx0ky0
sxl

k2
x0

sxl� sxx2e

264
375 ’ � k2

y0

is00xl
þ x2e

is00x

� �
ð1� dÞ kx0ky0

is00xl
ð1� dÞ

kx0ky0

is00xl
ð1� dÞ � k2

x0
is00xl
ð1� dÞ þ is00xð1þ dÞx2e

2664
3775: ðC:9Þ
Following the notations in Appendix B, (C.9) is decomposed as
A ’ Að0Þ þ dAð1Þ ¼
� k2

x0

is00x
3l

kx0ky0

is00xl

kx0ky0

is00xl
is00x k2

y0
l

264
375þ d

k2
x0

is00x
3l

� kx0ky0

is00xl

� kx0ky0

is00xl
k2

x0
is00xl
þ is00xx2e

264
375; ðC:10Þ
where A(0) and A(1) are simplified using (C.1).
We obtain the two singular values ru0

k0 ;1
and ru0

k0 ;2
of Tu0

k0
from A. However, since eventually we are interested in rmin Tu0

k0

� 

,

we focus on the smaller of the two, which is denoted by ru0
k0 ;1

. Because d is small, it is reasonable to assume that the smaller

singular value of A is the one perturbed from the smaller singular value of A(0), which is denoted by rð0Þ1 . Thus, we estimate

ru0
k0 ;1

as the perturbation of rð0Þ1 . In fact, rð0Þ1 ¼ 0 since det(A(0)) = 0.
The right singular vector v ð0Þ1 corresponding to rð0Þ1 is calculated by solving the eigenvalue problem ðAð0ÞyAð0ÞÞv ð0Þ1 ¼ rð0Þ1 v ð0Þ1

as described in (4.8). The result is
v ð0Þ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x0=s00x

2 þ s00x
2k2

y0

q �is00xk2
y0

�ik2
x0=s00x

" #
: ðC:11Þ
Using (C.10) and (C.11) in (B.13), we obtain
ru0
k0 ;1
¼ rð0Þ1 þ d v ð0ÞT1 Að1Þv ð0Þ1

� 
			 			þ Oðd2Þ ¼ 2x2e
k2

y0 �x2le

s00x
2 þ 1

� �
k2

y0 �x2le
þ Oðd2Þ; ðC:12Þ
where (C.1), (C.3), and (C.4) are used to simplify the result.
Taking the ratio between (C.7) and (C.12), we can easily see that ru0

k0 ;1
< ru0

k0 ;3
in the leading order. Therefore, we conclude

that
rmin Tu0
k0

� 

¼ 2x2e

k2
y0 �x2le

s00x
2 þ 1

� �
k2

y0 �x2le
þ Oðd2Þ; ðC:13Þ
which is (4.44a).

References

[1] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114 (1994) 185–200.
[2] G. Veronis, S. Fan, Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal

plasmonic waveguides, Optics Express 15 (2007) 1211–1221.
[3] L. Verslegers, P. Catrysse, Z. Yu, W. Shin, Z. Ruan, S. Fan, Phase front design with metallic pillar arrays, Optics Letters 35 (2010) 844–846.
[4] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, third ed., Artech House Publishers, 2005.
[5] Z. Sacks, D. Kingsland, R. Lee, J.-F. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Transactions on

Antennas and Propagation 43 (1995) 1460–1463.



W. Shin, S. Fan / Journal of Computational Physics 231 (2012) 3406–3431 3431
[6] W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave and Optical
Technology Letters 7 (1994) 599–604.

[7] C.M. Rappaport, Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space, Microwave and Guided Wave Letters,
IEEE 5 (1995) 90–92.

[8] R. Mittra, U. Pekel, A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves, Microwave and
Guided Wave Letters, IEEE 5 (1995) 84–86.

[9] J. Roden, S. Gedney, Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical
Technology Letters 27 (2000) 334–339.

[10] J.-Y. Wu, D. Kingsland, J.-F. Lee, R. Lee, A comparison of anisotropic PML to Berenger’s PML and its application to the finite-element method for EM
scattering, IEEE Transactions on Antennas and Propagation 45 (1997) 40–50.

[11] Y. Botros, J. Volakis, A robust iterative scheme for FEM applications terminated by the perfectly matched layer (PML) absorbers, Proceedings of the
Fifteenth National Radio Science Conference, 1998, pp. D11/1–D11/8.

[12] B. Stupfel, A study of the condition number of various finite element matrices involved in the numerical solution of Maxwell’s equations, IEEE
Transactions on Antennas and Propagation 52 (2004) 3048–3059.

[13] P. Talukder, F.-J. Schmuckle, R. Schlundt, W. Heinrich, Optimizing the FDFD method in order to minimize PML-related numerical problems, in: 2007
International Microwave Symposium (IMS 2007), 2007, pp. 293–296.

[14] Y. Botros, J. Volakis, Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated applications, Microwave and
Guided Wave Letters, IEEE 9 (1999) 45–47.

[15] J.-M. Jin, W. Chew, Combining PML and ABC for the finite-element analysis of scattering problems, Microwave and Optical Technology Letters 12
(1996) 192–197.

[16] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and
Propagation 14 (1966) 302–307.

[17] J. Smith, Conservative modeling of 3-D electromagnetic fields, part I: Properties and error analysis, Geophysics 61 (1996) 1308–1318.
[18] N.J. Champagne II, J. Berryman, H. Buettner, FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography, Journal of

Computational Physics 170 (2001) 830–848.
[19] K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC-Press, 1993. Section 3.2.
[20] G. Veronis, S. Fan, Modes of subwavelength plasmonic slot waveguides, Journal of Lightwave Technology 25 (2007) 2511–2521. In the private

communication with the authors, the use of the 1 nm grid edge length in this paper was confirmed.
[21] P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Physical Review B 6 (1972) 4370–4379.
[22] E.D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic Press, 1985.
[23] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 88th ed., CRC Press, 2007.
[24] R. Freund, N. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathematik 60 (1991) 315–339.
[25] S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2011. Available from:

<http://www.mcs.anl.gov/petsc>.
[26] D.A.H. Jacobs, A generalization of the conjugate-gradient method to solve complex systems, IMA Journal of Numerical Analysis 6 (1986) 447–452.
[27] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005) 1–137. Section 9.2.
[28] B.N. Datta, Numerical Linear Algebra and Applications, 2nd ed., SIAM, 2010. Section 6.8.
[29] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, 1996. Section 2.5.6; 2.3.1; 2.3.3.
[30] R.B. Lehoucq, K. Maschhoff, D.C. Sorensen, C. Yang, ARPACK Web page, 2011. Available from: <http://www.caam.rice.edu/software/ARPACK>.
[31] MATLAB Web page, 2011. Available from: <http://www.mathworks.com/products/matlab>.
[32] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,

SIAM, 1998.
[33] J.W. Goodman, Introduction to Fourier Optics, 3rd ed., Roberts & Company Publishers, 2005. Section 2.3.2.
[34] A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing, 2nd ed., Prentice Hall, 1999. Section 2.6.1; 4.2.
[35] C. Wolfe, U. Navsariwala, S. Gedney, A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML

absorbing medium, IEEE Transactions on Antennas and Propagation 48 (2000) 278–284.
[36] C. Kottke, A. Farjadpour, S. Johnson, Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized

numerical methods, Physical Review E 77 (2008) 036611. Appendix.
[37] F. Teixeira, W. Chew, General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media, Microwave and

Guided Wave Letters, IEEE 8 (1998) 223–225.
[38] S. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Transactions on Antennas and

Propagation 44 (1996) 1630–1639.
[39] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Course of Theoretical Physics, 3rd ed., vol. 3, Butterworth-Heinemann, 1977.
[40] T. Takagi, On an algebraic problem related to an analytic theorem of Carathedory and Fejer and on an allied theorem of Landau, Japanese Journal of

Mathematics 1 (1924) 82–93.
[41] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985. Corollary 4.4.4; Theorem 7.3.5.
[42] A. Bunse-Gerstner, W. Gragg, Singular value decompositions of complex symmetric matrices, Journal of Computational and Applied Mathematics 21

(1988) 41–54.

http://www.mcs.anl.gov/petsc
http://www.caam.rice.edu/software/ARPACK
http://www.mathworks.com/products/matlab

	Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers
	1 Introduction
	2 Review of SC-PML and UPML for the frequency-domain Maxwell’s equations
	3 Convergence speed of iterative methods to solve the UPML and SC-PML equations
	4 Condition numbers of the UPML and SC-PML matrices
	4.1 Mathematical background
	4.2 Maximum singular values of homogeneous media
	4.3 Minimum singular values of homogeneous media
	4.4 Minimum singular values of homogeneous media
	4.5 Variational method to estimate the extreme singular values and condition numbers of inhomogeneous EM systems
	4.6 Numerical calculation of the extreme singular values and condition numbers of inhomogeneous EM systems

	5 Diagonal preconditioning scheme for the UPML equation
	5.1 Relation between UPML and SC-PML with constant PML scale factors
	5.2 Scale-factor-preconditioned UPML equation

	6 Conclusion and final remarks
	Acknowledgements
	Appendix A Derivation of kx minimizing ? for a given ky
	Appendix B First-order perturbation method for the nondegenerate singular values of symmetric matrices
	Appendix C Estimation of the minimum of [$]{sigm
	References


