September 15, 2005 / Vol. 30, No. 18 / OPTICS LETTERS

2397

Conditions for self-collimation in
three-dimensional photonic crystals

Jonghwa Shin and Shanhui Fan

Department of Electrical Engineering, Stanford University, Stanford, California 94305

Received March 11, 2005; accepted April 28, 2005
We introduce the theoretical criterion for achieving three-dimensional self-collimation of light in a photonic
crystal. Based on this criterion, we numerically demonstrate a body-center-cubic structure that supports
wide-angle self-collimation and is directly compatible with the recently developed holographic fabrication
technique. We further show that both bends and beam splitters can be introduced into this structure by the

use of interfaces. © 2005 Optical Society of America

OCIS codes: 130.2790, 160.3130.

Recently there has been impressive progress in syn-
thesizing three-dimensional (3D) photonic crystal
structures at optical length scales with
self—assemblyl’ or holographic inscriptiong_ tech-
niques. However, it still remains a challenge to create
functional integrated photomcs circuits in 3D crys-
tals by using these techmques While the designs of
basic components, including waveguides, bends, and

splitters, have relied excluswely on the use of con-
trolled line defect states® in a 3D photonic band-
gap, self-assembly or holographic inscription appears
to be particularly suitable for creating large-scale pe-
riodic structures.”

In this Letter we show that a periodic 3D crystal
structure alone, without any line defects, may also be
used to achieve functionalities of integrated photonic
circuits. Our approach is based on the self-

collimation effect.”'~'® We prove rigorously that, in a
3D crystal, a self-collimation k point can be created if
the structure possesses certain symmetry properties.
We also present empirical considerations with re-
spect to enlarging the k-space area over which self-
collimation occurs. Based on these considerations, we
present a structure that exhibits true 3D self-
collimation and can be fabricated with the holo-
graphic technique.

First, we consider the mathematical conditions for
creating a self-collimation point in the wave-vector
space for a 3D crystal. At such a point, the radius of
curvature of the constant-frequency surface (CFS) is
infinite along every possible tangential direction. In
general, the CFS around a k point ky=(k,%,9,%.0)
can be described in terms of a Taylor series:
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Without losing generality we can choose the z di-
rection as the direction of group velocity for this k
point; then the first-order terms in Eq. (1) are identi-
cally zero. At a self-collimation point, the second-
order terms in Eq. (1) must be identically zero as
well. This can be accomplished if the structure has
threefold or higher rotational symmetry around the z
axis and the radius of curvature is infinite along at
least one tangential direction. To see this, we note
that the radius of curvature R, along an arbitrary
tangential direction #=% cos #+ysin # can be ex-
pressed in terms of second-order derivatives:
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Thus, if the radius of curvature is infinite along at
least one tangential direction, the threefold or sixfold
rotational symmetry guarantees that the radius of
curvature is infinite along at least three nonparallel
directions. Alternatively, if the structure has fourfold
rotational symmetry around the z axis, we have at
least two nonparallel directions along which the ra-
dius of curvature is infinite, and the symmetry fur-
ther dictates that B is zero. In either case, A, B, and
C are identically zero, and k, becomes a self-
collimation point.

Most of the photonic crystals with threefold or
higher rotational symmetry have a frequency extre-
mum point, in addition to I', that lies on a symmetry
axis at least for some bands, and therefore possess a
self-collimation point. For practical applications,
however, it is also important to have a broad, flat
area on the CFS around the self-collimation point.
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Fig. 1. Constant-frequency surface (CSF) around the H
point for an empty BCC lattice. The inset shows the first
Brillouin zone.
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Fig. 2. (a) Band structure of a BCC gyroid crystal. The
crystal is plotted in the inset. The horizontal line indicates
the position of the frequency of 0.41 (2mc/a). (b), (¢) Calcu-
lated constant frequency surface around the H point at fre-
quencies (b) 0.40 (2m7c/a), (c) 0.41 (2mc/a).

Since a lower band has a lower normalized frequency,
the radius of the constant frequency sphere in air is
smaller, and the angle of acceptance is larger. That
makes body-centered-cubic (BCC) structures good
candidates. In a BCC lattice, the [100] direction has
fourfold rotational symmetry. Moreover, the first-
band frequency maximum is typically located at the
H point ([100] direction), since H is the farthest point
in the first Brillouin zone. Therefore there is a self-
collimation point on the I'-H line. In addition, for
each H point there are only six nearby surrounding I
points; the CFS around the H point therefore re-
sembles a cube, with only six faces (Fig. 1). Assuming
the same enclosed volume, the individual flat regions
of the CFS are larger than what they might have
been if the CFS had had 8 or 12 faces.

Here, we use a BCC gyroid structure similar to
that in Refs. 5 and 6, created with six modulations
along all (110) directions, since such a structure pos-
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sesses a large symmetry group. The structure is de-
fined by

€(x,y,z) =12.06 if sin(2w(x +y)/a) + sin(2m(x — y)/a)
+sin(27(y + z)/a) + sin(27w(y — z)/a)

+ sin(27(z + x)/a) + sin(27(z — x)/a) > 2.0,

e(x,y,z) = 1 otherwise, (3)

where a is the length of the cubic unit cell. This
structure has a filling ratio of 17%. A band structure
calculation' shows a 25% bandgap between the sec-
ond and third bands [Fig. 2(a)l. (Experimentally,
there has been much effort toward infiltrating high-
index materials into holographically defined
templates.’) In the vicinity of frequency 0.41
X2mcl/a, the structure exhibits a very flat CFS
around an H point that resembles the aforemen-
tioned cubical surface [Figs. 2(b) and 2(c)]. Compared
with bulk silicon, this structure has less longitudinal
wavenumber variation up to a lateral wavenumber of
0.14X2m/a, and that corresponds to an approxi-
mately 20° angle for light incident from air.

Simulation by the finite-difference time-domain
method®® further demonstrates the self-collimating
nature of the beam inside the structure [Fig. 3(a)l.
We use large samples to minimize the effect of bound-
ary reflection, 30 X30X50 unit cells for straight
propagation and larger for bends and splitters. The
source is located at 1a outside of the structure, is lin-
early polarized, and has a Gaussian profile with a
beam waist radius of 2a¢ and a frequency of 0.41
X 2mc/a. (The use of linearly polarized light excites
both the first and the second bands.) Over a propaga-
tion distance of 50a, the beam size does not show sig-
nificant variation. In comparison, for the same input
beam, the Gaussian beam radius at the end of propa-
gation will grow to 5.9a in bulk silicon.
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Fig. 3. (a) Propagation of a self-collimated beam, with an
initial beam radius of 2a as calculated in a finite-difference
time-domain simulation. Shown here is the intensity of the
electric field. (b), (c) Beam width as a function of propaga-
tion distance for an initial beam radius of (b) 2a and (c¢) 8a.
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Fig. 4. Intensity plot as a light beam goes through (a) a
90° bend, (b) a splitter and then a bend. Filled arrows, nor-
mal direction of interfaces; open arrows, propagation
direction.

To visualize the beam divergence over longer dis-
tances, for which the finite-difference time-domain
method is not well suited owing to its heavy compu-
tational requirement, we instead use an approximate
method based on the CFS. For the calculation, a
Gaussian input beam is decomposed into its trans-
verse wave vector components. The output beam is
then constructed by summing all components, each
multiplied by an appropriate phase factor calculated
from the CFS and the propagation distance. (This
method assumes an angle-independent coupling ratio
at the interface, so it can be less accurate for short
distances.) After a propagation distance of 360a, the
beam radius of the self-collimated beam remains be-
low 5.5a, while that of the beam propagating in uni-
form silicon increases to 40a [Fig. 3(b)l. For larger
initial widths, the improvement over uniform me-
dium becomes even more dramatic [Fig. 3(c)].

A mirror for the self-collimated beam can be con-
structed simply by truncating the crystal in a (011)
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plane. In this case, a beam along the [001] direction
incident upon the truncation will undergo total inter-
nal reflection, since the projection of the wave vector
on the surface lies outside the k sphere of air. Based
on this, a 90° bend for a self-collimated beam is easily
realized, and the bending efficiency is nearly com-
plete [Fig. 4(a)]l. Furthermore, by cascading two of
such truncations, one can create a beam splitter. This
is shown in Fig. 4(b), in which the distance between
the two truncations is 0.15y2a, with air between the
two surfaces. The power efficiency to each of the two
ports is approximately 48% at the frequency of 0.41
X 2mc/a. These calculations demonstrate that func-
tional integrated optical components can indeed be
constructed in 3D photonic crystals without the use
of line defects.
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