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We consider three-dimensional structures consisting of multiple interlocking, disconnected metal networks.
We show that, in the low-frequency limit, these systems support photonic bands with linear dispersion relation.
The number of such photonic bands is directly controlled by the number of networks and can be arbitrarily
large. We construct a non-Maxwellian effective medium for these systems. The effective medium supports
multicomponent effective fields, with the numbers of field components designable by geometry.
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Maxwell’s equations describe the classical electromag-
netic properties of all systems, including metamaterials,
which are periodic and highly inhomogeneous. In studies of
metamaterials, furthermore, one seeks to create unusual elec-
tromagnetic effects, especially in the low-frequency limit,
where the wavelength in vacuum is much larger than the
structural periodicity. In such a limit, it is reasonable to ex-
pect that any metamaterial can be mapped onto an effective
uniform medium.1,2 !This mapping is referred to as
homogenization.2,3" However, most work in this area, in ad-
dition, assumes that such an effective medium itself always
satisfies Maxwell’s equations; i.e., the effective medium it-
self is Maxwellian. Hence, tremendous recent efforts have
focused on discovering structures with unusual properties in
electrical permittivity and magnetic permeability tensors.4–11

Here, we offer an alternative viewpoint by designing
three-dimensional metamaterials, which may be best de-
scribed by effective uniform media that is non-Maxwellian.
In the low-frequency limit, these metamaterials support mul-
ticomponent effective fields, with the numbers of field com-
ponents designable by geometry. Our work indicates that the
physics of metamaterials is far richer than previously antici-
pated. In particular, new effective low-energy theory12 with
high symmetry can emerge from topological complexity
alone.

We consider three-dimensional structures consisting of
multiple interlocking, disconnected metal networks. Each
network by itself is connected in full three dimensions. As
examples, we consider three different structures with two,
five, and four networks, respectively !Figs. 1–3". These
structures all possess a cubic unit cell and either a cubic
!Figs. 1 and 2" or pyritohedral !Fig. 3" point group.13

We calculate the dispersion relation of these structures
using finite difference time domain methods, which solve the
underlying Maxwell’s equations from first principles with no
uncontrolled approximation. The computational domain cor-
responds to one cubic unit cell with Bloch-periodic boundary
conditions,14 discretized with 48 grid points in each direc-
tion. The simulations yield a band structure assuming a cubic
unit cell. Since the cubic unit cell contains all networks, the
results thus obtained can be directly compared to the effec-
tive field theory.

The simulations reveal that in the low-frequency limit, the
structures in Figs. 1–3 support one, four, and three bands

with linear dispersion relations, respectively #Figs. 1!b", 2!b",
and 3!b"$. !The nondegenerate nature of the band for the
structure in Fig. 1 is further confirmed by examining the
corresponding field pattern of the mode, which has the full
symmetry of the lattice #inset of Fig. 1!b"$." In these systems,
the number of low-frequency bands is directly controlled by
the number of networks and can be arbitrarily large. There-
fore, these dispersion relations differ from all metamaterials
previously considered.

We construct an effective medium that is local and non-
Maxwellian for these structures. Our approach, which is
quasistatic,15 is exact in the low-frequency limit. The electro-
and magnetostatic properties of any N-network system is de-
scribed as

Q = CV ,

A = LI . !1"

Here, V and Q are N-vectors. Their components, Vi and
Qi, are the voltage and the charge density !averaged over the
unit cell volume", respectively, of the ith network. A and I
are 3N-vectors. Iiu is the total current through a unit cell
surface normal to the u direction divided by the area of the
surface !u! %x ,y ,z&". Aiu is a line average of the microscopic

vector potential A" ,

Aiu = a−1'
r"i

r"i+aû

A" · dl", !2"

where a is the unit cell length, and the integration path re-
mains on the ith network. C and L are the capacitance and
inductance matrices.

For time-varying fields, the microscopic electric field still
vanishes inside a perfect conductor, i.e., E" =−!V−"A" /"t=0.
Integrating this relation, along the same path as in Eq. !2",
results in

!V = −
"A
"t

. !3"

Also, the microscopic current density and charge density are
related by ! ·J" =−"! /"t. Again, by averaging, we have
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! · I = − "Q/"t . !4"

Equations !3" and !4" are exact and are not restricted to the
quasistatic limit.

In the quasistatic limit, the dynamic variables, V, Q, I,
and A, vary at a length scale much longer than the periodic-
ity. Thus, within each unit cell, Eq. !1" remains valid. Com-
bining this with Eqs. !3" and !4" leads to the equation for V,

"2V
"t2 = C−1 ! · !L−1 ! V" . !5"

In deriving Eq. !5", we note that the capacitance matrix C
has a zero eigenvalue, since a constant shift in the voltages of
all networks does not modify charge distributions or field
profiles in the infinitely periodic structure. Also, three of the
eigenvalues of the inductance matrix L are infinite, since a
nonzero total current in the same direction in every unit cell
results in infinite vector potential. However, wave solutions
have zero total voltage and current in each unit cell, i.e.,
(iVi=0 and (iIiu=0. Thus, in Eq. !5" C−1 and L−1 can be
properly defined with nonsingular eigenvalues, within the
subspace of wave solutions, by first projecting out the eigen-
vectors associated with the zero or infinite eigenvalues of C

and L. To emphasize this, below, we refer to C−1 and L−1 as
S and U, respectively.

Equation !5" describes the dynamics of an effective field
V with N−1 independent components in an effective uni-
form medium characterized by the matrices S and U. Since S
and U have no wave vector dependency, the theory is local.
The components of V represent the internal degrees of free-
dom of the effective field. They are analogous to polarization
for Maxwellian fields. However, unlike polarizations, these
internal degrees of freedom are designable by geometry and
hence can exhibit much richer behaviors. Below, we will use
the theory #Eq. !5"$ to account for the details of the simula-
tion results shown in Figs. 1–3.

Case (1): Two-network crystal. For the structure in Fig. 1
!the dc conductivity behavior of such a two conductor geom-
etry has been studied, for example, in Ref. 16", the effective
field V has only one degree of freedom and the S matrix has
a form of

S12)− 1 1

1 − 1
* .

Since each network has fourfold rotational symmetry axes
along the x, y, and z directions that pass through the origin, it
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FIG. 1. !Color" Two-network structure. !a" A single cubic unit
cell of the structure is depicted. Each network, represented by dif-
ferent colors, consists of wires along the edges of a cube. The two
networks are displaced from one another by +3a /2 along the #111$
direction. !b" The band diagram is shown along high-symmetry k
points. The right inset shows the high-symmetry points in the first
Brillouin zone. The left inset shows the electric field profile on the
z=0 plane, for a mode at "=0.033!2#c /a", with its wave vector
along the #001$ direction. Here, c is the speed of light in vacuum.
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FIG. 2. !Color" N-network cubic structure, where N can be ar-
bitrarily large. Each network has metal wires along the x, y, and z
directions. For the ith network, these wires meet at !±xi , ±xi , ±xi" in
the cubic unit cell. Shown here is a five network example with xi’s
chosen to be 0, a /12, 3a /16, a /3, and a /2: !a" the unit cell and !b"
the band diagram.
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FIG. 3. !Color" Four-network fcc structure. !a" Unit cell; !b"
band diagram. Each network #inset of !b"$ is identical in shape and
is made by translating x-, y-, and z-directional wires on the edges of
a cube by ±!a /8"ŷ, ±!a /8"ẑ, and ±!a /8"x̂, respectively. These wires
are then connected by a small cube at each site of a face-centered-
cubic !fcc" lattice. The basis element is topologically identical to
Borromean rings !Ref. 29".
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FIG. 4. !Color" Detailed comparison of theory and simulations
for the four-network fcc system shown in Fig. 3. !a" Isofrequency
surfaces and contours of three low-frequency modes. The plot on
the right shows the contour on the kx=0 plane. Gray dashed lines
represent a square tangential to some of the contours. !b" Frequen-
cies of modes for k-vectors along a ka−kb line segment, where ka
= !2# /a" !0.0025, 0.016, 0.0175" and kb= !2# /a" !0.0225, 0,
0.0075". The lines are theory predictions and the circles are finite
difference time domain results. These k points are arbitrarily cho-
sen. The agreement between theory and simulation is, in fact, ex-
cellent for all k points.
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can be proved that Uiu,jv=Uij$uv. Therefore, U matrix is iso-
tropic with respect to propagation direction, and Eq. !5" pre-
dicts that the structure has a single low-frequency mode with
isotropic dispersion relation, consistent with simulations.

The two-network system thus supports an isotropic scalar
effective field. In using optical waves for communication,
polarization dependency due to the vector nature of electro-
magnetic fields is a major detriment. In connection with the
use of novel fiber structures to create scalar field in one
dimension,17 our work suggests a route toward completely
erasing polarization dependency in all three dimensions. In
particular, the field profile in a unit cell closely matches that
of those novel fiber structures.

Case (2): N-network cubic crystal. For the structure in
Fig. 2, since all networks share the same symmetry axes for
fourfold rotation, Uiu,jv=Uij$uv still holds, and the band
structure for this case of Fig. 2 is isotropic. However, these
modes are, in general, nondegenerate in spite of the cubic
symmetry of the structure. For the five-network structure
shown here, simulation indeed observes four nondegenerate
low-frequency bands.

In such structures, the number of bands in the low-
frequency regime is N−1. Hence, the density of states can be
greatly enhanced over very broad bandwidth when N is
large. This may have important consequences for radiation
and spontaneous emission control. In contrast, previous at-
tempts to control spontaneous emission involve either broad-
band suppression using photonic band gap18 or narrow-band
enhancement using microcavities.19 Also, with nonlinear ma-
terials introduced between the metal regions, these structures
may provide an experimental system to study interaction
properties of N-component fields, which is of interest in
modern field theory but until now has largely remained a
theoretical novelty.20 Finally, the three-network systems,
with two low-frequency modes, can be designed to function
as a transparent electrode that is important for light emitting
diodes and photovoltaic applications. In particular, by plac-
ing arrays of dipole antennas at the surface of the structure,
where the arms of the antennas are connected to different
networks, the coupling between external plane waves and the
internal modes can reach 100%.21

Case (3): Four-network fcc crystal. The structure in Fig. 3
has a pyritohedral !Th" symmetry and an fcc lattice. Based on
the symmetries, the S and U matrices become

S = S12,
− 3 1 1 1

1 − 3 1 1

1 1 − 3 1

1 1 1 − 3
- ,

U =,U11 U12 U13 U14

U12 U11 U14 U13

U13 U14 U11 U12

U14 U13 U12 U11

- ,

U12 = ,U1x,2x 0 0

0 U1y,2y 0

0 0 U1z,2z
- ,

U13 = ,U1z,2z 0 0

0 U1x,2x 0

0 0 U1y,2y
- ,

U14 = ,U1y,2y 0 0

0 U1z,2z 0

0 0 U1x,2x
- ,

U11 = − !U12 + U13 + U14" . !6"

The isofrequency surfaces in k space for the three modes are
the three separate ellipsoids related by rotation, having the
major axis in the x, y, and z directions, respectively #Fig.
4!a"$. These ellipsoids intersect at the #111$ direction where
the three modes become degenerate.

The band structure of this system is controlled by three
parameters S12U1x,2x, S12U1y,2y, and S12U1z,2z. These param-
eters can be directly obtained from electrostatic and magne-
tostatic solutions. Alternatively, these can also be numeri-
cally determined by calculating the frequencies of the three
modes at a single k point #e.g., !0,0 ,0.04# /a"$ where the
modes are nondegenerate. The full dispersion relation along
all directions can then be obtained using Eq. !5" and com-
pared to simulations. The excellent agreements between
theory and simulations #Fig. 4!b"$ provide a strong validation
of our effective field approach.

Finally, we note that the most general Maxwellian me-
dium has the following constituent relation of a bianisotropic
form:22

D" = %E" + &H" ,

B" = 'E" + (H" , !7"

where D" , B" , E" , and H" are the electric and magnetic flux
densities and electric and magnetic fields, respectively. % and
( are the electric permittivity and magnetic permeability ten-
sors, and & and ' are the tensors that describe magnetoelec-
tric effects. If none of the constituent tensors depend on the
wave vector k", the medium is defined as local. !Our defini-
tion here of a local Maxwellian medium is slightly more
general than typically used. In many published papers, the
magnetoelectric effect is instead incorporated as a first-order
nonlocal contribution to % and (, and a medium having mag-
netoelectric effect is therefore sometimes referred to as a
nonlocal medium.22,23 This difference in definition has no
consequence in our subsequent discussions."

For a local Maxwellian medium with the same spatial
symmetry as the structures shown in Figs. 1–3, one can
prove that &='=0 and both % and ( are scalar.22,23 Hence,
the medium supports either zero4 or two14 photonic bands at
the limit "→0, depending on the sign of %!""(!"". In the
latter case, the bands are doubly degenerate and isotropic,
i.e., "="!.k" . " and the isofrequency surface is spherical.14 In
contrast, the numbers of bands in the low-frequency limit, as
well as their detailed modal properties, prove that the struc-
tures in Figs. 1–3 cannot homogenize to any local Maxwell-
ian medium.
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It is certainly interesting to try to homogenize these struc-
tures to a nonlocal Maxwellian medium. Many metamateri-
als can be homogenized to Maxwellian media that exhibit
strong nonlocal effects in the low-frequency limit.24–28 How-
ever, the standard homogenization approaches2,23 assume the
existence of macroscopic electromagnetic fields that are uni-
form over the length scale of a unit cell. These approaches
are difficult to apply here because the averaging processes in
these approaches fundamentally remove all physics related to
the spatial variations of the fields at small length scales, and
hence tend to produce zero macroscopic fields for our struc-

tures. Instead, our local non-Maxwellian theory is appealing:
With the information about field variations at small length
scales captured as the internal degrees of freedom of the
effective fields, our theory directly highlights the unusual
symmetry properties that emerge from topological complexi-
ties.
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