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Abstract We investigate the connection between group veloc-

ity and rotation sensitivity in a number of resonant gyroscope

designs. Two key comparisons are made. First, we compare two

conventional sensors, namely a resonant fiber optic gyroscope

(RFOG) and an interferometric fiber optic gyroscope (FOG).

Second, we compare the RFOG to several recently proposed

coupled-resonator optical waveguide (CROW) gyroscopes. We

show that the relationship between loss and maximum rotation

sensitivity is the same for both conventional and CROW gy-

roscopes. Thus, coupling multiple resonators together cannot

enhance rotation sensitivity. While CROW gyroscopes offer the

potential for large group indices, this increase of group index

does not provide a corresponding increase in the maximum sen-

sitivity to rotation. For a given footprint and a given total loss,

the highest sensitivity is shown to be achieved either in a conven-

tional RFOG utilizing a single resonator, or a conventional FOG.

Unidirectional CROWs: Folded configuration, twisted config-

uration and planar configuration with alternating large and

small rings.
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1. Introduction

A lot of progress has been made in recent years towards
the generation of slow light using various mechanisms in
different kinds of physical structures, including fiber Bragg
gratings [1], coupled resonators [2–4], photonic-bandgap
planar structures [5], Bragg fibers [6], and stimulated Bril-
louin scattering in optical fibers [7]. Because the sensitivity
of many of these structures to external parameters (e.g., tem-
perature or strain) is generally proportional to the reciprocal
of the group velocity of the light, this new capability offers
great promises for developing sensors far more sensitive
than conventional optical sensors. As a result, an increasing
number of slow-light sensor studies have appeared in print.
However, there is one parameter that should be treated very
cautiously in the context of slow-light sensing, and that is

rotation rate. Several recent publications have described var-
ious gyroscope schemes utilizing slow light to purportedly
enhance the sensitivity to small rotation rates, but further
analysis of each of these schemes has revealed that there is
no slow-light enhancement. In [8], a standard Sagnac-based
fiber optic gyroscope (FOG) was described in which slow
light was implemented to improve the sensitivity. Later pub-
lications [9, 10] pointed out that this scheme is flawed, as
was expected from the well-known pioneering publication
of Arditty and Lefèvre [11], who elegantly demonstrated
using relativistic arguments that the sensitivity of a Sagnac-
based gyro is independent of the index of the medium in
which light travels.

More recently, a pair of papers by Matsko et al. [12,13]
investigated the possibility of slow-light enhancement in
an interferometric gyroscope with side-coupled high-Q res-
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Figure 1 Several proposed slow-light-enhanced gyroscope setups.

onators (Fig. 1a). In the second of these papers, the authors
cleared up some errors in the first paper and arrived at two
important conclusions. First, the apparent dependence of
the group index on the rotation sensitivity is coinciden-
tal, not fundamental. Second, rotation sensitivity cannot
be enhanced by replacing a single side-coupled resonator
of area A with N smaller resonators (N = 10 in Fig. 1a),
each having an area A/N . Shahriar [10] pointed out that
in Matsko’s system the important physical quantity is the
resonator finesse, not the group index.
Two years later, another publication by Scheuer et al.

[14] claimed enhanced sensitivity as a result of the use of
slow light in high-finesse coupled resonator optical waveg-
uides (CROW) that are now coupled to each other, and
arranged in the form a Sagnac loop (Fig. 1b). We have
recently provided physical and mathematical arguments
demonstrating that for equal footprint and total loss, this
gyroscope is not any more sensitive than a conventional
FOG, and that the reduced group velocity of light traveling
through the CROW is only coincidentally related to its sen-
sitivity [15]. In this configuration, as in the gyro considered
by Matsko, the resonator finesse is the important factor, not
the group index.
A more recent publication by Steinberg et al. [16]

describes a different CROW gyroscope in which the res-
onators are not arranged in a Sagnac loop but in a straight
line, as shown in Fig. 1c. The authors observed that this
device exhibits a rotation-induced bandgap in its transmis-
sion, resulting in a transmitted power that is asymptotically
a decaying exponential function of rotation rate. While this
effect is novel, it has little bearing on the gyroscope’s maxi-
mum rotation sensitivity, since the exponential dependence
of transmitted power on rotation rate only holds when the
power transmission is very small. Again, for equal loss
and area, this CROW gyro has no better sensitivity than
an RFOG.
Another recent series of publications by Peng et al.

[17,18] point out that by reversing the direction of propaga-
tion of light in adjacent rings, so that now light propagates
in the same direction in all rings (see Fig. 1d), the sensi-

tivity can be further enhanced. This argument is correct.
However, as we will show, even when taking this enhance-
ment into account, this unidirectional CROW gyro still does
not perform any better than an RFOG once loss is taken
into account.
All of these recent proposals share a common char-

acteristic: the slow light is due to waveguide properties,
not material properties. It has been conclusively estab-
lished [10, 11, 17] that slow light arising from material
properties (i.e., material dispersion) cannot enhance the
rotation sensitivity of an optical gyroscope. Consequently,
slow-light enhancement of rotation sensitivity, if any, must
be due to waveguide properties only, not the material group
or phase indices. Thus, without any loss of generality, we
restrict our analysis in this paper to gyroscopes made from
nondispersive materials.
While slow light due to material properties cannot en-

hance the sensitivity of an optical gyroscope, CROW gy-
roscopes with low group velocity also have good rotation
sensitivity [14, 16–18]. In a CROW, light circulates around
each individual high-Q resonator many times before mov-
ing on to an adjacent resonator, so the apparent group ve-
locity is small if the coupling between resonators is weak.
The rotation-induced Sagnac phase shift is then enhanced,
since a signal circulates many times around each resonator.
Thus, weak coupling gives rise to both high rotation sensi-
tivity and low group velocity in CROWs. However, we shall
show that loss limits the maximum sensitivity of a CROW
gyroscope, and CROW gyroscope cannot outperform a con-
ventional resonant gyroscope with the same footprint and
loss. Again, group velocity is only coincidental, and does
not affect the overall sensitivity.
The main purpose of this article is to review these vari-

ous coupled-resonator gyroscope schemes and bring clar-
ity to the misunderstandings associated with them in the
literature by going back to basic principles. First, we com-
pare resonant and interferometric fiber gyroscopes. Next,
we consider non-fiber resonant gyroscopes, which may of-
fer the possibility of high sensitivity in a small footprint.
We then investigate whether coupled-resonant gyroscopes
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offer a sensitivity enhancement over conventional single-
resonator configurations. To do so, we take the intuitive
and tutorial approach of comparing a conventional resonant
gyroscope to increasingly complex CROW gyros, begin-
ning with a simple conventional resonant gyro, then moving
on to two-ring coupled resonant gyros. These gyroscopes
are all simple enough to be modeled with analytical ex-
pressions. We then develop arguments for CROW gyros
utilizing an arbitrarily large number of rings. Finally, we ex-
tend this discussion to Sagnac-based CROW gyros, which
offer the additional unrelated advantage of reciprocity.

This study shows unambiguously that there is no benefit
to coupling several resonators together in a gyroscope: for
equal footprint and waveguide loss, CROW gyros never ex-
ceed the sensitivity of a simple resonant gyro, which is the
CROW gyro with N = 1. This is because loss ultimately
limits the maximum sensitivity of all passive resonant opti-
cal gyroscopes, whether they consist of a single resonator
or multiple resonators coupled together. Since coupling
multiple resonators together does not offer the potential for
sensitivity enhancement, it is better to instead use a single
resonator with as little loss as possible. While compact
non-fiber gyroscopes cannot currently outperform a con-
ventional RFOG, future improvements in high-Q optical
resonators may make small resonant gyroscopes with high
rotation sensitivity possible.

2. Gyroscope classification

Although all the optical gyroscopes considered in this work
are based on the same Sagnac effect, they differ markedly
first in the role optical resonances play in their sensing
principle, and second in the type of optical waveguide they
use. Since these differences have a major impact on per-
formance, for fair comparison it is important to classify
gyroscopes in a manner that recognizes these distinctions.
For the purpose of this work, we therefore divide optical
gyroscopes in three categories: (1) non-resonant optical
gyroscopes, of which the only representative is the FOG;
(2) resonant optical gyroscopes (ROGs), defined as any
gyroscope utilizing a single resonant loop, such as a reso-
nant fiber optic gyroscope (RFOG); and (3) gyros utilizing
multiple coupled resonant optical waveguides (CROWs),
such as the gyros of Fig. 1.
It is useful to further divide CROW gyros into two sub-

classes: bidirectional and unidirectional. In bidirectional
CROW gyros (for example, the configuration in Figs. 1b
and c), a clockwise mode in one resonator couples to a
counterclockwise mode in its neighbor, and vice versa. In
unidirectional CROW gyros (for example, the configuration
in Fig. 1d), light travels in the same direction (e.g., clock-
wise) in all resonators. Unidirectional CROWs satisfy the
so-called “direction requirement” discussed by Peng [17].
In each of the three gyroscope categories, the waveg-

uide may be provided by one of several technologies, for
example optical fiber [19], microspheres [12], or photonic-
crystal waveguides [20]. These last two technologies have

several key impacts. First, because these waveguides can
be made with considerably tighter bend radii than a fiber
without suffering dominant bending loss (e.g., 100 μm in
a microsphere versus ∼ 1 cm in a fiber), a gyro utilizing
such a waveguide can have a much smaller footprint than
its fiber counterpart. For applications requiring extremely
small gyroscopes (∼mm3), these technologies may consti-
tute the only available solution. Second, these waveguides
can be fabricated in materials exhibiting a much lower loss
than silica, e.g., CaF2 [21]. Therefore they can have even
greater Q’s than a fiber-based gyro, and hence, for equal
footprint, a higher sensitivity. Importantly, it is not currently
possible to make optical fibers, and thus FOGs, from these
ultra-low-loss materials. Likewise, it is not currently possi-
ble to make large (∼ 10 cm size), high-Q resonators from
these ultra-low-loss materials. We must keep in mind these
size and loss factors when comparing these various types
of gyroscopes.
Based on the foregoing, in this review we make two

broad comparisons. In the first one, we compare resonant
and non-resonant gyroscopes, assuming that they are both
made of the same low-loss 1.5- μm fiber. In the second
comparison, we investigate whether coupled-resonant gyros
offer the potential for slow-light sensitivity enhancement
over conventional resonant gyroscopes, for any material
loss and footprint. If such enhancement were possible, this
would allow for ultra-sensitive and compact gyros – the
best of all worlds.

3. FOGs

The basic configuration of a standard interferometric fiber-
optic gyroscope is shown in Fig. 2a. The sensing portion
consists of a loop of fiber of length L typically coiled in
N turns onto a mandrel of diameter R. This loop is closed
upon itself with a 3-dB coupler. A light source sends an in-
put signal of power P0 at frequency ω to the coupler, which
divides it equally into a clockwise and a counter-clockwise
signal that counter-propagate through the coil. When the
coil is not rotating and in the absence of nonreciprocal ef-
fects, the two signals travel the same distance at exactly the
same velocity, and they recombine in phase at the power
detector, which is at the reciprocal port [22]. When the coil
is rotated about its axis of symmetry, when viewed from a
non-rotating reference frame the two signals travel different
distances (due to the moving coupler) and at different veloc-
ities (due to the Fresnel drag on light in a moving material).
This results in a phase shift between the two signals, pro-
portional to the rotation rate. This is known as the Sagnac
effect. After propagating through the coil, the signals are re-
combined at the coupler, and this Sagnac phase shift alters
the power returning from the interferometer. This phase
difference is given by [22] Δφ = 4πNR2ωΩ/c2. It de-
pends on the area of the coil, the number of turns, and the
rotation rate Ω, but it is independent of refractive index.
The photodetector measures the power P resulting from the
interference of the two signals, which is a function of the

© 2009 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim www.lpr-journal.org



Laser & Photon. Rev. 3, No. 5 (2009) 455

Figure 2 a) Diagram of a basic FOG. b) Rotation response of the FOG.

Sagnac-induced phase differenceΔφ. The response of the
FOG is that of a two-wave interferometer, namely, a raised
cosine (Fig. 2b). A phase shifter placed asymmetrically in
the loop adds a nonreciprocal differential phase bias of
π/4 between the two signals, which makes the response
depend linearly on small rotation rates and maximizes the
sensitivity. If the coil fiber loss coefficient is α so that the
power attenuation through the coil is exp(−αL), then the
sensitivity to small rotations is:

S =
1
P0

dP

dΩ
=

2πNR2ω

c2
e−2πRNα . (1)

Eq. (1) states that for a given fiber length, the sensitivity is
maximum for N = 1. In practice, however, a single-turn
gyro would require an impractically large loop radius to
exhibit a high sensitivity (for example, the ability to detect
1/1000th of Earth rate). In practical FOGs, a multi-turn coil
is used to keep the sensitivity high while maintaining a
reasonable footprint. For a more in-depth look at the FOG,
refer to [19].

4. Resonant optical gyroscopes

As defined in Sect. 2, resonant optical gyroscopes include
any gyroscope utilizing a single resonant circuit, such as a
loop. They include of course the historic RFOG [23], whose
waveguide is made of optical fiber, but also gyros utilizing
a microsphere [12] or a photonic-crystal circuit [20] as a
waveguide. Since all these sensors are based on the same
broad principle as the RFOG, in this section we concern
ourselves only with the latter. Several configurations and
signal-processing methods have been tested for the RFOG
(see [24]), but the fundamental physics of all configurations
is essentially the same. To understand their basic physics,
we therefore consider the simpler configuration shown in
Fig. 3a. A fiber ring resonator consisting of N turns of ra-
dius R, effective index n and loss coefficient α is coupled
to a single input/output fiber by a coupler with a power
coupling ratio κ. A laser outputs a power P0 at frequency

ω into the waveguide. When ω is matched to a resonant fre-
quency of the coil, a significant portion of the input power
is coupled into the coil, where it is dissipated by the coil
loss. When the coil is rotated, the Sagnac effect changes the
phase accumulated by the signal as it propagates around the
coil by 2πNR2ωΩ/c2, which shifts the resonant frequency
of the coil. This shift results in a rotation-induced change in
the power P measured at the output of the resonator. In this
configuration, the source frequency is held constant, and
the rotation rate is inferred from the change in transmitted
power. The transmission function of this RFOG is given by:

T =
P

P0
= 1− A

1 + B sin2(φ/2)
(2)

where

A = κ
1− e−2πRNα(

1− e−πRNα
√

1− κ
)2 , (3)

B = 4
e−πRNα

√
1− κ(

1− e−πRNα
√

1− κ
)2 , (4)

φ = 2πRNnω/c + 2πR2NωΩ/c2 . (5)

Here, φ is the phase that a signal accumulates in one round-
trip through the N -turn coil, B is the coefficient of finesse
of the RFOG, and A is the fraction of incident power that is
absorbed by the coil on resonance. The transmission spec-
trum of this RFOG consists of a series of narrow resonances
where transmission is low, corresponding to frequencies
where φ = 2πm for integerm (see Fig. 3b). Eq. (2) shows
that the transmission of a given RFOG depends only on
φ, which makes it easy to see the connection between the
rotation dependence and the frequency dependence of the
transmission function. The response to a rotation-induced
change in phase is exactly the same as the response to a
change in phase caused by a change in the source frequency.
When the RFOG is rotated, the transmission spectrum is
simply shifted by Δω = RωΩ/nc. This shift is indepen-
dent of N and can be easily derived from Eq. (5).
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Figure 3 a) Diagram of a basic RFOG. b) Transmission function of the RFOG.

Several things must be done to optimize the sensitivity
of a resonant gyroscope. First, the loss must be minimized –
a smaller loss allows for a higher finesse and thus a greater
sensitivity. Second, the resonator must be biased for max-
imum response. This means that in the non-rotating gyro,
φ should be set to the steepest point of the transmission
spectrum (dashed line in Fig. 3b), so that a rotation-induced
change in φ results in the largest possible change in de-
tected power. Mathematically, this phase bias condition is
obtained by selecting the value of φ that maximizes the sen-

sitivity to small rotations S =
(

dT
dΩ

)
Ω→0

= ∂T
∂φ

(
∂φ
∂Ω

)
Ω→0

.

Since dφ/dΩ is constant, one simply needs to maximize
dT/dφ. From Eq. (2), the optimum bias phase is then (mod-
ulo 2π):

φbias = cos−1

(√
4 + 4B + 9B2 − 2−B

2B

)
. (6)

Finally, the coupling ratio κ must be optimized for max-
imum sensitivity. Changing κ changes the shape of the
resonances. It can be shown that the value of κ that gives
the steepest slope at the phase bias point is κopt ≈ πNRα.
This approximation is accurate when πNRα is small (i.e.,
small round-trip loss). The optimum coupling ratio is there-
fore half the critical coupling ratio (the coupling that maxi-
mizes the power circulating in the resonator on resonance).
The rotation response of this resonant gyro is qualita-

tively very similar to the rotation-induced bandgap [16]
observed in a gyro consisting of a linear CROW coupled
to separate input and output waveguides (see Fig. 1c). In
the resonant gyro considered here, the transmission is high
except around the resonances, which occur when the round-
trip phase is a multiple of 2π. In the linear CROW gyro,
transmission through the entire system is low, except near
resonances. While the exact functional form of the trans-
mission of an RFOG and a linear CROW differ, their basic
physics is the same. Both the high transmission of the lin-
ear CROW near resonance and the low transmission of
the RFOG near resonance are manifestations of the same
well-known physical effect; on resonance, a significant frac-
tion of power is transferred from the input waveguide into
the resonator, so the circulating power in the resonator is
large. In the RFOG, this circulating power is dissipated
by material loss, resulting in a transmission minimum on

resonance. In contrast, in the linear CROW gyro the circu-
lating power is transferred from one ring to the next, until
the power circulating in the final ring is transferred to the
output waveguide. Hence, the transmission is maximum
on resonance.

5. Comparison between FOG and RFOGs

Since the fiber loss is so small, in a FOG one can increase
the number of turns to a very large number before the
signal attenuation starts reducing the sensitivity. To prove
this point, Fig. 4 shows the dependence of the maximum
sensitivity of a FOG on the number of turns computed
using Eq. (1). We considered a 5-cm radius FOG made
from a fiber with a loss of 0.2 dB/km and operated with
a 1550-nm source. As N is increased from small values,
the sensitivity increases linearly. It is not until N is very
large (69000 in our numerical example) that the loss of
the coil becomes so large (73%) that adding more loops
decreases the sensitivity. The FOG’s maximum sensitivity
Smax,FOG is obtained by taking the derivative of S (Eq. (1))
with respect to N , which also yields the optimum number
of loops in the coil Nopt,FOG:

Nopt,FOG =
1

2πRα
, (7)

Figure 4 Maximum sensitivity of an N -loop FOG.

© 2009 by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim www.lpr-journal.org



Laser & Photon. Rev. 3, No. 5 (2009) 457

Smax,FOG =
1
e
· Rω

αc2
. (8)

The same argument does not apply to an RFOG. This
can be understood by comparing an RFOG with a single
loop to an RFOG with an N -turn coil. If we assume that
the total loss in the coil is small, (so that exp(−NπRα) ≈
1−NπRα) the comparison is straightforward. Increasing
the number of turns then multiplies the total round-trip loss
by a factor of approximately N , which in turn multiplies
the optimum value of κ by this same factor. This divides the
finesse, and hence the maximum slope of the transmission
curve, by a factor of approximately N . On the other hand,
for a given rotation rate the Sagnac phase shift is also
increasedN -fold. These two effects very nearly cancel each
other, and there is no net increase in sensitivity. Physically,
the N -turn RFOG has an effective area that is N times
larger than the single-loop RFOG. But a signal in the N -
loop RFOG makes 1/N times fewer round-trips through
the coil than a signal in the single-loop RFOG. The rotation
sensitivity for both devices scales like the effective coil
area times the number of round-trips, and this product is
the same for both gyros.

This argument holds until N is so large that the loss in
a single pass through the coil is significant and the approxi-
mation exp(−NπRα) ≈ 1−NπRα is no longer valid. A
more careful analysis (valid for all values of N) shows that
in fact, the increase in loss wins over the increased Sagnac
phase for all values of N and the sensitivity actually de-
creases (albeit very slowly for small N) with increasing N .
To wit: we show on Fig. 5 the exact calculated dependence
of the sensitivity of an RFOG on N . For small values of
N , it slowly degrades as N increases. Once N is so large
(∼ 20000 in our example) that the loss of the coil is signifi-
cant (∼ 25%), the sensitivity decreases rapidly. Such long
coils simply have too much loss to make good resonant
gyros. The maximum sensitivity of an RFOG Smax,RFOG

is therefore achieved whenN = 1. Eq. (9) gives an approxi-
mate expression (valid when πRα is small) for Smax,RFOG,

Figure 5 Maximum sensitivity of an N -loop RFOG.

which occurs when φ = φbias and κ = πRα:

Smax,RFOG =
4

3
√

3
· Rω

αc2
. (9)

Comparison between Eq. (9) and Eq. (8) shows that the
maximum possible sensitivity of an RFOG is 4e/33/2 ≈
2.09 times greater than that of an equivalent FOG. It is
not surprising that the maximum possible sensitivities of
the RFOG and FOG are so similar; both rely on the same
Sagnac effect, and both suffer the same material loss per
unit length. The slight superiority of the RFOG is in fact due
mostly to an incidental difference in the signal processing
used in these two gyros. If a second detector was placed
at the nonreciprocal port of the FOG and the difference
between the powers detected at the two ports was measured,
the sensitivity of the FOG would be doubled. This is not
done in practice because the increase in sensitivity is not
worth the loss of reciprocity arising from the use of the
nonreciprocal port.

It is important to be careful when interpreting the above
analysis of the multi-loop RFOG. While absent coupler
loss, and for a given radius and waveguide loss, the RFOG
has its highest sensitivity with only one loop (N = 1), a
single-loop RFOG may not be the best configuration under
all practical experimental conditions. If the coupler has
significantly more loss than a single loop of fiber, then
a signal propagating through an N -turn coil achieves the
same Sagnac phase with less loss than a signal propagating
N times through a single-loop coil does. In the single-loop
coil the signal incurs the coupler loss with each pass, so the
effective loss per unit length is greater. Consequently, with
a lossy coupler the optimum sensitivity is achieved for a
value of N greater than 1. Although coupler loss changes
the optimum value of N in an RFOG, it does not change
the main advantage of an RFOG over an FOG. Even when
realistic coupler loss is accounted for, the sensitivity of an
RFOG is at best ∼ 2.09 times greater than that of a FOG
with the same loss and footprint.

The bottom line is that the fair metric from a practical
standpoint is to compare an N -turn FOG of radius R with
a one-turn RFOG of same radius (in which κ is optimized).
Although the RFOG requires less fiber and has a greater
maximum sensitivity, the FOG is a better sensor in most
practical applications. This is because the very challenging
stabilization requirements of the RFOG, combined with the
low cost of fiber, outweigh the slightly higher sensitivity of
the RFOG. Rather than tackling the difficult task of stabi-
lizing an RFOG, commercial gyro designers instead opted
long ago to increase the sensitivity of the FOG by using
a long fiber in a multi-turn coil. Increasing the number of
turns does not increase the footprint of the gyro, which
is primarily determined by the coil radius. Other compo-
nents (couplers, modulator, source, polarizer, etc.) all take
space, so to first order they impose the thickness of the
gyro package. Given this second constraint, piling up more
fiber loops on top of the first loop takes up only a small
additional volume. The cost of fiber is also relatively low,
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so adding fiber has little cost implication. The superiority
of the FOG over the RFOG for practical applications is best
illustrated by the fact that while RFOGs have never been
commercialized, hundreds of thousands of FOGs have been
sold to date.

6. Two-ring bidirectional CROW gyro

In our analysis of the RFOG above, we saw that the RFOG
is a sensitive and compact gyroscope. This high sensitivity
raises a natural question: If a single resonator yields such a
good sensitivity, can the maximum sensitivity be increased
by adding more resonators? To answer this question, in
this section we look first at the simpler case of a CROW
gyro consisting of two coupled resonators and a single
input/output waveguide (see Fig. 6). To keep our analysis
straightforward, and without loss of generality, we make the
simplifying assumptions that the couplers are all lossless
and have the same coupling ratio κ, and that both rings
have the same radius R.
When this CROW gyro is rotated, the signal undergoes

a Sagnac phase shift in two rings instead of one. When the
rotation is in the particular direction shown in Fig. 6, i.e.,
in the direction light circulates around the first ring (coun-
terclockwise), the signal picks up a positive Sagnac phase
shift every time it goes around the first ring. But every time
the signal goes around the second ring, where it travels in
the opposite direction (clockwise), it picks up a negative
Sagnac phase shift. Because the two rings have identical
radii and are subjected to the same rotation rate, these two
contributions to the Sagnac phase shift have the exact same
magnitude but opposite signs. Furthermore, we expect the
signal to resonate approximately the same number of times
around the first and around the second ring. The reason
is as follows. First, the first ring contains two couplers,
whereas the second ring contains only one. Consequently,
the first ring has a higher round-trip loss, and this effect
alone causes the signal to resonate fewer times around it
than around the second ring. Second, the signal entering
the second ring has already resonated around the first ring,
and it is therefore weaker. This effect causes the signal to

Figure 6 A two-ring bidirectional coupled-resonator gyro.

resonate fewer times around the second ring. Although one
cannot conclude qualitatively without a detailed model as
to which of these two effects dominates, we intuitively ex-
pect that the signal travels about the same number of times
around each of ring. Therefore, we expect that it accumu-
lates about the same total Sagnac phase shift around both
rings, except that one is positive, and the other is negative.
To first order, the two Sagnac contributions cancel out. This
intuitive argument leads to the anticipated conclusion that
the two-ring bidirectional CROW not only does not per-
form better than the RFOG, but that it has a much poorer
sensitivity than an RFOG.
To confirm this important prediction, we carried out

a detailed numerical simulation of the sensitivity of the
two-ring CROW gyro of Fig. 6. The total complex phase
shift experienced by the signal as it travels once around the
first ring is given by:

φ1 = 2nπRω/c + 2πR2ωΩ/c2 + iπRα . (10)

The first term is the propagation-induced phase, the second
term is the rotation-induced Sagnac phase shift, and the
third term accounts for the waveguide loss. Similarly, the
total complex phase shift experienced by the signal as it
travels once around the second ring is:

φ2 = 2nπRω/c− 2πR2ωΩ/c2 + iπRα . (11)

Because the rings have identical radii, the first and third
term in Eq. (11) are the same as in Eq. (10). But because
light travels in opposite direction in the two rings, the sec-
ond (Sagnac) term has the opposite sign. It is straightfor-
ward to derive an analytical expression for the electric field
at the output of this two-ring CROW gyro as a function of
these two phases φ1 and φ2:

Et

E0
= ei(φ1+φ2)+(1−eiφ1 )

√
1−κ−eiφ2 (1−κ)

1+(ei(φ1+φ2)−eiφ2 )
√

1−κ−eiφ1 (1−κ)
. (12)

The rotation-dependent transmitted power P measured
by the detector is proportional to |Et|2. Since the Sagnac
components in φ1 and φ2 have opposite signs and equal
magnitude (see Eqs. (10) and (11)), in Eq. (12) φ1 + φ2 is
rotation-independent. Therefore the terms in φ1+φ2 do not
contribute at all to the rotation sensitivity. It is unfortunately
not straightforward to manipulate Eq. (12) analytically to
show that this phase cancellation results in a significant
reduction in rotation sensitivity compared to a one-ring
CROW gyro (i.e., and RFOG). However, in the limit of
small κ prevailing in the high-finesse resonators of most
interest, in Eq. (12) (1−κ)and

√
1− κ both approach unity,

and the output field is symmetric in φ1 and φ2: as hinted
in our physical argument, the two rings contribute about
equally to the output of this gyro. Since their Sagnac com-
ponents have opposite signs, we expect that this symmetry
will lead to a near cancellation of the two Sagnac phase
shifts, and hence of the rotation sensitivity.
To confirm this result in the more general case of an

arbitrary value of κ, we resorted to exploiting Eq. (12) nu-
merically. To maximize the sensitivity of this CROW gyro-
scope, it is important to find the optimum phase bias and
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Figure 7 Unidirectional CROWs. a) Folded

configuration. For clarity, the second ring is

not drawn to scale. b) Twisted configuration.

c) Planar configuration with alternating large

and small rings.

coupling ratio, just as in the case of the RFOG. To this end,
we proceeded in essentially the same way as for the RFOG.
The propagation-induced phase φprop = 2nπRω/c was bi-
ased by adjusting the source frequency. For each test value
of φprop, we calculated the sensitivity to small rotations
for a large number of coupling ratios κ until we identified
the combination (κ, φprop) that gave the maximum sensi-
tivity. As was expected both intuitively and from the form
of Eq. (12), we found that even after optimizing both the
phase bias and coupling ratio, the sensitivity is very poor.
Specifically, for the particular sensor parameters used ear-
lier (R = 5 cm, λ = 1550 nm, and 0.2 dB/km of fiber loss),
the sensitivity is less than 1% of the RFOG’s sensitivity.
As expected on physical grounds, this bidirectional sensor
performs very poorly, and it does so because the Sagnac
phase accumulated in the two rings almost exactly cancel
each other.
As an aside, it is interesting to note that if the size of

one of the rings is slightly increased or decreased, and the
same bias and coupling optimization is applied again, the
sensitivity increases dramatically. The reason is of course
that when the rings are no longer identical, the Sagnac
phases in the two rings no longer have exactly the same
amplitude, and they no longer cancel as strongly. However,
the sensitivity still remains below that of an optimized
RFOG of same dimension and loss.

7. Two-ring unidirectional CROW gyro

The result of the previous section clearly hints that if in a
two-ring CROW gyro the light could be forced to travel
around both rings in the same direction, the gyro sensitivity
would be significantly increased. This direction reversal
can be implemented in a number of simple schemes, illus-
trated in Fig. 7, which we refer to as unidirectional. The
simplest one is to fold the second ring on top of the first
ring (see Fig. 7a). In this folded configuration, the Sagnac
phase shifts in the two rings now have the same sign. A sec-
ond scheme consists of twisting the first ring (see Fig. 7b).
A third one is inserting a ring of negligibly small radius
between adjacent rings, as shown in Fig. 7c. The smaller
ring acts to reverse the direction of travel in the larger rings,
without adding any new Sagnac phase shift since its area
is negligible. This last configuration has the significant

advantage that it can be fabricated using the same technol-
ogy as other planar-waveguide CROWs. If need be, all of
these configurations can be extended to an arbitrary number
of rings.
These unidirectional two-ring CROW are expected to

have a much greater sensitivity than the bidirectional con-
figuration, since the effects of the Sagnac phase shifts in
the two ring resonators now reinforce one another instead
of cancelling out. To find the exact degree to which the
sensitivity is improved over the bidirectional case, we nu-
merically modeled the gyroscope of Fig. 7a using the same
methods as in the previous section. Analytically, the output
field of this gyro has the same dependence on the round-
trip phases φ1 and φ2 as for the bidirectional configuration
(Eq. (12)). The only difference with the bidirectional con-
figuration is that the Sagnac phase shift in the two rings
now have the same sign, hence the two round-trip phases
are now equal:

φ1 = φ2 = 2nπRω/c + 2πR2ωΩ/c2 + iπRα . (13)

Since the signals now circulate the same direction in both
rings, Eq. (13) holds even when the gyro is rotating, and
the transmission now depends on only one phase variable,
namely φring = φ1 = φ2. The output field (Eq. (12)) can
therefore be simplified to:

Et

E0
=

√
1−κ+e2iφring+eiφring (κ−1−√1−κ)

1+e2iφring
√

1−κ+eiφring (κ−1−√1−κ)
. (14)

It is interesting to compare the transmission spectrum of
this two-ring CROW gyro to that of the RFOG. The RFOG
transmission spectrum consists of a series of periodic res-
onant dips occurring wherever the total round-trip phase
is a multiple of 2π. In the two-ring unidirectional CROW
gyro, the transmission spectrum has the same periodic-
ity in φring, but the resonances come in pairs, with each
pair centered on φring = 2πm. Fig. 8 illustrates this be-
havior with the transmission spectrum for the two-ring
unidirectional CROW gyro calculated from Eq. (14) for
α = 0.03m−1, λ = 1550 nm, and κ = 0.038. The spacing
and sharpness of these resonances depend on the ring loss
and coupling ratio.

Using Eq. (14), we numerically optimized the coupling
and bias frequency for this resonant gyro using the same
method as for the bidirectional gyro. The optimum cou-
pling ratio is κopt ≈ 2πRα. As expected, the sensitivity
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Figure 8 Transmission spectrum of a two-ring unidirectional

CROW gyro.

of the optimized two-ring unidirectional gyro of Fig. 7a is
much higher than that of the corresponding bidirectional
gyro. The optimized two-ring unidirectional gyro is only
very slightly (< 0.01%) less sensitive than an RFOG with
equal material loss and footprint. The main conclusion is
that while the unidirectional two-ring CROW gyro per-
forms much better than the bidirectional configuration, it
is still not more sensitive than an RFOG. Fig. 9 shows the
transmission spectrum of the optimized RFOG and a single
resonance of the optimized two-ring bidirectional CROW,
with the same ring radius and loss. The two plots are nearly
identical except for the bias phase.
A previous analysis of unidirectional CROW gyros by

Peng et al. [17] concluded that a unidirectional CROW
gyro could have significantly greater rotation sensitivity
than a conventional optical gyro. However, their analysis
was restricted to lossless waveguides ,and considered only
the phase sensitivity of the unidirectional CROW gyro-
scope, while ignoring the effect of signal attenuation on
sensitivity. While the authors correctly pointed out that in
a unidirectional CROW the total Sagnac phase shift of the

output signal ΔΦ is proportional to the group delay τg (see
Fig. 10b), this relationship does not mean that the rotation
sensitivity is enhanced. Our own analysis of CROWs made
from lossy waveguides has shown that any signal that ac-
cumulates a large group delay in the unidirectional CROW
also experiences significant attenuation, which degrades
the rotation sensitivity.
Furthermore, we note that the relationship between

Sagnac phase shift and group delay is not unique to uni-
directional CROWs. To illustrate this point, we compare
a unidirectional CROW (see Fig. 10b) to the N -loop fiber
coil from a FOG (see Fig. 10a), both of radius R. Straight-
forward manipulation of Peng’s result (Eq. (22) in [17])
shows that for the unidirectional CROW, the total rotation-
induced phase shift in the output signal is related to the
group delay by:

ΔΦ =
τgRωΩ

nc
. (15)

For a coiled fiber, the group delay is τg = 2πRNn/c,
and the rotation-induced phase shift is ΔΦ =
2πR2NΩω/c2 [22]. Combining these last two expres-
sions, we find that Eq. (15), originally derived for CROWs,
is also satisfied by the fiber coil from a FOG.

8. General comments and predictions

Every resonant gyroscope that we have looked at so far has
shared a common characteristic: adding resonators does not
increase the sensitivity. Adding loops to the resonant coil
in the RFOG only decreased the sensitivity. Similarly, in
Sects. 6 and 7 we showed that even after optimization, a two-
ring CROW gyro has a lower sensitivity than a single-loop
RFOG. Other authors [10, 13, 15] have arrived at similar
conclusions about other resonant gyros. A simple physical
argument gives a good intuition as to why all other coupled-
resonator gyroscopes should have the same performance
limitation as the structures mentioned above. Consider the
Sagnac effect on a signal propagating once around a cir-
cle of radius R in a material with loss coefficient α. After

Figure 9 a) Transmission

spectrum of optimized RFOG.

b) Transmission spectrum of

optimized two-ring unidirec-

tional CROW gyro.
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Figure 10 a) The fiber coil from a FOG. b) A unidirectional

CROW. Both satisfy Eq. (15).

traveling once around this circular path, the signal has accu-
mulated a Sagnac phase shift φs = ±2πωR2Ω/c2, and the
amplitude is multiplied by exp(−πRα). The key point is
that regardless of the gyro configuration, Sagnac phase and
attenuation always accumulate in the same fixed ratio: in
order to accumulate a Sagnac phase of φs, the signal must
suffer an attenuation of exp(−|φs|αc2/2ωRΩ).
This connection between rotation-induced phase and

loss is important because every optical gyroscope, regard-
less of configuration and signal processing method, is re-
sponsive to the same Sagnac phase shift. Hence, in order
to obtain maximum sensitivity, the optimization of every
optical gyroscope is done in essentially the same way. All
gyros are optimized when the marginal sensitivity enhance-
ment of an increase in Sagnac phase is exactly balanced
by the marginal increase in loss (and decrease in sensitiv-
ity) that such an increase in Sagnac phase would require.
Since the amount of loss associated with a given Sagnac
phase shift depends only on the radius and loss of the path
traversed by the signal, all gyros with the same resonator
radius and material loss will have similar sensitivity after
they are optimized.

9. N -ring CROW gyroscopes

We now verify the general predictions made in Sects. 6
and 7 for two-ring CROW gyros by numerically model-
ing coupled-resonator gyroscopes with N > 2. The alge-
braic methods we have used so far become increasingly
cumbersome as N is increased, so to analyze coupled-
resonator structures with arbitrary N we use the more gen-
eral transfer-matrix method [3,4,14]. The transfer-matrix
method keeps track of the loss, propagation-induced phase,
and rotation-induced phase shift [25] that a signal accu-
mulates as it propagates from one coupler to the next. The
E-field transmission through each coupler and waveguide
section of the CROW is represented by a matrix, which
depends on the CROW parameters and the rotation rate.
The total matrix of the CROWMtot is calculated by taking

Figure 11 a) Fields used in the transfer-matrix method for a

CROW with two leads. b) Fields for a CROW with a single lead.

the product of all the individual component matrices. This
total matrix relates the incoming and outgoing fields at one
end of the CROW to the incoming and outgoing fields at
the other end of the CROW (see Fig. 11a):(

a2

b2

)
= Mtot

(
a1

b1

)
. (16)

Once the total transfer matrix has been calculated, it is
straightforward to apply appropriate boundary conditions
and solve for the output electric fields in terms of the input
field amplitude a1. For a system with two separate leads,
the boundary condition is a2 = 0 (see Fig. 11a). For a
system with only a single input/output lead, the appropriate
boundary condition is a2 = b2 exp(iφring). In this case,
the final ring of the CROW is made by connecting the
second lead to itself, and φring includes the loss, rotation-
induced phase, and propagation induced phase in a single
ring (see Fig. 11b).

For this study, we looked at unidirectional CROW gyro-
scopes with a single input/output lead, as shown in Fig. 1d.
Once again, we assumed that all rings had identical ra-
dius and loss, and that all the couplers were identical. For
any N -ring unidirectional gyro, the only phase that needs
to be kept track of is φring, the total phase (including the
rotation-induced phase) that a signal accumulates in a single
roundtrip around one of the ring resonators. The transmis-
sion spectrum the N -resonator CROW structure is similar
to that of the two-ring structure (Fig. 8), with the two reso-
nant dips in transmission replaced by N resonances. The
position, depth and sharpness of each of the N resonances
depends on the coupling κ. Fig. 12 shows two plots of the
transmission spectrum for the same N = 10 CROW gyro
with R = 5 cm, λ = 1550 nm, and α = 2.3 · 10−4 m−1
with two different values for κ.
We numerically investigated several unidirectional

CROW gyroscopes (for various values ofN up toN = 27)
by varying the coupling and the source frequency in order
to maximize the sensitivity to small rotations. The results
of this extensive numerical search agreed with our earlier
predictions; no CROW gyro, for any N > 1, outperformed
an RFOG with the same radius and material loss. Unlike
in the two-ring case, where only one value of κ maximizes
the rotation sensitivity, in the N -ring case there are gener-
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Figure 12 Transmission spectra for theN = 10 CROW gyro withR = 5 cm, λ = 1550 nm, and α = 2.3·10−4 m−1. a) κ = 1.45·10−5.

b) κ = 6.22 · 10−5.

Figure 13 The sensitivity of a phase-biased 10-ring unidirec-

tional CROW gyro as a function of coupling κ. The horizontal
line is the sensitivity of a single-ring RFOGwith the same material

loss and ring radius.

ally several values of κ that give good rotation sensitivity.
This is because, as mentioned earlier, the relative strengths
of the N resonances depend on κ (see Fig. 12). Different
values of κ optimize the rotation sensitivity of different
resonances (see Fig. 13). However, we emphasize that no
CROW gyro, with any value of κ, ever surpassed the sensi-
tivity of an RFOG.

10. Sagnac configuration coupled-resonator
gyroscopes

There is one additional class of coupled-resonator gy-
roscope that has been studied in the literature: Sagnac-

configuration CROW gyroscopes. These sensors operate
similarly to the FOG, in that two counterpropagating signals
are sent through the CROW, and are then interfered to mea-
sure the rotation rate. Fig. 1b shows one such Sagnac config-
uration CROW gyro, first proposed by Scheuer et al. [14]. It
is similar to a conventional FOG, except that the FOG coil
is replaced by a CROW. The primary advantage of such a
Sagnac configuration CROW gyroscope over other CROW
gyros is that it is reciprocal. Reciprocity is useful because it
greatly reduces a number of deleterious non-reciprocal ef-
fects, such as slow drifts in the sensor output due to slowly
varying asymmetric temperature gradients [26]. One dis-
advantage of the particular configuration of Fig. 1b is that
while the CROW takes up a large area, the space inside
the CROW loop that is not covered by the individual ring
resonators does not contribute significantly to the rotation
sensitivity. This disadvantage can be overcome by pack-
ing the rings together or by stacking the rings on top of
one another.

The original analysis [14] of the Sagnac configuration
CROW gyro of Fig. 1b assumed no phase bias. In the unbi-
ased gyroscope considered in [14], the rotation sensitivity
is properly predicted to be proportional to N2, which led
the authors to conclude that a significant sensitivity en-
hancement was possible by increasing N . However, we
showed [15] that the response of this unbiased gyro is also
proportional to Ω2, so that the sensitivity to small rotation
rates is vanishingly small. A thorough analysis of this gyro
with an appropriate bias revealed that it offers no sensitiv-
ity enhancement over a conventional FOG of same loss
and footprint [15].

It is also possible to make a reciprocal Sagnac con-
figuration gyroscope by using a CROW with a single in-
put/output lead (see Fig. 14). Although the response of a
Sagnac configuration CROW gyro is somewhat different
than that of the CROW gyros considered so far, this Sagnac
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Figure 14 A reciprocal Sagnac configuration two-ring unidirec-

tional CROW gyro.

configuration does not offer any fundamental sensitivity en-
hancement. Just as for any other optical gyro, the rotation
sensitivity is ultimately limited by the waveguide loss. We
also note that without proper phase bias, the response of
the gyro shown in Fig. 14 is proportional to Ω2, and thus
the sensitivity is vanishingly small for small rotation rates.

11. Slow light and effective length

In all of the above analysis of CROW gyroscopes, it was
never necessary to explicitly consider the group velocity of
a signal propagating through the CROW. This is because,
as has been pointed out for three specific gyro configura-
tions [10, 11, 13, 15], there is no fundamental connection
between group index and rotation sensitivity. Rather, the
connection is coincidental; both high rotation sensitivity
and high apparent group index occur when a signal cir-
culates many times around a high-finesse resonator. The
apparent group index is large in this case because the signal
spends a long time circulating in one ring of the CROW
before moving on to the next one. The rotation sensitivity is
high because the total rotation-induced Sagnac phase shift
is proportional to the number of times that the signal circu-
lates around each resonator. To avoid any confusion arising
from this coincidental connection, it is useful to character-
ize a CROW by its effective length [3, 4, 14] rather than by
its apparent group index. The effective length is defined as
its actual physical length (2NR) multiplied by π times the
number of times a signal circulates around each resonator.
Hence, the loss and group delay that a signal experiences
in propagating through a CROW depend on the effective
length, not the actual length. In particular, the power atten-
uation Pout/Pin and group delay τg in a CROW with effec-
tive length Leff are given by Pout/Pin = exp(−αLeff) and
τg = nLeff/c, respectively [3]. Characterizing a CROW
by its effective length rather than the apparent group index
makes it clear that while a CROW allows for a large effec-
tive length to be packed inside a small physical length [3],
the relationship between loss, Sagnac phase, and rotation
sensitivity is unchanged.

12. Ultra-low-loss materials

We have demonstrated that coupling multiple ring res-
onators together offers no potential for slow-light enhance-

ment of rotation sensitivity. This is because coupling mul-
tiple resonators together does not change the fact that ro-
tation sensitivity is always inversely proportional to loss.
Thus, rather than coupling multiple resonators together, the
best way to achieve high rotation sensitivity in a minia-
ture passive resonant gyroscope is to use a single resonator
(with the proper phase bias) with as little loss as possi-
ble. While low-loss optical fibers have a low loss record
around 4.6·10−7 cm−1 (0.2 dB/km), other materials offer
the potential of much lower loss. For example, it has been
predicted [21] that the loss of ideal CaF2 can be as low as
10−9 cm−1 at room temperature. Since the maximum sensi-
tivity of an RFOG is proportional to R/α, it may be possi-
ble to create miniature (R ≈ 100 μm) RFOGs from such an
ultra-low-loss material with the same sensitivity as much
larger (R ≈ 5 cm) fiber gyros. However, the fabrication of
small high-Q resonators poses a number of difficult chal-
lenges, and the current record for the lowest measured loss
in a CaF2 ring resonator is only 1.4·10−6 cm−1 [27], which
is significantly greater than the theoretical minimum. Until
this loss can be made much smaller than that of low-loss
optical fibers, gyros made from small high-Q resonators
cannot have a higher sensitivity than conventional RFOGs.
While resonant gyros made of ultra-low-loss material may
present their own set of practical challenges, such as fabri-
cation difficulties, stabilization issues and signal drift due
to optical nonlinearities, they possess the potential for high
rotation sensitivity in a small footprint, and research on
ultra-low-loss materials is ongoing.

13. Conclusions

In summary, we have analyzed a number of optical gyro-
scope designs and found that while the configuration and
mode of operation may differ significantly between designs,
the maximum sensitivity of every design is limited by ma-
terial loss. We showed that the maximum sensitivity of the
FOG and RFOG are comparable when both are optimized.
We predicted that since the relationship between Sagnac
phase and loss is the same for all optical gyros, coupling
multiple resonators together cannot enhance rotation sensi-
tivity. Using numerical and analytical methods, we demon-
strated that this prediction is true. No CROW gyro is more
sensitive than an RFOG with the same footprint and loss.
While the group velocity of a signal propagating through a
CROW can be quite low, group velocity is ultimately un-
related to rotation sensitivity. Rather than characterizing a
CROW by its apparent group index, it is useful to describe
it instead by its effective length, which is determined by the
loss. Since loss ultimately limits the maximum sensitivity
of all passive optical gyros, ultra-low loss materials offer
the potential of high rotation sensitivity in a compact gyro
with a single ring resonator.
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