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We develop the coupled-mode theory for nanoscale resonant apertures. We show that the maximum transmis-
sion and absorption cross sections for subwavelength resonant apertures are only related to the wavelength of
the incident light and the directivity of the aperture’s radiation pattern. A general relation between the trans-
mission cross section and the directivity is proven from the coupled-mode theory. As a specific example, we
apply the theory to a nanoslit aperture in a metallic film and obtain excellent agreement with direct numerical

simulations. © 2010 Optical Society of America
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1. INTRODUCTION

Absorption, scattering, and extinction cross sections are
concepts that are fundamentally important for character-
izing electromagnetic properties of individual objects [1].
These concepts are now being applied in nanophotonics to
individual nanoparticles [2—4], including individual split
ring resonators [5], and optical antennas [6].

Following the observation of strongly enhanced trans-
mission of light through arrays of subwavelength holes in
metallic films [7], there has been a tremendous amount of
research on nanoscale apertures [8-10]. Such apertures
are of fundamental interest and form the basic building
blocks for many applications in subwavelength optics and
optoelectronics. The transmission cross section of an indi-
vidual aperture, to an extent the dual of the extinction
cross section of a nanoparticle, has been calculated
[11-15] and experimentally measured [11,16] for specific
geometries.

In contrast to the existing detailed numerical and ex-
perimental works on individual apertures, here we aim to
illustrate some of the general aspects of the transmission
and absorption cross sections of resonant apertures with
the use of the temporal coupled-mode theory (CMT). The
temporal CMT provides a general framework for the
study of many optical devices [17]. In optics, the temporal
CMT is mostly used to describe coupling between reso-
nant cavities and discrete propagating waveguide modes.
Due to its generality, it reduces the understanding of a
complex system to a few parameters. Recently, the tempo-
ral CMT has also been applied to the free-space resonant
scattering of waves [18,19]. References [18,19], however,
only consider scatterers that have certain cylindrical or
spherical symmetry, or are small compared to the wave-
length. In this paper, we extend the use of the temporal
CMT for calculations of cross sections of objects without
rotational symmetry.
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To illustrate our theory, we focus on the simplest of ap-
ertures: the slit. Previously slits have been studied exten-
sively, using modal expansion techniques and numerical
simulations, and their transmission properties have been
characterized experimentally [11,20—26]. On the applica-
tion side, nanostructured metallic devices based on slits
have been shown to achieve highly directional emission
[27], enhanced transmission [11,28,29], and controlled fo-
cusing [30-36], as well as improved photodetection (ab-
sorption) [37,38]. The theory we set forth applies to slits,
but equally well to the general case of a resonant aper-
ture.

In our theory, an aperture is treated as a resonance (or
multiple resonances at different frequencies). The ap-
proach is analytical and, depending on the application,
can account for directivity, surface plasmon excitation,
and material absorption. The theory demonstrates that
the maximum transmission and absorption cross sections
are only related to the wavelength of the incident light
and directivity of the aperture’s radiation pattern. Such
an understanding should be beneficial for the design and
optimization of new optical components.

For the case of the slit, part of our theory constitutes a
reformulation of antenna theory and the concept of an ef-
fective area [39,40]. Indeed, a slit in a metallic film can be
considered as an aperture antenna coupled to a similar
antenna through a transmission line. In fact, concepts
from radiofrequency theory have already been used to im-
prove nanoantennas [41]. We opt to cast our theory in a
language more common and suitable for optics.

In Section 2, we develop the CMT, from which we de-
rive the transmission cross section for the isotropic radia-
tor (Subsection 3.A) and the anisotropic radiator (Subsec-
tion 3.B). In Subsection 3.C we introduce a relation
between transmission cross section and wavelength. Sub-
section 3.D treats the effect of the excitation of surface
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plasmons; Subsection 3.E deals with material absorption
in resonant apertures. In Section 4, we derive the absorp-
tion cross section. Finally, we conclude in Section 5.

2. TEMPORAL COUPLED-MODE THEORY

To illustrate the theory, we study a single slit in a metallic
film as a concrete implementation of a resonant aperture
(Fig. 1). We consider the whole structure in two dimen-
sions and light with transverse magnetic (TM) polariza-
tion (E,,H,,E,). For the TM polarization, the slit sup-
ports a propagating mode no matter how small is its
width. A resonance can then be formed due to the reflec-
tions of such a propagating mode at the entrances to the
slit. As a result, the slit can be treated as a resonator
coupled to free space on both sides [23]. We consider a
single resonance first. The complex amplitude of the reso-
nator mode is denoted by A, with |A|?> describing the en-
ergy inside the slit.

The CMT describes the interaction between such reso-
nances with the surrounding environment. The surround-
ing environment is described by channels that carry in-
coming and outgoing waves with respect to the resonance
[42]. For a given channel, the amplitudes of incoming and
outgoing waves are described by s, and s_, respectively,
with |s|? representing the power in the wave.

Depending on the model used for the metal there can
be different types of channels. One type of channel that is
always present consists of plane waves propagating in
free space in different directions. We distinguish between
plane waves that are above (labeled by a subscript T') or
below (labeled by a subscript B) the film. Also, to facilitate
the description of these plane wave channels, we impose a
periodic boundary condition with period L (Fig. 2, inset).
In this way the channels become discrete (Fig. 2) and can
in addition be labeled with respect to the parallel wave
vector components of 27n/L, with n being integers. With
these subscripts, a wave incident from the top half-space
onto the slit, having a parallel wave vector 27n/L, for ex-
ample, has its amplitude labeled as st ,,. Moreover, since
these are propagating waves, we have

ST,5p-
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SB,sp-
*
—_—

SB,sp+

: / Sw‘ \ SB‘O-EB\Y

Fig. 1. CMT of a slit in an optically thick metallic film. The slit
couples with free-space channels above (with amplitudes sz,
and s7,_) and below (with amplitudes sg ,, and sz ,_) the film, as
well as with the surface plasmon channels (with amplitudes
ST sp+s ST,sp—> SB,sp+> @0d S o, ). The channels are shown as discrete
modes.
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Fig. 2. Channels in % space for a slit in a metallic film with pe-
riodic boundary condition (PBC). k, and %, are the spatial fre-
quencies in the x and z directions. The CMT explicitly makes the
conversion from discrete modes to a continuous spatial spectrum
by assuming a periodic boundary condition and letting the spa-
tial period L, and consequently N, go to infinity at the end of the
calculation. Under this assumption, channels are equally spaced
in spatial frequency k,, but not in angle.
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l=N=22]= 2]

27c )\O
where o, (\() is the resonant frequency (wavelength) and
¢ is the speed of light. Thus the total number of channels,
N, in free space is finite. We take the limit L — to re-
cover the case of a single slit with a continuum of plane
wave channels.

When the metal is plasmonic, there is a second type of
channels (labeled by a subscript sp) consisting of plas-
monic surface modes on the top and bottom metal-air in-
terfaces. The amplitudes of these channels at the top and
bottom metal-air interfaces are given as sy, S7gp-,
Spsp+> and sp g, . Note that here we combine the surface
plasmon channels to the left and the right of the slit. In
analyses that focus more specifically on surface plasmon
generation, they could be split up.

We first consider a plane wave normally incident on the
slit, as described by an amplitude sy .. In this case, since
there is no incident wave in other channels, the relevant
temporal coupled-mode equations can be written as
[17,42,43]

1)

N N
dA [
——*t |- lwyt 2 YTt 2 ¥YBnt YT.sp + YB,sp + Y A
n=-N

dt n=-N
=\2¥7,057,0+> (2)
SB,n— = VIZYB,nAr (3)
_
SB,sp- = \“"2 'yB,spA . (4)

Here yr,, ¥Bn> Yrsp> and yp o, are the amplitude leakage
rates with which the slit mode couples to the free space
and surface plasmon channels. We also include an intrin-
sic amplitude loss rate 7, for the resonance.

Equations (2)—(4) allow us to solve for the transmission
spectrum T(w):
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n=-N n=-N

T(w) = =

N N
2 |SB,n—|2 + |SB,sp—|2 2'YT,0<2 E YB.n + 2‘yB,sp)
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In the last step of the derivation we used the fact that the
setup is symmetric for top/bottom and set y,=vg,=vr,
and v;,=Vpsp=Vr,sp- Henceforth, we leave out subscripts
for top and bottom. At any frequency, the transmission co-
efficient T(w) takes on a value between 0 and 1. For off-
normal incidence, as described by excitation of the slit
through channel sy ,,,, with angle 6,, to the normal, the
transmission coefficient can similarly be calculated as

N
27m(2 > et 2%,;)

T(w,6,) = Gl

N 5 (6
(w_w0)2+<2 N7n+2ysp+7a)
n=—

3. TRANSMISSION CROSS SECTION

The transmission spectrum T'(w), as defined in Eq. (5), is
not very meaningful in the case of a single slit since it de-
pends on the choice of L, as defined by the artificial peri-
odic boundary condition. In this section, we will take the
limit of L — o0 in order to calculate the transmission cross
section of a single slit. For a single slit, the transmission
cross section op(w) is defined as the ratio between the to-
tal transmitted power and the intensity of an incident
plane wave [44]. It has a dimension of length for our two-
dimensional case. In the formalism here, for normal inci-
dence, we will therefore calculate

N

E ‘SB,n—‘Q + |SB,sp—|2

n=-N

or(w) = =T(o)L, (7

2
|ST,0+| / L
in the limit where L—o. For off-normal incidence
through channel m, the transmission cross section be-
comes

N

E ‘SB,n—|2 + |SB,sp—|2

|57 /(L cos 6,,)

op(w,6,) = . =T(w,6,,)L cos 6,,.

8

The factor cos 6,, appears because the intensity of the
wave in the mth channel is [s7,,.[%/(L cos 6,,).

A. Isotropic Radiation

First, we evaluate the transmission cross section of a
resonant aperture with an isotropic radiation pattern.
This means that radiation emitted from the aperture has
an equal intensity in all directions outside the metal film.

2 N 2°
(w_w0)2+( 2 7T,n+ 2 7B,n+7T,sp+yB,sp+7a> (w_w0)2+<2 2 7n+273p+7a>

n=-N n=-N

n=-N

(5)

[
An example of such an aperture is a deep-subwavelength
slit in a perfect electrical conductor (PEC) film [20]. In
this case, the surface plasmon channels and material loss
are absent, and we consider only those channels that are
propagating waves in free space.

With our use of a periodic boundary condition, the
channels provide a uniform sampling of the parallel wave
vector space. As can be seen from Fig. 2, these channels
therefore do not provide a uniform sampling of the angu-
lar space. In order to describe an isotropic radiator, the
coupling constant vy, for the nth channel at angle 6, needs
to be set to be proportional to its associated arc A6,
=A(sin 6,)/cos 6,=1/N cos 6,. For an isotropic radiator,
the leakage rate to the nth channel y, is then related to
the leakage rate in the normal direction as

Yo
" cos 6,

)

Yn

The total radiative rate to the free-space modes above (be-
low) the film in the L — % limit is therefore

N N 1

E ?’n:?’oz

n=-N n=-N cos en

=Ny,. (10)

Using Egs. (1), (6), and (8)—(10), the transmission cross
section spectrum simplifies to

N
2v,,L cos 0m<2 E 7,L)

n=-N

O-T,isotropic(w’ gm) =

N 2
(- wp)?+ (2 > yn)
n=-N

N
270L<2 > %)
n=-N

N 2
(0 - o) + (2 > yn)

n=-N
1
No 4Q?
== (11)
T [ w—w 1
+—
( wo ) 4Q?

where, following the standard definition, the quality fac-
tor @ is the ratio between the resonant frequency and the
full width at half-maximum of the resonance line shape:
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Q=—F—- (12)
43 %
n=-N
From Eq. (11), we see that the spectrum has a Lorentzian

line shape, and that the transmission cross section
reaches a maximum of

Ao
UT,isotropic(w07 am) = ; (13)

at the resonant frequency. For the isotropic aperture, the
cross section is also isotropic in the sense that it does not
depend on the angle of incidence. The maximal transmis-
sion cross section scales linearly with the wavelength of
the incident light. Moreover, it is independent of the slit
width and can thus be much larger than the aperture’s
geometric cross section. The derivation that we presented
above is straightforwardly generalized to the three-
dimensional case of the resonant aperture coupling two
half-spaces (Appendix A).

We now verify the theory with finite-difference
frequency-domain (FDFD) simulations [45] of a 150 nm
narrow slit in a 1 um thick film made of a PEC. We first
verify that such a slit indeed behaves as an isotropic ra-
diator. To generate the radiation pattern, we excite the
structure by placing a source inside the slit and generate
a contour plot [Fig. 3(b)] of the resulting magnetic field in-
tensity in the free space. The contours are to a good ap-
proximation circular, confirming isotropic radiation.

To calculate the transmission cross section, we excite
the structure with a normally incident plane wave and
calculate the total transmitted power at the exit surface
of the slit. The transmission cross section op(w) is then
obtained by normalizing such transmitted power with re-
spect to the incident flux. The blue dots in Fig. 3(a) show
the simulated transmission cross section as a function of
wavelength. The transmission cross section is normalized
over the slit width to give a measure of the enhancement.

We compare the simulated cross section with the theory
as outlined above. The simulated cross section indicates
that the structure supports multiple resonances. We de-
scribe the cross section of the ith resonance using Eq. (11),
with a quality factor @;. Since these resonances are spec-
trally well separated, we take into account the effect of

(b)
3
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Fig. 3. (Color online) Single slit in a PEC. (a) The theoretical
normalized transmission cross section spectrum (green curve)
and from FDFD simulations (blue dots). The straight red line in-
dicates the maximal transmission cross section of an isotropic ra-
diator. (b) Contour plot of the magnetic field intensity for the
single slit excited at 1.176 um.
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multiple resonances by summing over the cross sections
oy ;(w) of all resonances. As a result

Noi
or(w) =3 —* —=Soriw). (14)

( w — (l)o’i )2
—
wp,; 4Q7
Theory [green curve in Fig. 3(a)] and simulations are
found to be in good agreement. In particular, the peak
transmission cross section can be well approximated by
the maximal transmission cross section (\/7) of a single
isotropic radiator [red line in Fig. 3(a)l. The simulation
thus provides a direct confirmation of the analytical
theory. Note that the CMT is a theory of resonances. It
should in principle only be valid in the vicinity of the in-
dividual resonances, and individual resonances can be
added if they are spectrally sufficiently separated. We

find empirically that summing the resonances gives a
good idea of the global spectral behavior.

B. Anisotropic Radiation and Directivity

For a single resonant aperture, it is possible to achieve a
transmission cross section that goes beyond the limit of
N/ ar for the isotropic case by creating anisotropy in the ra-
diation pattern [11,27,28]. This can be done, for instance,
by introducing surface corrugation (Fig. 4) or by modify-
ing the entrances to the slits (Fig. 5).

To illustrate that our formalism also describes such an-
isotropic cases, we start by calculating the transmission
cross section for normally incident light. For this purpose,
we define the directivity D in the normal direction (in the
N — oo limit) [46]:

YolN

N

2 %

n=-N

D=

(15)

The higher the leakage rate to channel 0, the more nor-
mally directional the structure will be. The theory then
incorporates directivity as follows:
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Fig. 4. (Color online) Slit with surface corrugation. (a) The the-
oretical normalized transmission cross section spectrum (green
curve) and from FDFD simulations (blue dots). The straight red
line shows the maximal transmission cross section of an isotropic
radiator. (b) Contour plot of the magnetic field intensity for the
structure excited at 1.168 um shows directional emission.
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A (um) X (um)

Fig. 5. (Color online) Slit with wider slits at its ends. (a) The
theoretical normalized transmission cross section spectrum
(green curve) and from FDFD simulations (blue dots). The
straight red line shows the maximal transmission cross section of
an isotropic radiator. (b) Contour plot of the magnetic field inten-
sity for the structure excited at 2.370 um shows directional
emission.

1
D\, 4Q?
7 [w-wp\? 1
b
@o 4Q2
This result can be easily generalized for other direc-
tions. By defining an angle-dependent directivity,

O-T(w) = = DUT,isotropic(w) . (16)

YN cos(6,,)
N b

> %

n=-N

D(6,,) = (17)

we obtain the transmission cross section for light incident
at an angle 6,,:

op(w,6,) =T(w,6,)L cos(6,,)

N
2y,,L coswm)<2 > '}’n)

n=-N

N 2
(w_ w0)2+ (2 E 'Yn)

n=—N
1
D(6,,)N¢ 4@’
= oo\ 1 =D(6,,) 07 isotropic(@) -
( @o ) FQZ

(18)

For an anisotropic radiator, an increased directivity for
radiation in a certain direction is directly related to the
enhanced transmission cross section for light coming in
from that direction. From Eq. (17) it is clear that there ex-
ists a trade-off between a large transmission cross section
and a large angular range of operation.

We now confirm the theory developed in the previous
paragraphs through numerical simulations. For this pur-
pose we consider two different structures (Figs. 4 and 5).
The structure in Fig. 4 consists of the same slit in the
PEC as in Fig. 3 with a width of 150 nm. The slit is placed
in the middle of an array of grooves 150 nm wide and 120
nm deep, spaced 1 um apart. For the structure in Fig. 5,
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we instead modify the entrance and exit ends of the 150
nm wide slit by placing slits that are 1.5 um wide and
0.5 um deep at both ends.

We obtain the directivities at resonant wavelengths for
both structures in Figs. 4 and 5 from simulations. We ex-
cite the mode inside the slit and generate the radiation
pattern. A far-field flux Fpp over one grid point Ax, at a
distance zpp directly above the slit, is then compared to
the total flux emitted, F,, to obtain the directivity D
=Fppzprm/ (FitAx). We choose the distance zpp to be suf-
ficiently far, i.e., in such a way that the numerically de-
termined directivity becomes independent of zyp. The
transmission cross section of the structure at normal in-
cidence is obtained in the same way as the case in Fig. 3.

The transmission cross sections of both structures in
Figs. 4 and 5 exhibit resonance with peak transmission
cross sections well beyond N/ 7 [at A=1.168 um in Fig.
4(a) and at A=2.370 um in Fig. 5(a)]. At the peak wave-
lengths of these resonances, the radiation patterns [Figs.
4(b) and 5(b)] show strong anisotropy, with stronger ra-
diation in the normal direction. The theoretical cross sec-
tion spectra in the vicinity of these resonances, with the
directivity obtained from simulations (D=2.67 at X\
=1.168 um and D=1.91 at A=2.370 um), agree quite well
with the direct numerical simulation of the cross section
of the structure. The simulations thus provide a direct
confirmation of the mechanism for enhancing the cross
section by way of achieving a stronger directivity.

C. Angular Sum Rule for the Peak Transmission Cross
Section

The previous results also allow us to derive a general sum
rule regarding the peak resonant transmission cross sec-
tion of a single resonance:

/2 N
f O-T(wo’e)d0= 2 0-T(wO’ 6m)

— N N cos 6,
No 1
=— D
w,,ZN ( m)N cos 6,
)\O % Ym N (19)
- T m=-N N o

This relation is equally valid for anisotropic and isotropic
radiators. This sum rule summarizes, in a very compact
fashion, the trade-off between directivity and transmis-
sion cross section as discussed in detail in Subsection 3.B.
It is important to note here that the concept of directivity
is related to the existence of a single resonance. If mul-
tiple resonances are present, radiation pattern and direc-
tivity can no longer be unambiguously defined since these
then depend on the phase and amplitude excitation of the
resonances.
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D. Surface Plasmons

We now consider the case of a single slit aperture in a
plasmonic metal. In contrast to the case considered above,
where the metal is a PEC, with a plasmonic metal there
exist surface plasmon modes at the top and bottom sur-
faces of the metal film. These surface plasmon modes pro-
vide additional channels that the resonance in the slit can
couple into. Taking into account the contribution from the
additional surface plasmon channels, the transmission
cross section of the slit in the presence of normally inci-
dent light can be derived as

N
2’VOL<2 E '}/n+ 273]))

n=-N

op(w) =

N 2
(w_ w0)2+ (2 2 yn+ 2ysp>

n=-N
2‘)/0L N 2
N—(2 2 Yt 2%
n=-N
2> Ya+2%
n=-N
= N 2
(w_ (")0)2 + (2 E Yn + 27317)
n=-N
N
2 E Yn N 2
n=-N
N (2 2 Ynt 273p>
n=-N
2 +2
D, E_N Y+ 2%p
- T N 2
(w_ w0)2+ 2 E ’Yn+2‘y‘9p
n=-N
1
G, 4Q?

- TW = GUT,isotropic(w) 5 (20)
4+ —
wg 4Q?

with G defined as [47]

N
2> "%
n=-N
———D=eD, (21)

2 Yt 27
n=-N

G=

and

wo
— -
4( D Yt 73,7)
n=-N

In Eq. (21) D is the directivity that characterizes the ra-
diation pattern of an antenna. It is defined the same as
before [Eq. (15)]. In the presence of surface plasmon chan-
nels, Eq. (21) shows that, in addition to the directivity, the
transmission cross section is now also related to the ra-
diation efficiency e,, which for a radiating antenna is the
ratio between the radiated power and the input power.

Q= (22)
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In the presence of surface plasmon channels, our
theory therefore shows that the transmission cross sec-
tion will be lowered for the single aperture since the sur-
face plasmon acts as a loss channel. This is in contrast
with the extensively studied phenomenon of extraordi-
nary transmission [7-10], which occurs in arrays of aper-
tures, and generally results from the evanescent leakage
of a surface resonance through the holes.

To compare theory to simulation, we consider the case
of a slit in a gold film [Fig. 6(a)]. To illustrate the theory in
the absence of the material loss, here we describe gold us-
ing only the real part of its tabulated dielectric constant
[48]. We obtain the values of G from simulations at the
resonant wavelengths. We excite the slit and measure the
total flux delivered to the aperture, F,. This flux line is
placed inside and perpendicular to the slit, at 0.5 um
from the exit plane, in order to include the part of the
power delivered to the surface plasmon channel inside the
metal film. We then find the flux Fgp over a line that is
one grid point Ax long, at a distance zgp, directly above
the slit, in the far field. This leads to
G =Fppzppm/ (Fiy,;Ax). The simulated values for G at 2.857,
1.367, 0.893, and 0.676 um are, respectively, 0.96, 0.92,
0.88, and 0.83.

Since the surface plasmon excitation is most prominent
at the shorter wavelengths, we will focus on the peak at
0.676 um [Fig. 6(b)]. The numerically obtained transmis-
sion cross section agrees quite well with Eq. (20) using the
G factor as obtained numerically above. At this wave-
length, due to the penetration into the metal, the slit ap-
pears wider and has a higher directivity than the corre-
sponding PEC case, which enhances the cross section at
normal incidence. The surface plasmon channel, on the
other hand, provides an additional leakage channel that
reduces the cross section. As a result of these two conflict-
ing trends, for this particular structure, the assumption
of a more realistic plasmonic metal model has led to a
lower transmission cross section.

E. Absorption

The general theory of the resonance [Eq. (2)] includes a
loss channel, with loss rate y,, resulting from material
absorption. In the presence of material loss, the transmis-
sion cross section of a single resonance is

4 s
oS 7

op/w
IS )

N

1 2 3
A (um) X (um)

Fig. 6. (Color online) Single slit in real metal (gold). (a) The the-
oretical normalized transmission cross section spectrum (green
curve) and from FDFD simulations (blue dots). The straight red
line indicates the maximal transmission cross section of an iso-
tropic radiator. (b) Contour plot of the magnetic field intensity for
the single slit excited at 0.676 um shows strong excitation of the
surface plasmon.
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A (um)
Fig. 7. (Color online) Single slit in a PEC, containing an absorb-
ing material. The theoretical normalized transmission cross sec-
tion spectrum (green curve) and from FDFD simulations (blue
dots). The straight red line indicates the maximal transmission
cross section of an isotropic radiator.

270L(2 %N n)

(TT(w) =

N 2
(w_w0)2+ (2 2 Yn t 7a)

n=-N
N 2
2 n
D)\O ( n=E—N § )
=— . 23
= @9
(w_w0)2+ 22 7n+7a
n=-N

Thus the presence of the loss reduces the peak transmis-
sion cross section.

As a numerical test of the theory, we simulate the
transmission cross section of the same structure as shown
in Fig. 3(a), except that the slit is now filled with a lossy
dielectric with a refractive index of 1-0.02:. In order to
compare to the theory, we note that the absorption rate v,
can be calculated approximately analytically as (Appen-
dix B)

cn;ky

Yo = , (24)
nr

with n, and n; being the real and imaginary parts of the
refractive index of the absorbing material inside the slit.
Equation (24) provides a good first estimate of the absorp-
tion rate. All the other parameters of the theory are the
same as the lossless slit. The result of the theory indeed
agrees well with the direct numerical simulations (Fig. 7).

4. ABSORPTION CROSS SECTION

Photodetectors based on a resonant aperture have been
shown to improve the signal/noise ratio [37], to help min-
iaturization [49], and to improve speed [50]. In these
cases, the active semiconductor materials are placed in or
around the apertures. The operation of devices relies
upon achieving absorption cross sections that exceed the
geometrical cross section of the aperture. Understanding
the behavior of the absorption cross section in these sys-
tems is therefore crucial.
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Here we use the slit to illustrate the temporal CMT for-
malism as applied to the design consideration of this type
of photodetector. We consider an absorbing material in
the slit and the bottom of the slit closed off with a PEC
(Fig. 8, inset). The absorption cross section is defined as

Py(w)
Finc(w) ’

(25)

op(w) =

with P4 being the absorbed power. In the absence of chan-
nels below the film, the absorption cross section for the
detector, excited from the top with normally incident
light, is derived as

4y, 7L

N 2
(- wp)?+ ( >yt va)
n=-N

N
27a(2 > yn)
D\, n=~N

oplw) =

=— . 26
- - ;. (26)
(@=00® +| 2 7%+ %
n=-N
Under the critical coupling condition
N
2 Yn = Ya> 27

n=-N
the resonant absorption cross section is maximized as

DX\
alwp) = 7(’ (28)

Our theory thus indicates that the absorption cross sec-
tion can be maximized by reaching the critical coupling
condition and by enhancing the directivity of the aper-
ture.

As a simple numerical illustration of the effect of criti-
cal coupling, we calculate the absorption cross section of
the same (approximately isotropically radiating) slit in a
PEC, closed off at the bottom and filled with a lossy di-

A (um)

Fig. 8. (Color online) Absorption cross section of the slit. The
theoretical normalized absorption cross section (green curve) and
from FDFD simulations (blue dots) for non-critical coupling and
for critical coupling (orange curve with purple triangles). The
straight red line indicates the maximal absorption cross section
of an isotropic radiator.
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electric material (Fig. 8). When the lossy dielectric has an
index of 1-0.02i, the structure is not critically coupled, as
is evident from the fact that the absorption cross section
on resonance (lower curve) lies below the isotropic limit,
indicated by the straight red line. By increasing the ab-
sorption in the material (refractive index 1-0.0727), criti-
cal coupling can be achieved, leading to maximized ab-
sorption at the resonant frequency, as demonstrated by
the upper curve. Further increasing the absorption loss
beyond the critical coupling condition, however, leads to a
degradation of the resonant absorption cross section.
Thus, in optimizing aperture-based photodetectors, one
cannot simply use the material with the highest absorp-
tion coefficient.

5. DISCUSSION AND CONCLUSIONS

We presented the derivation of the transmission cross sec-
tion of a resonant aperture that couples two half-spaces
based on the temporal coupled-mode theory (CMT). Our
theory incorporates the effects of directivity, surface plas-
mon excitation, and material loss. The theory indicates
that for an isotropic aperture, its maximum transmission
cross section is independent of the geometry of the aper-
ture, but instead only depends on the wavelength. Our
theory also shows that the transmission cross section can
be increased by enhancing the directivity. We have also
applied our theory toward the absorption cross section of
aperture-enhanced photodetectors and derived a critical
coupling condition that maximizes the performance of
such a detector.

Our formalism constitutes a reformulation of antenna
theory and capture cross sections, in terms of a single
resonant element. In antenna theory, the slit would have
been considered as an aperture antenna coupled to a simi-
lar antenna through a transmission line. A transmission
or absorption cross section is maximized when the an-
tenna load is matched. For transmission, this can be
achieved when the aperture antenna at the other side of
the transmission line is identical; for absorption, as we
demonstrated, this requires a specific refractive index for
the material inside the slit. We believe that our formalism
is more general—it only relies upon the existence of a
resonance in the system and therefore is applicable to
cases where the description of the transmission line is not
immediately apparent, such as many optical antenna
structures [51-54].

APPENDIX A: THREE-DIMENSIONAL CASE
Consider the case of a resonant aperture of finite extent
in both x and y directions in a film of finite thickness in
the z direction. The transmission, in the absence of loss or
surface plasmons, is

N N
2 ‘Sm,n—|2 2‘)/0,0<2 2 ym,n)

m,n=—N m,n=—-N

T(w) =
|30,0+‘2

- N 27
(w_w0)2+(2 E 'Ym,n)

m,n=-N
(A1)

where we now have a periodic boundary condition in both
x and y directions and, consequently, discretization in

Verslegers et al.

both k, and k,, resulting in (2N + 1)2 channels, with indi-
ces m and n. The following identity holds for the isotropic
radiator:

N

N
E 7m,n = 70,0 2

= 2N27T')/0,0,
mon=N mn=N COS 0, cos 6,

(A2)

and the transmission cross section is derived as

N
270,01‘2(2 2 7m,n>

m,n=—-N

UT,isotropic(w) =

N 2
(w_w0)2+(2 E 7m,n>

m,n=—-N

Lz N 2
LIS
2N27T< m,n=-N "

N 2
(w - w0)2 + (2 E 7m,n>

m,n=—-N

1
A 4Q?

=ZT w-wy\? 1 °
—
(O 4Q2

The transmission cross section for the isotropic radiator
on resonance is then

(A3)

Ag
—. A4
o (A4)

O-T,isotropic(wo) =

In general, however, the radiator in three dimensions will
be directional. A small cylindrical hole, with propagating
mode [10], or a small rectangular hole [14,15] excited by a
plane wave will have more of a dipole character. A dipole
that is significantly shorter than the wavelength has a di-
rectivity equal to 1.5. Consequently, the transmission
cross section of such an aperture will be approximately
3)\%/ (47). For an optically thick film, the transmission
cross section will be a strong signature of the presence or
absence of the propagating mode. Surface plasmon chan-
nels and absorption can be included in a similar way as
described for the two-dimensional case.

APPENDIX B: ABSORPTION RATE

The absorption rate 7y, can be found by considering bulk
material with refractive index n=n,—n;i. The exponential
decay over the time it takes to travel an arbitrary dis-
tance A equals the exponential decay as a function of po-
sition:

= 2y,n,A
exp(—) =exp(—2n;kyA), (B1)
c

and the absorption loss rate is

cn;k

Ya = (B2)

n,



Verslegers et al.

ACKNOWLEDGMENTS

The authors thank Z. C. Ruan for helpful discussions.
This research was supported by the MARCO Interconnect
Focus Center.

REFERENCES AND NOTES

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1983).

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The
optical properties of metal nanoparticles: The influence of
size, shape, and dielectric environment,” J. Phys. Chem. B
107, 668-677 (2003).

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R.
Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct
measurement of the single-metal-cluster optical absorp-
tion,” Phys. Rev. Lett. 93, 127401 (2004).

0. Muskens, N. Del Fatti, F. Vallee, J. R. Huntzinger, P. Bil-
laud, and M. Boyer, “Single metal nanoparticle absorption
spectroscopy and optical characterization,” Appl. Phys.
Lett. 88, 063109 (2006).

M. Husnik, M. W. Klein, N. Feth, M. Konig, J. Niegemann,
K. Busch, S. Linden, and M. Wegener, “Absolute extinction
cross-section of individual magnetic split-ring resonators,”
Nat. Photonics 2, 614-617 (2008).

dJ. A. Schuller and M. L. Brongersma, “General properties of
dielectric optical antennas,” Opt. Express 17, 24084-24095
(2009).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A.
Wolff, “Extraordinary optical transmission through sub-
wavelength hole arrays,” Nature 391, 667-669 (1998).

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature
445, 39-46 (2007).

S. Blair and A. Nahata, “Focus issue: Extraordinary light
transmission through subwavelength structured surfaces—
Introduction,” Opt. Express 12, 3618 (2004).

P. B. Catrysse and S. Fan, “Propagating plasmonic mode in
nanoscale apertures and its implications for extraordinary
transmission,” J. Nanophotonics 2, 021790 (2008).

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L.
Martin-Moreno, “Multiple paths to enhance optical trans-
mission through a single subwavelength slit,” Phys. Rev.
Lett. 90, 213901 (2003).

F. J. Garcia de Abajo, “Light transmission through a single
cylindrical hole in a metallic film,” Opt. Express 10, 1475—
1484 (2002).

X. Shi, L. Hesselink, and L. R. Thornton, “Ultrahigh light
transmission through a C-shaped nanoaperture,” Opt. Lett.
28, 1320-1322 (2003).

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-
Moreno, “Transmission of light through a single rectangu-
lar hole,” Phys. Rev. Lett. 95, 103901 (2005).

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S.
Kumar, and R. Gordon, “Transmission of light through a
single rectangular hole in a real metal,” Phys. Rev. B 74,
153411 (2006).

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W.
Ebbesen, “Enhanced light transmission through a single
subwavelength aperture,” Opt. Lett. 26, 1972-1974 (2001).
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-
Hall, 1984).

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Sol-
jacic, “Coupled-mode theory for general free-space resonant
scattering of waves,” Phys. Rev. A 75, 053801 (2007).

Z. Ruan and S. Fan, “Temporal coupled-mode theory for
Fano resonance in light scattering by a single obstacle,” J.
Phys. Chem. C 114, 7324-7329 (2010).

dJ. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal,
“Transmission properties of a single metallic slit: From the
subwavelength regime to the geometrical-optics limit,”
Phys. Rev. E 69, 026601 (2004).

0. Mata-Mendez and J. Avendafo, “Some properties of the

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Vol. 27, No. 10/October 2010/J. Opt. Soc. Am. B 1955

optical resonances in a single subwavelength slit,” J. Opt.
Soc. Am. A 24, 1687-1694 (2007).

F. Yang and J. R. Sambles, “Resonant transmission of mi-
crowaves through a narrow metallic slit,” Phys. Rev. Lett.
89, 063901 (2002).

Y. Takakura, “Optical resonance in a narrow slit in a thick
metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, dJ.
R. Sambles, and C. R. Lawrence, “Finite conductance gov-
erns the resonance transmission of thin metal slits at mi-
crowave frequencies,” Phys. Rev. Lett. 92, 147401 (2004).
R. Gordon, “Light in a subwavelength slit in a metal: Propa-
gation and reflection,” Phys. Rev. B 73, 153405 (2006).

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of sur-
face plasmon generation at nanoslit apertures,” Phys. Rev.
Lett. 95, 263902 (2005).

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degi-
ron, and T. W. Ebbesen, “Theory of highly directional emis-
sion from a single subwavelength aperture surrounded by
surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
Q. Min and R. Gordon, “Surface plasmon microcavity for
resonant transmission through a slit in a gold film,” Opt.
Express 16, 9708-9713 (2008).

Z. C. Ruan and M. Qiu, “Enhanced transmission through
periodic arrays of subwavelength holes: The role of localized
waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W.
Ebbesen, “Focusing light with a single subwavelength aper-
ture flanked by surface corrugations,” Appl. Phys. Lett. 83,
4500-4502 (2003).

Z. Sun and H. K. Kim, “Refractive transmission of light and
beam shaping with metallic nano-optic lenses,” Appl. Phys.
Lett. 85, 642—-644 (2004).

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam
manipulating by metallic nano-slits with variant widths,”
Opt. Express 18, 6815-6820 (2005).

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. Barnard,
M. L. Brongersma, and S. Fan, “Planar lenses based on
nano-scale slit arrays in a metallic film,” Nano Lett. 9, 235—
238 (2009).

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar me-
tallic nanoscale slit lenses for angle compensation,” Appl.
Phys. Lett. 95, 071112 (2009).

L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan,
and S. Fan, “Phase front design with metallic pillar arrays,”
Opt. Lett. 35, 844-846 (2010).

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-
subwavelength focusing and steering of light in an aperi-
odic metallic waveguide array,” Phys. Rev. Lett. 103,
033902 (2009).

Z.Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of
midinfrared photodetectors enhanced by surface plasmons
on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran,
S. Fan, and M. L. Brongersma, “Extraordinary optical ab-
sorption through sub-wavelength slits,” Opt. Lett. 34, 686—
688 (2009).

W. L. Stutzman and G. A. Thiele, Antenna Theory and De-
sign, 2nd ed. (Wiley, 1998).

S. Drabowitch, A. Papiernik, H. Griffiths, J. Encinas, and
B. L. Smith, Modern Antennas (Chapman & Hall, 1998).
A. Alu and N. Engheta, “Tuning the scattering response of
optical nanoantennas with nanocircuit loads,” Nat. Photon-
ics 2, 307-310 (2008).

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nano-
photonic light trapping for solar cells,” for Proc. Natl. Acad.
Sci. (to be published).

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled
mode theory for Fano resonances in optical resonators,” J.
Opt. Soc. Am. A 20, 569-573 (2003).

J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc.
Am. 52, 116-130 (1962).

G. Veronis and S. Fan, in Surface Plasmon Nanophotonics,
M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), p.
169.

The directivity, as we defined it, is analogous to the direc-



1956

47.

48.

49.

50.

J. Opt. Soc. Am. B/Vol. 27, No. 10/October 2010

tivity in antenna theory, defined as the ratio of U(6), the ra-
diation intensity in a certain direction, to U,,., the average
radiation intensity: D(0)=U(6)/U,,, (two-dimensional
case).

The factor G is called the (power) gain in antenna theory
[39]. We do not adopt this name since in the optics litera-
ture gain is commonly related to amplification, which is not
the case here.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics,
88th ed. (CRC, 2007).

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen,
K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-
enhanced germanium photodetector,” Opt. Lett. 31, 1519—
1521 (2006).

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-

51.

52.

53.

54.

Verslegers et al.

Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-
scale germanium photodetector enhanced by a near-
infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical anten-
nas,” Adv. Opt. Photon. 1, 438-483 (2009).

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F.
Quate, “Optical antennas: Resonators for local field en-
hancement,” J. Appl. Phys. 94, 4632-4642 (2003).

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and
D. W. Pohl, “Resonant optical antennas,” Science 308,
1607-1609 (2005).

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen,
and W. E. Moerner, “Single-molecule fluorescence enhance-
ments produced by a Bowtie nanoantenna,” Nat. Photonics
3, 654-657 (2009).



