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We present a Schur complement domain decomposition method that can significantly accelerate simulation of en-
sembles of locally differing optical structures. We apply the method to design a multi-spatial-mode photonic crystal
waveguide splitter that exhibits high transmission and preservation of modal content, showing design acceleration
by more than a factor of 20. © 2014 Optical Society of America
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Efficient simulation of ensembles of closely related opti-
cal structures is broadly important in optical structure
design [1-8]. In such ensembles, often all member struc-
tures are identical on some subdomain; the ensembles of
[1-8] evidence this, and Fig. 1 provides an exemplar in
photonic crystal structure design. In spite of this feature’s
prevalence, its exploitation appears uncommon. Typi-
cally, each member structure is simulated in its entirety,
including the subdomain on which all member structures
are identical. Repeated simulation of this constant
subdomain constitutes a significant inefficiency. Ideally
this inefficiency would be eliminated, leaving only
computation associated with the variable subdomain
to be performed for each member structure.

In this Letter, we illustrate mitigation of this ineffi-
ciency via a domain decomposition strategy. Specifically,
we present a classical Schur complement domain decom-
position method which, where suitable, alleviates this in-
efficiency, and apply it to simulation of an ensemble of
photonic crystal structures arising in a design problem.
As our primary aim is to illuminate the concept, we begin
by presenting the method somewhat abstractly and
thereafter describe its application more concretely.
The ideas and mechanics discussed have a long history
outside optics; we discuss this in closing.

Conceptually, the method proceeds as follows: For
each member structure, we decompose simulation of the
complete structure into a pair of subproblems, one asso-
ciated with the constant subdomain and the other with
the variable subdomain. Being the same for all member
structures, the subproblem associated with the constant
subdomain needs to be solved only once; evaluating a
given member structure thereby reduces to solution of
only the subproblem associated with the variable sub-
domain.

To begin, we assume that each member structure
is simulated by solving a square linear system of block
form
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where the partitioning and last block row and column do
not vary between member structures, and the unknown
vectors v, p, and c are the degrees of freedom of the dis-
cretization scheme applied to the member structures. In
this formalism, v and ¢ are generally those degrees of
freedom associated with the variable and constant sub-
domains, respectively, and p those associated with boun-
daries that partition the domain into these two
subdomains. Typically, such description is possible when
the discretization scheme is local in three senses: (1) the
discretization scheme’s degrees of freedom are associ-
ated with spatially local entities; (2) the discretization
scheme couples only the degrees of freedom associated
with some common spatial locale; and (3) the couplings’
dependencies on the structure’s physical properties are
also confined to some common spatial locale. This is the
case, for example, with common frequency-domain finite
difference and finite element discretizations.

Given a set of such linear systems, our aim is to effi-
ciently construct a corresponding set of condensed linear
systems in which the blocks that do not vary between
member structures have been eliminated. Considering
a given system in the set, we accomplish this aim via
block elimination as follows:

Where A, is nonsingular, solving the system’s last
block row for ¢ provides

c= Agcl be - AECIAcpp~ @)

After substituting this expression for ¢ in the system’s
first two block rows, minor rearrangement yields the
condensed system
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Fig. 1. (a) Design prototype for a multi-spatial-mode photonic
crystal waveguide splitter that preserves modal content. A
square lattice of silicon cylinders (gray circles, r/a = 0.2,
n = 3.4) in air (white backdrop), which exhibits a transverse-
magnetic (TM) mode bandgap over frequencies 0.29-2zc/a to
0.42-2zc/a, comprises the background crystal. Highlighted in
blue, three line-defect waveguides each support two TM spatial
modes over frequencies 0.36-2zc/a to 0.42-2zc/a. Highlighted
in orange, a junction region couples the horizontally oriented
input waveguide on the left to the vertically oriented output
waveguides at top and bottom. Indicated by the red dashed line,
a horizontal mirror plane bisects the prototype. We generate an
instance of this prototype, such as that shown in (b), by placing
silicon cylinders, identical to those in the prototype, at a set of
lattice sites in the junction region. Between instances of the
prototype, only the junction region (d) varies; the rest of the
structure (c) remains the same.
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The matrix appearing above on the left is known as the
Schur complement of A, in A. The Schur complement
appears routinely in block elimination [9] and forms
the heart of classical non-overlapping domain decompo-
sition methods. Exploiting the zero blocks, the con-
densed system simplifies to
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Being the same for all systems in the set, the terms X =
ApAt A, and 6 = A AZlb, in Eq. (4) and T = AZA,,
and y = Azlb, in Eq. (2) need be computed only once.
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Having precomputed these objects, evaluating a given
member structure reduces to solving the condensed

system
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[Apv APP_E](I’) B (bp_f’) ®)

and recovering the remaining unknowns fromc¢ = y - I'p.
Often, however, only a small subset of the unknowns ¢
associated with the constant subdomain are of interest.
This occurs, for example, in design optimization prob-
lems where the figure of merit is dependent solely on the
structure’s behavior on a fragment of the constant sub-
domain. In such a case, one need only evaluate the re-
striction of this expression for ¢ to the desired subset 7,

r= 7/|V - F|Vp’ (6)

possibly significantly reducing cost. Furthermore, if only
the result of applying a linear map to 7 is desired, for ex-
ample to compute a figure of merit, then precomputing
application of that linear map to y|, and I'|, in Eq. (6)
may yield additional cost reduction. Naturally, similar
statements hold for maps of 7 that are not linear.

The presented method can significantly decrease the
cost of simulating each member structure: Without
the presented method, simulating each member structure
requires solving Eq. (1), a size (N, + N, + N.) square lin-
ear system (IV, denotes the number of elements in x).
The presented method reduces this computation to solv-
ing Eq. (5), a size (N, + N,) square linear system, and
evaluating Eq. (6), an N, x N, matrix-vector product.

To demonstrate the presented approach’s utility, we
show an accelerated design of a multi-spatial-mode
photonic crystal waveguide splitter that preserves modal
content. Multi-spatial-mode photonic crystal devices that
preserve modal content, for instance the waveguide
bends designed in [8], hold promise for mode-division-
multiplexing in future optical interconnects.

Specifically, here we consider the design prototype
illustrated and described in Fig. 1(a). We generate an in-
stance of this prototype, such as that shown in Fig. 1(b), by
placing silicon cylinders, identical to those in the proto-
type, at a set of lattice sites in the prototype’s junction re-
gion. 22* instances are consistent with the prototype’s
horizontal mirror symmetry; this ensemble forms our de-
sign space. Whereas the junction region [Fig. 1(d)] varies
between instances, the rest of the structure [Fig. 1(c)]
remains the same; accordingly, the former and latter
regions, respectively, constitute the presented method’s
variable and constant subdomains.

We used the Dirichlet-to-Neumann map method
detailed in [8,10,11] for discretization. This scheme’s
degrees of freedom are field values on crystal cell boun-
daries. Additionally, this scheme couples only degrees of
freedom which share a crystal cell interior, and the cou-
plings depend only on the shared crystal cell’s physical
properties. Respectively, these three features make the
discretization scheme spatially local in the three senses
discussed above. As a result, by applying this scheme to
the ensemble of instances and identifying the unknowns
on the junction region (the variable subdomain) with v,
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those on the rest of the structure (the constant subdo-
main) with ¢, and those on the boundary separating these
two subdomains with p, we obtained a set of linear sys-
tems of the form of Eq. (1).

By casting these systems as low-rank modifications of
an initial system, we solved individual systems in O(N?)
time via a low-rank updating method (see, for example,
[7,12]). This was the case whether we solved the original
or condensed systems, having sizes (N, + N, + N,) and
(N, + N,), respectively. As solving these systems domi-
nated the computation in either case, we expected the pre-
sented method to provide a performance improvement
approaching the ratio (N, + N, + N.)?/(N, + N,)*.

Here, (N, + N, + N,) and (N, + N,) are proportional,
with the same constant of proportionality, to the number
of discretized cell edges, respectively, associated with
the complete structure and variable subdomain, in this
case 578 and 110. As such, the above performance im-
provement estimate evaluates to ~27.6.

Characterizing each instance required only the un-
knowns associated with the waveguide ports; these un-
knowns constituted the restricted set r of recovered
unknowns on the constant subdomain. Because r was
small relative to v, the cost of recovering r was negligible
relative to the cost of solving the condensed systems.

When solving the original systems, our design code
characterized ~7.7 instances per second per test fre-
quency on a single Xeon E5-2680 core; though our imple-
mentation of the presented method was suboptimal, this
rate increased to ~181.8 when solving the condensed sys-
tems, a factor of ~23.6 improvement. Characterizing all
224 admissible instances required only ~34 core-hours
per test frequency on 10 compute nodes with two
eight-core Xeon E5-2680 processors each; without ben-
efit of the method, this would have required ~800 core-
hours. Differences between powers calculated via the
condensed and original systems generally remained sev-
eral orders below the accuracy of the discretization
scheme.

Testing at 13 frequencies linearly spaced from
0.36-27¢c/a to 0.42-2zc/a, we found only seven instances
exhibiting, at minimally one test frequency, modal-
content-preserving transmission exceeding 47% to each
output waveguide. Figure 1(b) shows the defect configu-
ration of a particularly broadband, high-performing in-
stance: Over a 20 nm band at 1.55 pm, this instance
exhibits modal-content-preserving transmission exceed-
ing 48% to each output waveguide and maintains less
than 2% modal crosstalk. Figure 2 provides this instance’s
modal power transmission spectrum. Figures 3(a) and
3(b), respectively, illustrate its field pattern on excitation
of the first and second spatial modes of the input wave-
guide. To attain higher performance or bandwidth, one
could enlarge the discrete design space, or continuously
optimize, for example, cylinder radii [13].

Two primary factors impact the computational cost re-
duction the method can yield. First, we expect significant
computational cost reduction only where both the un-
knowns c¢ associated with the constant subdomain
constitute a significant fraction of each linear system’s
unknowns, and the size of  recovered on the constant
subdomain is small relative to c; this generally corre-
sponds to the constant subdomain comprising a
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Fig. 2. Modal power transmission spectrum of the selected in-
stance [Fig. 1(b)]. The blue line indicates the proportion of
power transmitted from the first TM spatial mode on the input
waveguide to the same mode on either of the output wave-
guides. The purple line indicates the analog for the second
TM spatial mode. The red line indicates the proportion of power
transmitted from the first TM spatial mode on the input wave-
guide to the second TM spatial mode on either of the output
waveguides (modal crosstalk). The orange line indicates the
analog for the second TM spatial mode.

substantial portion of each structure, and interest in
the solution on the constant subdomain being confined
to small parts of that subdomain. Second, most discreti-
zation schemes produce linear systems with properties
that enable efficient solution. Where these properties are
diminished in the condensed linear systems, solving the
condensed linear systems may require methods with
higher complexity. In this case, the higher complexity
may offset the computational cost reduction resulting
from the condensed linear systems’ decreased size. That
said, the condensed linear systems often preserve the
original linear systems’ properties. For example, sym-
metry is preserved in the condensed linear systems.
Similarly, only sparsity within the block A, is impacted,
and this block is typically relatively small. As such, where
efficient solution methods for the original linear systems
exist, it may be possible to adapt them to the condensed
linear systems, as the example presented above

illustrates.
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Fig. 3. Out-of-plane electric field patterns resulting from exci-
tation of (a) the first and (b) the second TM spatial modes on
the input waveguide of the selected instance [Fig. 1(b)] at fre-
quency 0.392-2zc/a. Preservation of modal content is evident.



Concerning memory consumption, the method repla-
ces the size (N, + N, + N,) square matrix from Eq. (1),
which nominally is sparse, with the size (N, +N,)
square matrix from Eq. (5), which is identically sparse
but for fill-in in block A,,, and introduces the N, x N,
rectangular matrix from Eq. (6), which is dense. Where
the method is likely to provide significant computational
cost reduction, such as under the conditions outlined in
the preceding paragraph, this transformation typically
should lead to an acceptable impact on storage. Where
matrices are stored in dense form, memory consumption
commonly should decrease.

Finally, we note that the ideas and mechanics dis-
cussed in this Letter have a long history outside optics.
Non-overlapping domain decomposition primarily grew
out of seminal papers by Przemieniecki in structural
analysis [14] and Buzbee et al. in numerical partial differ-
ential equations [15,16]. Originally developed to enable
piecemeal treatment of problems that could not be
tackled globally, Przemieniecki’s substructuring, to
which the method presented here is mechanically simi-
lar, flourished in the structural analysis community, giv-
ing rise to and interweaving with conceptually and
mathematically similar developments in model reduction
such as Guyan’s static condensation [17] and Hurty’s
component mode synthesis [18]. The work of Buzbee
et al., with which the work in structural analysis eventu-
ally converged, led to a vast and still-growing body of
techniques for solving linear systems arising from discre-
tization of partial differential equations.

As Bjgrstad and Widlund note in [19], the structural
analysis community recognized domain decomposition’s
utility in various forms of repeated analysis within 20
years of Przemieniecki’s development. This realization
has since made its way into the broader computational
electromagnetics community; see, for example, similar
work in the microwave domain [20]. With few exceptions
such as [21], however, this particular utility of domain
decomposition does not appear well known in the optics
community, though domain decomposition’s more tradi-
tional uses in parallelization and piecemeal handling of
large problems certainly are. In summary, here we have
shown the value of domain decomposition techniques for
accelerating repeated analysis in optical structure
design.
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