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Fundamental bounds on decay rates in asymmetric
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We derive tight upper and lower bounds of the ratio between decay rates to two ports from a single resonance
exhibiting Fano interference, based on a general temporal coupled-mode theory formalism. The photon transport
between these two ports involves both direct and resonance-assisted contributions, and the bounds depend only on
the direct process. The bounds imply that, in a lossless system, full reflection is always achievable at Fano reso-
nance, even for structures lacking mirror symmetries, while full transmission can only be seen in a symmetric con-
figuration where the two decay rates are equal. The analytic predictions are verified against full-field

electromagnetic simulations.
OCIS codes: 230.5750, 230.5298.

The properties of optical resonances [1-9], such as guided
resonance in photonic crystal slabs [10-19], can be de-
scribed by the temporal coupled-mode theory model
shown in Fig. 1. A special case of the model consists of
a resonator coupled to two ports with external coupling
rates 1/7; and 1/7,, respectively. In addition, the two
ports may couple directly as a background process in
the absence of the resonance. Such simultaneous pre-
sence of the direct (i.e., background) and the indirect
(i.e., resonance-mediated) pathways gives rise to the Fano
interference [13,20].

If the structure is asymmetric with respect to its
midplane [see, for example, the photonic crystal slab
structure in Fig. 2(a)], r; and 7, could be different. In this
Letter, we show that the ratio between r; and 7, is
constrained as follows by the direct process of the
photon transport:
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where r is the amplitude reflection coefficient of the
direct process. This inequality implies the existence of
perfect reflection in the vicinity of the Fano resonance
for arbitrarily asymmetric structures.

To prove Eq. (1), we start by reviewing the temporal
coupled-mode theory model of Fig. 1. In this model,
the dynamics of the resonance-mode amplitude u is
described by
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where |u|?> corresponds to the electromagnetic energy
in the resonance; w, is the center frequency of the
resonance; 1/7; +1/79 = 1/7 is the total decay rate,

assuming that the resonance decays into the two ports
with decay rates 1/7; and 1/7,, respectively; s;, and
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Sy, are the amplitudes of the incoming waves from the
two ports; s;_ and s,_ are the amplitudes of the outgoing
waves; and d; and d, are the coupling coefficients
between the ports and the resonance. In addition to the
resonance-assisted photon transport, the incoming and
outgoing waves may also couple directly, as described
by the direct-transport scattering matrix
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where ¢ is a phase factor depending on the positions of
the reference planes (dashed lines in Fig. 1), and 7 and ¢,
both being real, are the reflection and transmission coef-
ficients of the direct process satisfying 7> + > = 1.
According to energy conservation and time-reversal
symmetry [13], the coupling coefficients satisfy
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Fig. 1. (Color online) Schematic of a single resonance coupled
to two ports. The amplitude of an output electromagnetic wave,
either reflected or transmitted, is the sum of an indirect
(resonance-assisted) component and a direct (background)
component.
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The formalism above is general. In [13], these
equations were applied to symmetric structures where
1/7; = 1/7,. Here we consider the more general asym-
metric case where the decay rates 1/7; and 1/7, are
not necessarily equal. From Egs. (4) and (6), we have

d; = - (rd} + jtd3), )
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Substituting Eq. (7) into Eq. (5), we could solve for d in
terms of dj:
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Next, substituting Egs. (8) and (9) into Eq. (5), we obtain
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Rearranging the terms in Eq. (10), we get
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where ¢' = ¢ —j In(dj/d;). ¢' € R because dj/d; has
the form ¢, where 6 € R. Consequently, the bound
-1 < cos ¢ <1 gives the constraint on the ratio between
the two decay rates, as in Eq. (1).

Equation (1) indicates that, in general, the ratio be-
tween the two decay rates cannot be arbitrarily specified
but is rather constrained by the direct process. In parti-
cular, if » =0, that is, the background transmission
pathway has a 100% coefficient, then 7; = 75 even for
structures that have apparent asymmetry. On the other
hand, a large difference in decay rates can occur when
the background reflection coefficient r is large.

The theoretical derivation above is applicable to any
single-mode optical resonator system. To verify the
validity of the theory, we compare the bound in Eq. (1)
with first-principles simulations [21,22] of one type of
optical resonance: the guided resonance in a photonic
crystal slab. We consider the asymmetric structure in
Fig. 2(a), which consists of two layers of slabs. The first
layer is a photonic crystal slab consisting of a square
lattice of air holes. The slab has a dielectric constant
of 12 and a thickness of 0.1a, where a is the lattice
constant. Each air hole has a radius of 0.3a. The second
layer is identical to the slab in the first layer but without
the air holes. This asymmetric structure exhibits guided
resonances, as shown in the plot of its transmission spec-
trum in Fig. 2(b).

In order to test different asymmetric structures, we
next vary the following parameters of the asymmetric
structure in Fig. 2(a): the number of layers, the thick-
nesses of the layers, the shape and size of the periodic
pattern, and the dielectric constants of the materials
and their superstrate and substrate. For each of these
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Fig. 2. (Color online) Asymmetric photonic crystal slab and its
transmission spectrum. (a) Asymmetric photonic crystal slab
structure consisting of two layers. The top layer has a square
lattice of air holes of radius 0.3a introduced into a slab with
dielectric constant 12 and thickness of 0.1a, where a is the lat-
tice constant. The bottom layer is a uniform slab of the same
material and thickness. (b) Transmission spectra of the photo-
nic crystal slab at normal incidence. The temporal coupled-
mode theory results agree well with the simulation.

structures with varying geometries and materials, we
calculate 7; or 7, of the resonance by studying the expo-
nential temporal decay of the resonance amplitude after
excitation. To establish the direct-scattering matrix C
and in particular to determine the value of the back-
ground reflection coefficient 7, we fit the transmission
spectrum to a Fabry-Perot background, or a transmis-
sion spectrum of a uniform slab with an effective thick-
ness and a frequency-dependent effective dielectric
constant [11,13]. In Fig. 3, we plot the lifetime ratio ver-
sus reflection coefficient for 50 of the structures with »
ranging from 0 to 1. All results fall between the theore-
tical bounds given in Eq. (1).

Similar to the symmetric case [13], we could analyti-
cally solve the coupled-mode equations to obtain the
transmission or reflection spectra:
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where 1/c=1/7;4+1/73 and 1/o=1/71-1/15.
Equation (12) is valid for any 7; and 7. Nonetheless,
the bounds in Eq. (1) impose additional constraints on
the value of R. In particular, for 7, /75 values within the
bounds, zero transmission always occurs at
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Fig. 3. (Color online) Scatterplot of the r and 7, /7, values of
50 different asymmetric photonic crystal slabs. (Each of the
data points is reflected with respect to the line of 7; = 7, be-
cause the subscripts are interchangeable, and there are in total
100 scatter points in the plot.) 7 is obtained by fitting the simu-
lated spectrum with a Fabry-Perot background characteristic
of the direct process. 7, /7, is obtained by comparing the elec-
tromagnetic flux leaking above and below the structure.
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As aresult, we could design a perfect mirror with arbi-
trarily asymmetric single-mode resonators. This is in
contrast to the Fabry—Perot resonance, where transmis-
sion could only approach zero at high finesse. We further
note that the transmission maximum is 47,75 /(z; + 73)?,
which can only be unity at
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Finally, we compare the transmission spectra for the
photonic crystal slab calculated by the coupled-mode
theory result in Eq. (12) and by full-field electromagnetic
simulation [21]. The simulation result, shown as circles in
Fig. 2(b), consists of Fano resonance line shapes super-
imposed on a smooth Fabry-Perot background. Again,
we determine from the simulations the frequency w
and the widths 1/7; and 1/75; of each resonance and
the frequency-dependent reflection coefficient » of the
Fabry—Perot background. We then calculate the theore-
tical spectrum using Eq. (12) and plot it as a solid curve in
Fig. 2(b). There is excellent agreement between theory
and simulation. In particular, we note the lack of 100%
transmission and the presence of 100% reflection [at fre-
quencies given by Eq. (13)] for both resonances in this
asymmetric configuration.

In conclusion, we analyzed the temporal coupled-
mode theory for the single-resonance, double-port sys-
tem. We found that the resonance-assisted pathway is
restricted by the direct pathway in the sense that there
exist tight bounds [Eq. (1)] on the ratio between the re-
sonance decay rates into the two ports. These bounds
have interesting consequences, such as the existence
of total reflection in any single-mode resonance, and

could serve as a guideline for controlling the proportion-
ality of the energy decay into the two coupling ports of
the system. The result can be a useful tool for designing
resonance-based photonic devices with asymmetric
structures. It would be of interest to extend this work
to account for more complex situations involving multi-
ple resonances and multiple ports [20,23].
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