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Abstract Conventional light-trapping theory, based on a
ray-optics approach, was developed for standard thick pho-
tovoltaic cells. The classical theory established an upper
limit for possible absorption enhancement in this context
and provided a design strategy for reaching this limit. This
theory has become the foundation for light management in
bulk silicon PV cells, and has had enormous influence on
the optical design of solar cells in general. This theory, how-
ever, is not applicable in the nanophotonic regime. Here we
develop a statistical temporal coupled-mode theory of light
trapping based on a rigorous electromagnetic approach. Our
theory reveals that the standard limit can be substantially
surpassed when optical modes in the active layer are con-
fined to deep-subwavelength scale, opening new avenues for
highly efficient next-generation solar cells.

1 Introduction

Light trapping allows photovoltaic (PV) cells to absorb sun-
light using an active material layer that is much thinner than
the material’s intrinsic absorption length. This then reduces
the amount of materials used in PV cells, which cuts cell cost
in general, and moreover facilitates mass production of PV
cells that are based on less abundant materials. In addition,
light trapping can improve cell efficiency, since thinner cells
provide better collection of photo-generated charge carriers,
and potentially a higher open circuit voltage [1].

The theory of light trapping was initially developed for
conventional cells where the light-absorbing film is typically
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many wavelengths thick [2–4]. From a ray-optics perspec-
tive, conventional light trapping exploits the effect of total
internal reflection between the semiconductor material (such
as silicon, with a refractive index n ∼ 3.5) and the surround-
ing medium (usually assumed to be air). By roughening the
semiconductor-air interface (Fig. 1a), one randomizes the
light propagation directions inside the material. The effect of
total internal reflection then results in a much longer prop-
agation distance inside the material and hence a substantial
absorption enhancement. For such light-trapping schemes,
the standard theory shows that the absorption enhancement
factor has an upper limit of 4n2/ sin2 θ [2–4], where θ is the
angle of the emission cone in the medium surrounding the
cell (Fig. 1a). This limit of 4n2/ sin2 θ will be referred to in
this paper as the conventional limit. This is in contrast to the
4n2 limit, which strictly speaking is only applicable to cells
with isotropic angular response.

For nanoscale films with thicknesses comparable or even
smaller than wavelength scale, some of the basic assump-
tions of the conventional theory are no longer applicable.
Whether the conventional limit still holds thus becomes an
important open question that has been pursued both numer-
ically [5–15] and experimentally [16–23]. In this paper, we
review our recent work on nanophotonic light-trapping the-
ory where we use a statistical coupled-mode theory that de-
scribes light trapping in general from a rigorous electromag-
netic perspective [24–26]. Applying this theory, we show
that the limit of 4n2/ sin2 θ is only correct in bulk struc-
tures. In the nanophotonic regime, the absorption enhance-
ment factor can go far beyond this limit with proper design.

The paper is organized as follows: in Sect. 2, we re-
view the framework of nanophotonic light-trapping theory;
in Sect. 3, we apply the theory to periodic structures; in
Sect. 4, we show that the conventional light-trapping limit
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Fig. 1 (a) Schematic of light trapping with random texture. (b) Light-
trapping with the use of a periodic grating on a back-reflector (yellow).
d = 2 µm. L = 250 nm. The depth and width of the dielectric groove in
the grating are 50 nm and 175 nm, respectively. The dielectric material
is crystalline silicon. (c) Absorption spectrum (TM mode, normal in-
cidence) and dispersion relation of waveguide modes for the structure

in (b). The dispersion relation is approximated as ω = c
n
[(mπ

d
)2 + k2‖],

or equivalently in terms of free-space wavelength λ = 2πn

(mπ/d)2+k2‖
,

where m = 1,2,3, . . . is the band index indicating the field variation
in the transverse direction. Resonances occur when k‖ = 2π/L (red
dots)

can be significantly exceeded with the use nanoscale modal
confinement; Sect. 5 is the conclusion.

2 Framework of nanophotonic light-trapping theory

To illustrate our theory, we consider a high-index thin-film
active layer with a high reflectivity mirror at the bottom, and
air on top. Such a film supports guided optical modes. In
the limit where the absorption of the active layer is weak,
these guided modes typically have a propagation distance
along the film that is much longer than the thickness of the
film. Light trapping is accomplished by coupling incident
plane waves into these guided modes, with either a grating
with periodicity L (Fig. 1b ) or random Lambertian rough-
ness (Fig. 1a). It is well known that a system with random
roughness can be understood by taking the L → ∞ limit of
the periodic system [10, 27]. Thus, we will focus on peri-
odic systems. As long as L is chosen to be sufficiently large,
i.e. at least comparable to the free-space wavelength of the
incident light, each incident plane-wave can couple into at
least one guided mode. By the same argument, such a guided
mode can couple to external plane waves, creating a guided
resonance [28].

A typical absorption spectrum for such a film [6] is re-
produced in Fig. 1c. The absorption spectrum consists of
multiple peaks, each corresponding to a guided resonance.
The absorption is strongly enhanced in the vicinity of each
resonance. However, compared to the broad solar spectrum,

each individual resonance has very narrow spectral width.
Consequently, to enhance absorption over a substantial por-
tion of the solar spectrum, one must rely upon a collection
of these peaks. Motivated by this observation, we develop a
statistical temporal coupled-mode theory that describes the
aggregate contributions from all resonances.

We start by identifying the contribution of a single res-
onance to the total absorption over a broad spectrum. The
behavior of an individual guided resonance, when excited
by an incident plane wave, is described by the temporal
coupled-mode theory equation [29, 30]:

d

dt
a =

(
jω0 − Nγe + γi

2

)
a + j

√
γeS. (1)

Here a is the resonance amplitude, normalized such that |a|2
is the energy per unit area in the film, ω0 is the resonance
frequency, and γi is the intrinsic loss rate of the resonance
due to material absorption. S is the amplitude of the incident
plane wave, with |S|2 corresponding to its intensity. We refer
to a plane wave that couples to the resonance as a channel.
γe is the leakage rate of the resonance to the channel that
carries the incident wave. In general, the grating may phase-
match the resonance to other plane-wave channels as well.
We assume a total of N such channels. Equivalent to the
assumption of a Lambertian emission profile as made in Ref.
[2], we further assume that the resonance leaks to each of the
N channels with the same rate γe. Under these assumptions,
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the absorption spectrum of the resonance is [29]

A(ω) = γiγe

(ω − ω0)2 + (γi + Nγe)2/4
. (2)

For light-trapping purposes, the incident light spectrum is
typically much wider than the linewidth of the resonance.
When this is the case, we characterize the contribution of a
single resonance to the total absorption by a spectral cross
section:

σ =
∫ ∞

−∞
A(ω)dω. (3)

Notice that spectral cross section has units of frequency, and
has the following physical interpretation: For an incident
spectrum with bandwidth �ω � σ , a resonance contributes
an additional σ/�ω to the spectrally averaged absorption
coefficient.

For a single resonance, from (2) and (3), its spectral cross
section is

σ = 2πγi

1

N + γi/γe

(4)

which reaches a maximum value of

σmax = 2πγi

N
(5)

in the over-coupling regime when γe � γi . We emphasize
that the requirement to operate in the strongly over-coupling
regime arises from the need to accomplish broadband ab-
sorption enhancement. In the opposite narrow-band limit,
when the incident radiation is far narrower than the reso-
nance bandwidth, one would instead prefer to operate in the
critical coupling condition by choosing γi = Nγe, which re-
sults in (100/N)% absorption at the resonant frequency of
ω0. The use of critical coupling, however, has a lower spec-
tral cross section and is not optimal for the purpose of broad-
band enhancement. The intrinsic decay rate γi differentiates
between the two cases of broad-band and narrow-band. For
light trapping in solar cells, we are almost always in the
broad-band case where the incident radiation has bandwidth
�ω � γi .

We can now calculate the upper limit for absorption by a
given medium, by summing over the maximal spectral cross
section of all resonances:

AT =
∑

σmax

�ω
= 1

�ω

∑
m

2πγi,m

N
(6)

where the summation takes place over all resonances (la-
beled by m) in the frequency range of [ω,ω + �ω]. In the
over-coupling regime, the peak absorption from each res-
onance is in fact relatively small; therefore the total cross
section can be obtained by summing over the contributions

from individual resonances. In addition, we assume that the
medium is weakly absorptive such that single-pass light ab-
sorption is negligible.

Equation (6) is the main result of this paper. In the fol-
lowing discussion, we will first use (6) to reproduce the
well-known 4n2 conventional limit, and then consider a few
important scenarios where the effect of strong light confine-
ment becomes important.

We first consider a structure with period L and thick-
ness d that are both much larger than the wavelength. In
this case, the resonance can be approximated as propagat-
ing plane waves inside the bulk structure. Thus, the intrin-
sic decay rate for each resonance is related to a material’s
absorption coefficient α0 by γi,m = γi = α0

c
n

. Equation (6)
thus can be simplified as

AT = 2πγi

�ω
· M

N
(7)

where M is the number of resonances in the frequency range
[ω,ω + δω] given by [31]

M = 8πn3ω2

c3

(
L

2π

)2(
d

2π

)
δω. (8)

Each resonance in such frequency range can couple to chan-
nels that are equally spaced by 2π

L
in the parallel wavevector

k‖ space (Fig. 2a). Moreover, since each channel is a prop-
agating plane wave in air, its parallel wavevector needs to
satisfy |k‖| ≤ ω/c. Thus, the number of channels is

N = 2πω2

c2

(
L

2π

)2

. (9)

From (7), the upper limit for the absorption coefficient for
this system is then

AT = 2πγi

�ω
· M

N
= 4n2α0d (10)

resulting in the upper limit for the absorption enhancement
factor F ,

F ≡ AT

α0d
= 4n2 (11)

which reproduces the 4n2 conventional limit, appropriate for
the Lambertian emission case with sin θ = 1. The theory can
be generalized to the case of a restricted emission cone, and
reproduces the standard result of 4n2/ sin2 θ .

The analysis here also points to scenarios where the con-
ventional limit is no longer applicable. Equation (9) is not
applicable when the periodicity is comparable to the wave-
length, while (8) is not valid when the film thickness is much
smaller than the wavelength. Below, we consider both of
these cases.
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Fig. 2 (a) Schematic of a
grating structure. Brown ribbons
are non-absorptive dielectric
medium. The whole structure is
placed on a perfect mirror
(yellow). (b) Upper limit of
absorption enhancement in 1D
grating films without mirror
symmetry. (c) Channels in 1D
k-space. (d) Resonances in a
film with 1D grating. Dots
represent resonances

3 Light trapping in periodic grating structures

When the periodicity L is comparable to the wavelength λ,
the discrete nature of the channels becomes important. To il-
lustrate this effect, we assume that the film has a high refrac-
tive index (for example, silicon), such that the wavelength in
the material is small compared with the periodicity. We also
assume that the film has a thickness of a few wavelengths.
In this case, all modes have approximately the same decay
rate γi = α0

c
n

, (8) can still be used to count the number of
resonances.

3.1 Theoretical upper limit of enhancement factor for 1D
grating structures

We first consider a 1D grating defined by structures that are
uniform in one dimension, e.g. y-direction, and are periodic
in the other dimension (x-direction in Fig. 2a) with a peri-
odicity L. We consider incident light propagating in the xz-
plane. We also assume a general case where the grating pro-
file has no mirror symmetry along the x-direction (Fig. 2a).
The effect of symmetry will be described later.

For light incident from the normal direction, the peri-
odicity results in the excitation of other plane waves with
kx = 0, ±2π/L, ±4π/L, . . . in the free space above. More-
over, since these plane waves are propagating modes in air,
one needs to have kx ≤ k0, where k0 is the wavevector of the
incident light. These two requirements completely specify
the number of channels available in k-space (Fig. 2a).

We first consider the case L � λ. The spacing of the
channel is 2π

L

 2π

λ
= k0. The discreteness of the chan-

nels is therefore not important. The total number of channels
(Fig. 2c) at wavelength λ thus becomes

N = 2k0

2π/L
= 2L

λ
. (12)

Notice that we consider only a single polarization. In the
frequency range [ω,ω + �ω], the total number of guided
resonances supported by the film is (Fig. 2d):

M = 2n2πω

c2

(
L

2π

)(
d

2π

)
�ω. (13)

Combining (7, 12–13), we obtain the upper limit for absorp-
tion enhancement

F = A

dα
= πn. (14)

In contrast to the bulk limit of 4n2, the enhancement fac-
tor is greatly reduced in structures that are uniform in one
of the dimensions. Since the structure considered here is es-
sentially a two dimensional structure, we refer to this limit
as the 2D bulk limit.

In the case when the periodicity is close to the wave-
length, the discreteness of the channels becomes important
and (12) is no longer valid. Instead, as shown in Fig. 2c, the
number of channels is

N = 2

⌊
k0

2π/L

⌋
+ 1 = 2

⌊
L

λ

⌋
+ 1 (15)

where �x� represents the largest integer that is smaller than
x. We further assume the medium has a high refractive index
such that the following conditions are satisfied:

L � λ/n,

d � λ/n.
(16)

Under these conditions, the resonance in the film can still be
approximated as forming a continuum of states, and (13) is
still applicable. The upper limit for the enhancement factor
is thus calculated from (7), (13) and (15). In Fig. 2b, we plot
such an upper limit as a function of normalized frequency
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Fig. 3 (a) 1D grating structure with mirror symmetry. (b) Limit of
absorption enhancement in grating structures with mirror symmetry

s ≡ L/λ. At low frequency, when L/λ < 1, there is only
one channel, i.e. N = 1, while the number of resonances in-
creases linearly with frequency. Hence the enhancement fac-
tor increases linearly with frequency, reaching its maximum
value of 2πn at L = λ. At the frequency immediately above
s = 1, the number of channels increases to N = 3, leading to
a step-function drop of the enhancement factor. In general,
such a sharp drop in enhancement factor occurs whenever
new channels appear, i.e. whenever L = mλ, where m is an
integer. Also, in between such sharp drops, the enhancement
factor always increases as a function of frequency. In the
limit of L � λ, the enhancement factor converges to the 2D
bulk limit of πn.

We now analyze the effects of the symmetry of the grat-
ing profile on the light-trapping limit. In contrast to the
asymmetrical grating profile shown in Fig. 2a, a symmetri-
cal grating has mirror symmetry in the x-direction (Fig. 3a).
Reference [32] proposes to use asymmetrical gratings to
reduce the reflection in the normal direction, and thus in-
crease the absorption. On the other hand, the semi-analytical
method in Ref. [10] finds no difference for gratings with dif-
ferent symmetries. Here, we analyze the effect of structure
symmetry on the fundamental limit of light absorption en-
hancement with our rigorous electromagnetic approach.

We first discuss the case of normally incident light. Due
to mirror symmetry of the film, resonant modes either have
an odd or even modal amplitude profile. The normally inci-
dent plane wave, which has even modal amplitude profile,
cannot couple to modes with odd profiles. Therefore, for
the symmetric case, the number of resonances that can con-
tribute to the absorption is reduced by half when compared
to the asymmetric case, i.e.:

Msym = M/2 (17)

where M is given by (13).
In the case where the period is smaller than the wave-

length, there is only one channel Nsym = N = 1. Thus, when
the period of the grating is less than the free-space wave-
length, the symmetric case has a lower enhancement limit
Fsym = F/2 (Fig. 3b).

When the period of the grating is larger than the wave-
length, there are more channels, and we also need to con-

sider the effect of symmetry on channels. Due to mirror sym-
metry, channels can be arranged as even and odd according
to

Seven = 1√
2
(Sk‖ + S−k‖)

Sodd = 1√
2
(Sk‖ − S−k‖).

(18)

Since the incident plane wave from the normal incidence has
an even modal amplitude profile, only the even resonances
can be excited, which only leak into even channels. There-
fore, the number of channels available is also reduced by
half Nsym = N/2 when L � λ. In this case, as seen in (7),
we have the same enhancement limit as that of asymmetrical
gratings Fsym = F (Fig. 3b). Thus, the symmetry of the grat-
ing is important only when the periodicity of the grating is
smaller or comparable to the wavelength of incident light. In
structures with period much larger compared with the wave-
length, the symmetry of the grating does not play a role in
determining the upper limit of absorption enhancement.

The upper limit in a 1D grating structure falls far below
the conventional bulk limit of 4n2 due to a reduced number
of resonances. To achieve a higher enhancement factor, it is
always better to use 2D gratings that are periodic in both x-
and y-direction, since a 2D grating allows access to all reso-
nances supported by a film. In the next section, we present a
detailed discussion on the upper limit of light trapping with
a 2D grating based on (7).

3.2 Theoretical upper limit of enhancement factor for 2D
grating structures

We first consider the case where the grating has a square
lattice, with a periodicity of L in both dimensions. In the
frequency range [ω,ω+�ω], assuming (16) is satisfied, the
total number of guided resonances supported by the film is
given by (8). Notice that the number of resonances increases
quadratically as a function of frequency.

When a plane wave is normally incident upon the film,
the grating can excite plane waves in other propagating di-
rections in free space. The parallel wavevectors Gm,n of
these excited plane waves in free space are

Gm,n = m
2π

L
x̂ + n

2π

L
ŷ, (19)

with m and n being integers. Hence these parallel wavevec-
tors form a square lattice in the wavevector vector space
(Fig. 4a, blue dots). Moreover, since these are propagating
plane waves, their wavevectors need to lie within a circle
as defined by |G| < k0 ≡ ω

c
(Fig. 4a, dashed line). The to-

tal number of different wavevector points, multiplied by two
in order to take into account both polarizations, defines the
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Fig. 4 (a) Channels in 2D k-space. Blue and gray dots represent chan-
nels when the incident light comes in from normal and off-normal
directions, respectively. The radius of the circle is k0. (b) Limit of
absorption enhancement in 2D grating structures. (c) Angular response

of the average enhancement factor integrated over wavelength from
λ = p to λ = 2p for a grating with a periodicity of L = p. (d) The
same as (c) except the periodicity is L = 5p

number of channels N that is required for the calculation
using (7).

At low frequency when s = L/λ < 1, there are only two
channels (N = 2), accounting for two polarizations, in the
normal direction, while the number of resonances increases
with frequency quadratically. Hence the enhancement factor
increases quadratically with frequency and reaches its max-
imum value of 4πn2 at s = 1 (Fig. 4b). Immediately above
s = 1, the wavelength becomes shorter than the period L.
The number of channels increases to N = 10, leading to a
step-function drop of the enhancement factor. In the limit of
L � λ, the calculated upper limit reproduces the 3D bulk
limit of 4n2 [24].

Next, we analyze the angular response of the upper limit
of the enhancement factor by considering a plane wave inci-
dent from a direction specified by an incidence angle θ and
an azimuthal angle ϕ. Such an incident plane wave has a par-
allel wavevector k‖ = k0 sin(θ) cos(ϕ)̂x + k0 sin(θ) sin(ϕ)ŷ.
In the presence of the grating, such a plane wave can ex-
cite other plane waves in free space with parallel wavevec-
tors:

k = k‖ + Gm,n, (20)

where Gm,n is defined in (19), provided that these parallel
wavevectors are located in a circle in k-space |k| < k0, as is
required for propagating plane waves.

In comparison to the normal incident case described
by (19), (20) defines a similar square lattice in the wavevec-
tor space, except that the positions of the lattice points in
k-space are now shifted by the parallel wavevector k‖ of the
incident plane wave (Fig. 4a). As a result of such a shift,
one can see that the number of channels N , which is propor-
tional to the number of k-space lattice points that fall within
the circle of |k| < k0, is dependent on the incidence angle.
Such angular dependency is particularly strong for the case
where there are only small numbers of channels, which oc-
curs when the periodicity is about wavelength scale.

As an example, Fig. 4a illustrates the case where the
normalized frequency s = L/λ = 0.87 < 1. For normal in-
cidence, there is only one k-space lattice point (as shown
by the blue dot in Fig. 4a) within the circle of |k| < k0

(dashed line in Fig. 4a), corresponding to two channels.
At the same frequency, for off-normal incident light with
k‖ = 0.3k0x̂ + 0.3k0ŷ, corresponding to a plane wave inci-
dent from a direction as defined by θ = 25◦, ϕ = 45◦, there
are 3 k-space lattice points within the circle of |k| < k0 (gray
dots in Fig. 4a), and hence 6 available channels. Thus, for a
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Fig. 5 (a) Channels in 2D k-space for a grating with triangular lattice
periodicity. The lattice constant is L. (b) Upper limit of absorption
enhancement for gratings with triangular lattice periodicity

plane wave incident from such an off-normal incident direc-
tion, the upper limit for absorption enhancement should be
only 1/3 of the upper limit for normally incident light. This
example illustrates that there can be substantial angular de-
pendency in absorption enhancement when the periodicity is
comparable to the wavelength. In contrast, when the period-
icity is much larger than the wavelength, the k-space lattice
points are densely distributed and the number of channels
N � 1. Therefore, the shift of the lattice points in k-space
due to different incidence angles has negligible effect on the
total number of channels. In the case where L � λ, the up-
per limit of enhancement is not sensitive to the incidence
angles.

In Fig. 4b, we provide detailed analytic results regarding
the angular dependency of the upper limit of absorption en-
hancement. We consider a grating with a period L = p. For
each direction of incidence as specified by an angle of inci-
dence θ and an azimuthal angle of ϕ, we calculate the upper
limit F at each frequency using (7). We then average the up-
per limit F calculated over the wavelength range between
λ = p to λ = 2p, and plot the spectral average F as a func-
tion of θ and ϕ in Fig. 4c. In this case, the grating period is
smaller than the wavelength of interest. In the vicinity of the
normal direction, F is approximately 8n2. Thus, it is possi-
ble to use a grating structure to obtain broad-band enhance-
ment of absorption higher than 4n2 (Fig. 4c). This result is
consistent with Fig. 4b: the wavelength range corresponds
to a range of 0.5 ≤ s ≤ 1, where the enhancement factor is
above 4n2. However, when the incident light deviates from
normal direction, F starts to drops (Fig. 4c). For incidence
angles larger than 60◦, F drops well below 4n2, showing a
strong angular dependency.

As a second example, we consider the case where the pe-
riod L = 5p nm, and the same wavelength range, which for
this grating periodicity corresponds to the normalized fre-
quency range 2.5 ≤ s ≤ 5. In this case, the period is consid-
erably larger than the wavelength, and the number of chan-
nels is much larger than 1. The spectrally averaged upper
limit of enhancement has much weaker angular dependency.
As shown in Fig. 4d, F is around 4n2 for all incidence an-
gles, showing a near-isotropic response.

Finally, we briefly comment on the influence of the lattice
periodicity of the grating structure. The analysis above has
focused on square lattices. In practice, a triangular lattice is
often found in closely packed nanoparticles and nanowires
[33]. For a grating with a triangular lattice with period L, the
channels form a triangular lattice in k-space (Fig. 5a). The
distance between the channel at the origin of k-space and
its nearest neighbors is kT = (2/

√
3)2π/L, which is larger

than that of the square lattice kS = 2π/L. As a result, for
normally incident light, the frequency range where the grat-
ing operates with only 2 channels is larger (0 < s < 2/

√
3)

compared to the case of the square lattice (0 < s < 1). This
leads to a higher maximum enhancement factor 8n2π/

√
3

(Fig. 5b). On the other hand, as the period becomes larger,
the maximum enhancement ratios in gratings with different
lattices all converge to the same bulk limit of 4n2.

To conclude this section on the theoretical analysis of 2D
grating structures, we note that a grating with wavelength
scale periodicity can achieve an absorption enhancement
factor that is higher than 4n2 over a broad-range of wave-
lengths. Such enhancement, however, comes at the expense
of substantial angular dependency. As a result, a grating
structure in general, when the film thickness is a few wave-
length thick, cannot overcome the conventional bulk limit of
4n2/ sin2 θ . On the other hand, a grating structure with pe-
riodicity much larger than the wavelength has enhancement
factor approaching 4n2 with near-isotropic response.

4 Nanophotonic light trapping beyond conventional
limit

4.1 Light-trapping in thin films

We have described the light-trapping properties for films
with thickness d much larger than the wavelength. In these
situations, we use (8) to count the number of resonances in
the films. When the thickness d of the film is comparable to
half wavelength in material, one can reach the single-mode
regime where the film supports a single waveguide mode
band for each of the two polarizations. In such a case, (8) is
no longer applicable. Instead, the number of resonances in
the frequency range of [ω,ω + δω] can be calculated as

M = 2 × 2πn2
wgω

c2

(
L

2π

)2

δω (21)

where the first factor of 2 arises from counting both polar-
izations. (Here, to facilitate the comparison to the standard
conventional limit, for simplicity, we have assumed that the
two polarizations have the same group index nwg .) Notice
that in this case the number of modes no longer explicitly
depends upon the thickness d of the film.
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In order to highlight the effect of such strong light con-
finement, we choose the periodicity to be a few wavelengths,
in which case the number of channels can still be calculated
using (9). As a result we obtain the upper limit for the ab-
sorption enhancement factor:

F = 2 × 4n2
wg

λ

4nwgd
V (22)

where the factor V = αwg

α0
characterizes the overlapping be-

tween the profile of the guided mode and the absorptive ac-
tive layer. αwg and nwg are the absorption coefficient and
group index of the waveguide mode, respectively.

Equation (22) in fact becomes 4n2 in a dielectric waveg-
uide of d ≈ λ/2n. Therefore, reaching a single-mode regime
is not sufficient to exceed the conventional limit. Instead,
to achieve the full benefit of nanophotonics, one must ei-
ther ensure that the modes exhibit deep-subwavelength-
scale electric-field confinement, or enhance the group index
to be substantially larger than the refractive index of the ac-
tive material, over a substantial wavelength range. Below,
using both exact numerical simulations and analytic theory,
we will design geometries that simultaneously satisfy both
these requirements.

4.2 Light-trapping enhancement beyond the classical limit
using nanoscale modal confinement

Guided by the theory above, we now numerically demon-
strate a nanophotonic scheme with an absorption enhance-
ment factor significantly exceeding the conventional limit.
We consider a thin absorbing film with a thickness of 5 nm
(Fig. 6a), consisting of a material with a refractive index
nL = √

2.5 and a wavelength-independent absorption length
of 25 µm. The film is placed on a mirror that is approxi-
mated to be a perfect electric conductor (PEC). A PEC mir-
ror is used for simulation convenience. In practice, it can
be replaced by a dielectric cladding layer, which produces
similar results [24]. Our aim here is to highlight the essen-
tial physics of nanophotonic absorption enhancement. The
choice of material parameters therefore represents a simpli-
fication of actual material response. Nevertheless, we note
that both the index and the absorption strength here are char-
acteristic of typical organic photovoltaic absorbers in the
weakly absorptive regime [34]. Furthermore, there is gen-
eral interest in using thinner absorbers in organic solar cells
given their short exciton diffusion lengths of about 3–10 nm
[35–37].

In order to enhance the absorption in the active layer, we
place a transparent cladding layer (nH = √

12.5) on top of
the active layer. Such a cladding layer serves two purposes.
First, it enhances density of state. The overall structure sup-
ports a fundamental mode with group index nwg close to nH ,
which is much higher than that of the absorbing material.

Fig. 6 Structure for overcoming the conventional light-trapping limit.
(a) A nanophotonic light-trapping structure. The scattering layer
consists of a square lattice of air groove patterns with periodicity
L = 1200 nm. The thicknesses of the scattering, cladding, and active
layers are 80 nm, 60 nm, and 5 nm, respectively. The mirror layer is a
perfect electric conductor. (b) The profile of electric-field intensity for
the fundamental waveguide mode. Fields are strongly confined in the
active layer. To obtain the waveguide mode profile, the scattering layer
is modeled by a uniform slab with an averaged dielectric constant

Second, the index contrast between active and cladding layer
provides nanoscale field confinement. Figure 6b shows the
fundamental waveguide mode. The field is highly concen-
trated in the low-index active layer, due to the well-known
slot-waveguide effect [38]. Thus, the geometry here allows
the creation of a broad-band high-index guided mode, with
its energy highly concentrated in the active layer, satisfying
the requirement in (22) for high absorption enhancement.

In order to couple incident light into such nanoscale
guided modes, we introduce a scattering layer with a peri-
odic pattern on top of the cladding layer, with a periodic-
ity L much larger than our wavelength ranges of interest.
Each unit cell consists of a number of air grooves. These
grooves are oriented along different directions to ensure that
scattering strength does not strongly depend on the angles
and polarizations of the incident light. We emphasize that
there is no stringent requirement on these grooves as long as
the scattering strength dominates over resonance absorption
rates.

We simulate the proposed structure by numerically solv-
ing Maxwell’s equations (Fig. 7a). The device has a spec-
trally averaged absorption enhancement factor of F = 119
(red line) for normally incident light. (All the absorption
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Fig. 7 Absorption of light-trapping structures. (a) Absorption spec-
trum for normally incident light for the structure shown in Fig. 6a. The
spectrally averaged absorption (red solid line) is much higher than both
the single-pass absorption (light gray dashed line) and the absorption
as predicted by the limit of 4n2

L (dark gray dashed line). The verti-
cal axis is the absorption coefficient. (b) Absorption spectrum without
nanoscale light confinement. The structure is the same as that of (a)
except that the dielectric constant of the active layer is now the same

as the cladding layer. The dark gray dashed line represents the absorp-
tion as predicted by the limit of 4n2

H . (c, d) Angular dependence of the
spectrally averaged absorption enhancement factor for the structure in
Fig. 6a. Incident angles are labeled on top of the semi-circles. Incident
planes are oriented at 0 (c) and 45 (d) degrees (azimuthal angles) with
respect to the [10] direction of the lattice. The red circles represent the
4n2

L limit

spectra and enhancement factors are obtained by averag-
ing s and p polarized incident light.) This is well above the
conventional limit for both the active material (4n2

L = 10)

and the cladding material (4n2
H = 50). Moreover, the angu-

lar response is nearly isotropic (Fig. 7c, d). Thus such en-
hancement cannot be attributed to the narrowing of angular
range in the emission cone, and instead is due entirely to the
nanoscale field confinement effect.

Using our theory, we calculate the theoretical upper limit
of light-trapping enhancement in this structure [24]. For
wavelength λ = 500 nm, we obtain an upper limit of F =
147. The enhancement factor observed in the simulation is
thus consistent with this predicted upper limit. The actual
enhancement factor obtained for this structure falls below
the calculated theoretical upper limit because some of the
resonances are not in the strong over-coupling regime.

To illustrate the importance of nanoscale field confine-
ment enabled by the slot-waveguide effect, we change the
index of the material in the absorptive layer to nH . Such a
structure does not exhibit the slot-waveguide effect. The av-
erage enhancement in this case is only 37, falling below the
conventional limit of 50 (Fig. 7b).

4.3 Light-trapping for infinitesimal inclusions

The microscopic physics of the enhancement in the numer-
ical example above is related to the Lorentz local field ef-
fect (34). In this section, using (6), we provide an analytic
expression capturing the effect of local field enhancement
on light trapping. To obtain a close-form analytic result, we
examine a small inclusion with a relevant dimension at a
deep sub-wavelength scale, of a lossy material with a low
index nL and a small absorption coefficient α0, embedded
in a lossless bulk medium with high index nH . We study the
effect of absorption enhancement when light trapping is per-
formed on the bulk, by, for example, roughening the bulk-air
interface (Fig. 8). To facilitate the computation, we assume
a periodic boundary condition in the xy-plane with a large
periodicity L, and a thickness of D for the bulk medium.

To apply (6), we first calculate the intrinsic loss rate γi,m

of the mth resonance mode having a modal electric field
�Em(�r):

γi,m = α0nL

c

∫
inclusion n2

L| �Em(�r)|2 d�r∫
n2(�r)| �Em(�r)|2 d�r . (23)
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Fig. 8 Illustration of a small
active region embedded in a
bulk host material. (a) A thin
layer; and (b) a spherical
inclusion

Since the inclusion is small, the field �Em(�r) can be derived
from a corresponding plane wave mode in a uniform bulk
medium with an electric field �Em(�r) = �E0

mei�km·�r having an
amplitude | �E0

m| = E0. Outside the inclusion region, we as-
sume �Em(�r) = �E0

m(�r). The denominator in (13) thus be-
comes∫

n2(�r)∣∣ �Em

(�r)∣∣2
d�r ≈ n2

H E2
0L2D. (24)

Inside the inclusion, the electric fields �Em(�r) can be deter-
mined by boundary conditions.

We consider the structure in Fig. 5a first, where a thin
lossy layer perpendicular to the z-axis, of a thickness d , is
embedded in the high-index bulk. Inside the thin layer, ap-
plying the electric-field boundary condition, we have

�Em

(�r) = E0
x,m

(�r)x̂ + E0
y,m

(�r)ŷ +
(

n2
H

n2
L

)
E0

z,m

(�r)ẑ. (25)

Combining (23), (24), and (25), we therefore have

γi,m = α0c

nL

n2
L

(|E0
x,m|2 + |E0

y,m|2 + n2
H

n2
L

|E0
z,m|2)

n2
H E2

0

d

D
. (26)

Thus, the enhancement ratio becomes

F = 1

α0d
· 2π

�ω
·
∑

m γi,m

N
= 4n2

L

(
2

3

nH

nL

+ 1

3

n5
H

n5
L

)
. (27)

In deriving (27), we note that

∑
m

|Ex,m|2 =
∑
m

|Ey,m|2 =
∑
m

|Ez,m|2 = 1

3
ME2

0 . (28)

We also use the relation 2π
�ω

M
N

· α0nH

c
= 4n2

H α0D, as derived
in a previous section (see (10)).

Equation (27) is consistent with [39]. Our theoretical
framework, however, is very general and allows us to treat
many other light-trapping scenarios as well. As another ex-
ample (Fig. 8b), we calculate the light-trapping enhance-
ment factor for a small spherical inclusion having a volume

Vs embedded in a bulk medium, by noting that inside the
sphere, the field is [40]

∣∣ �Em(r)
∣∣ = 3n2

H

2n2
H + n2

L

E0. (29)

Following the same procedure as outlined above from the
thin layer case, we have an absorption enhancement factor
of

Fsphere = 4n2
L

9n5
H /n5

L

(2n2
H /n2

L + 1)2
(30)

when compared the single-pass absorption rate of a sphere
of αVs/L

2.
The analytic results thus show that embedding low-index

absorptive inclusions in a high-index medium can signif-
icantly enhance light absorption beyond the conventional
limit, in consistency with the numerical results of the previ-
ous section. The combination of wave effects with the local
field effects may provide significant flexibilities for design
of light absorption enhancement, with potentials for even
higher absorption enhancement factor.

5 Conclusion

We have developed a statistical coupled-mode theory for
nanophotonic light trapping, and shown that properly de-
signed nanophotonic structures can achieve enhancement
factors that far exceed the conventional limit. Our results
presented here indicate substantial opportunity for nanopho-
tonic light-trapping using only low-loss dielectric compo-
nents. The basic theory moreover, is generally applicable
to any photonic structure, including nanowire [41, 42] and
plasmonic structures [43]. In plasmonic structures in par-
ticular, the presence of nanoscale guided modes may also
provide opportunities to overcome the conventional limit.
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