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We show that a high-Q optical resonance can be created dynamically, by inducing a photonic
transition between a localized state and a one-dimensional continuum through refractive index
modulation. In this mechanism, both the frequency and the external linewidth of a single resonance
are specified by the dynamics, allowing complete control of the resonance properties. An example
using photonic crystal heterostructure cavity is demonstrated with numerical simulation. We also
show that the reported effect can be accomplished with realistic index modulation strength and
frequencies. © 2010 American Institute of Physics. �doi:10.1063/1.3279130�

Resonance appears when a localized state couples to a
continuum. In photonics, of particular interest is when the
localized state is supported by an optical microcavity, and the
continuum is one-dimensional such as in a waveguide. Such
waveguide-cavity configurations find applications in filters,
sensors, switches, slow-light structures, and quantum infor-
mation processing devices.1–4

In all applications of resonance, it is essential to accu-
rately control its spectral properties. For the waveguide-
cavity resonances, some of the important spectral properties
are the resonance frequency, and the external linewidth due
to waveguide-cavity coupling. The inverse of such linewidth
defines the corresponding quality factor �Q� of the cavity.

In this letter, we show that a single high-Q resonance can
be created by dynamically inducing a photonic transition be-
tween a localized state and a one-dimensional continuum.
Since the coupling between the continuum and the localized
state occurs solely through dynamic modulations, both the
frequency and the external linewidth of a single resonance
are specified by the dynamics, allowing complete control of
its spectral properties.

We start by first briefly reviewing the Anderson–Fano
model,5,6 which describes the standard waveguide-cavity
systems

H = �cc
+c +� �kak

+akdk + V� �c+ak + ak
+c�dk . �1�

Here, �c is the frequency of a localized state that is embed-
ded inside a one-dimensional continuum of states �Fig. 1�a��
defined by �k. c+�c� and ak

+�ak� are the bosonic creation �an-
nihilation� operators for localized and continuum states, re-
spectively. V describes the interaction between them. Such a
model supports a resonance at �0=�c, with an external line-
width �=2��V2 /vg� �Defined as the full width at half maxi-

mum of the resonance peak�. Here vg�
d�k

dk ��0
.

In contrast to the standard Fano–Anderson model, our
mechanism is described by the Hamiltonian �Fig. 1�b��

H = �cc
+c +� �kak

+akdk + �V + VD cos��t��� �c+ak

+ ak
+c�dk . �2�

Here, unlike in Eq. �1�, we assume that �k��c for any k.

Consequently, the static coupling term V��c+ak+ak
+c�dk no

longer contributes to the decay of the resonance. Instead it
only results in a renormalization of �c. The localized state
decays solely through the dynamic term VD cos��t���c+ak

+ak
+c�dk, which arises from modulating the system. Such

modulation induces a photonic transition7 between the local-
ized state and the continuum. �Experimentally, photonic tran-
sition has been recently observed in silicon micro ring reso-
nator structure.8�

For the Hamiltonian of Eq. �2�, one can derive an input-
output formalism9 in the Heisenberg picture, relating C�t�
=c�t�e−i�t to the input field operator aIN�t� as

d

dt
C = − i��c + ��C −

�

2
C + i	�aIN, �3�

where �=2���VD /2�2 /vg� with vg=
d�k

dk ��=�c+�. For an inci-
dent wave aIN in the waveguide, the modulated system there-
fore creates a single resonance at the frequency �0=�c+�.
Importantly, unlike the static system in Eq. �1�, here both the
frequency �0 and the external linewidth � of the resonance
are controlled by the dynamic modulation.

We now realize the Hamiltonian in Eq. �2� in a photonic
crystal heterostructure10 �Fig. 2�a��. The structure consists of
a well and two barrier regions, defined in a line-defect wave-
guide in a semiconductor ��=12.25� two-dimensional photo-
nic crystal. In the barrier regions, the crystal has a triangular
lattice of air holes with a radius r=0.3a, where a is the lattice
constant. The waveguide supports two TE�Hz ,Ex ,Ey� modes
with even and odd modal symmetry �Fig. 2�c�, light gray
lines�. In the well region, the hole spacing a’ along the wave-
guide is increased to 1.1a, which shifts the frequencies of the
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FIG. 1. �Color online� Two different coupling mechanisms between a local-
ized state and a one-dimensional continuum. �a� Static case: The frequency
�c of the localized state lies in the band of the continuum creating a reso-
nance at �0=�c. �b� Dynamic case: The localized state has its frequency �c

that falls outside the continuum. A modulation at a frequency � creates a
resonance at �0=�c+�.
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modes downward �Fig. 2�c�, dark lines� compared to those of
the barriers. As a result, the odd modes in the well and the
barriers do not overlap in frequencies. Thus, the well can
support localized states, which are essentially standing
waves formed by two counter-propagating odd modes in the
well. Figure 2�b� shows one such localized state at the fre-
quency �c=0.2252�2�c /a�, with its corresponding wave-
guide mode at the wavevector qc=−0.37�2� /a� indicated by
a red dot in Fig. 2�c�. Without modulation such a localized
state cannot leak into the barrier, and hence cannot be excited
by wave coming from the barrier.

To induce a photonic transition, we modulate the dielec-
tric constant of the well in the form of �D=���y�cos��t
−qx�. Here the modulation frequency � is chosen such that
an even mode in the well at the frequency �c+� can leak
into the barriers. The modulation wavevector q is selected to
ensure a phase-matched transition between this even mode
and the odd mode at ��c ,qc� that forms the localized state.
Since these two modes have different symmetry, the modu-
lation has an odd transverse profile: ���y�=sign�y���, with
y=0 located at the waveguide center.

In the presence of the modulation, we consider an even
mode incident from the left barrier, with a frequency � in the
vicinity of �c+�. As it turns out, for the even modes, the
transmission coefficients into and out of the well are near
unity. Thus, inside the well, the amplitudes of the even mode
�Fig. 3, blue arrow� at the two edges, Ax=0 and Ax=L, are the
input and output amplitudes of the system. As the even mode
propagates forward from x=0 to x=L, the modulation in-

duces a transition to a copropagating odd mode at �−� �Fig.
3, red arrow�. This transition process is described by11


Ax=L

Bx=L
� = �exp�iLq�� 0

0 exp�iLq�−�� 

�
	1 − 	2 i	

i	 	1 − 	2�
Ax=0

Bx=0
� , �4�

where Bx=0 and Bx=L are the amplitudes of the copropagating
odd mode at �−� at the two edges, q� and q�−� are the
wavevectors of the two modes. For weak modulation, the
transition rate 	= ��� /��L
�1, where 
 is the overlap fac-
tor between the two modes and the modulation profile.11

Once the fields reach x=L, the odd mode is completely
reflected, and propagates back to x=0. We note that no sig-
nificant photon transition occurs in the backward propaga-
tion, since the modulation profile does not phase-match be-
tween �� ,−q�� and ��−� ,−q�−��. Consequently

Bx=0 = exp�iLq�−� + i2��Bx=L, �5�

where � is the reflection phase at the well edge. Also, since
there is a localized state at �c, the round trip phase at �c is
2�Lq�c

+��=2�n where n is an integer. Therefore, the round
trip phase for the odd mode at �−���c can be approxi-
mated as

2�Lq�−� + �� � 2�n + �� − � − �c�
2L

vgc
, �6�

where vgc= d�
dk ��=�c

. Combined Eqs. �4�–�6�, the transmission
spectrum is

T =
Ax=L

eiLq�Ax=0
=

	1 − 	2 − ei��−�0�2L/vgc

1 − ei��−�0�2L/vgc	1 − 	2
�

� − �0 − i
�

2

� − �0 + i
�

2

,

�7�

where �= ��� /��2
2Lvgc /2.
The detailed microscopic theory thus predicts all-pass

filter response for this dynamic system consisting of a wave-
guide coupled to a standing-wave localized state. In contrast,
in the static system, coupling of a waveguide to a standing-
wave localized state always produces either band-pass or
band-reflection filters.2 Moreover, the resonant frequency

�0 = �c + � , �8�

and the quality factor

Qe �
�0

�
= 
 �

��
�2 2�0


2Lvgc
, �9�

are completely controlled by the modulation, in agreement
with the phenomenological model �Eq. �3��.

We numerically test the theory using finite-difference
time-domain simulations.12 We simulate a well with a length
of 9.9a. Such a well supports the localized state shown in
Fig. 2�b�. The length of the modulated region L=9.7a
�Fig. 2�a��. We excite the even modes in the left barrier,
with a Gaussian pulse centered at 0.235�2�c /a�, and a width
of 0.001�2�c /a�. Without the modulation, the transmission
coefficient �Fig. 4�a�� is near unity. With the modulation,
�with a strength �� /�=1.63�10−2, a frequency �=9.8
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FIG. 2. �Color online� �a� A photonic crystal heterostructure. The width of
the waveguide measured from the centers of the holes on the two sides is
1.33a. The highlighted rectangle represents the modulated region, which has
dimensions of 2a�9.7a. �b� Electric field �Ey� profile of a localized state in
the well. Red and blue represent positive and negative maximum ampli-
tudes. �c� Dispersion relation of the photonic crystal waveguide modes. The
dark and light gray lines are for modes in the well and barriers, respectively.
Solid �dashed� lines represent modes with even �odd� modal symmetry.
Shadowed regions are the extended modes of the crystal region of the well.
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FIG. 3. �Color online� The microscopic theory for photonic transition in the
photonic crystal heterostructure. Incident light from the barrier at a fre-
quency �, as represented by the blue arrows, couples to a mode of the well
at the frequency �−�, as represented by the red arrows. The dashed lines
indicate the edges of the well.
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�10−3�2�c /a�, and a wavevector q=0.196�2� /a��, the
transmission spectrum shows little change �Fig. 4�b��. How-
ever, the group delay now exhibits a resonant peak with a
quality factor Qe=1.09�104 �Fig. 4�c� blue line�. The struc-
ture indeed becomes a high-Q all-pass filter.

The properties of this resonance are controlled by the
modulation. The resonant frequency changes linearly with
respect to the modulation frequency, as predicted �Fig. 4�e��.
�When varying the modulation frequency, we also change the
modulation wavevector at the same time to satisfy the phase-
matching condition.� The resonance frequency is largely in-
dependent of the modulation strength �Fig. 4�e��. The width
of the resonance, and the peak delay, can be adjusted by
changing the modulation strength �Fig. 4�d��. As a compari-
son between theory �Eq. �9�� and simulations, Fig. 4�f� plots
the quality factor as a function of the modulation strength at
the fixed modulation frequency �=9.8�10−3�2�c /a�. The
simulation agrees excellently with the theory. The theory
curve is generated with only one fitting parameter: the modal
overlap factor 
=0.99a−1, which agrees well to a direct and
separate calculation of the well waveguide by itself that
yields 
=1.16a−1. The difference can be attributed to the
finite-size effect of the well-barrier interfaces.

We now comment on some of the challenges in the prac-
tical implementations. For the simulated structure above, ac-
cording to Eq. �9�, a modulation strength of �� /�=5
�10−3, which is achievable using carrier injection in
semiconductors,13 results in an external quality factor of Qe
=1.1�105. In comparison, the radiation quality factors of
photonic crystal heterostructure cavities exceeded 106 in
experiments.14

Regarding the required modulation frequencies, in the
simulation, �=9.8�10−3�2�c /a� represents a modulation
frequency of 8.1 THz, when the resonance frequency �0
=0.235�2�c /a� corresponds to the wavelength of 1.55 
m.
This is in principle achievable, since many index modulation
scheme has intrinsic response time below 0.1 ps.15 For
modulation frequency of 10–100 GHz,16,17 the proposed de-
vice provides a band-rejection resonant filter,18 with the same
independent control of resonant frequency and linewidth.

As final remarks, in our scheme, the tuning range for the
resonant frequency is ultimately limited by the intrinsic re-
sponse time of the material. Thus the resonant frequency of
the structure have a much wider tuning range, and can be
reconfigured with a much higher speed, compared with con-
ventional mechanisms. Moreover, the modulation frequency
can typically be specified to a much higher accuracy,19 re-
sulting in far more accurate control of the resonant fre-
quency. Lastly, the localized state here is “dark” since it does
not couple to the waveguide in the absence of modulation.
Our scheme, which provides a dynamic access to such a dark
state, is directly applicable for stopping and storage of light
pulses, since the existence of a single dark state is
sufficient.20

The work was supported by NSF �Grant No. ECS-
0622212�, and the NSF TeraGrid program that provides the
computing facility.

1K. J. Vahala, Nature �London� 424, 839 �2003�.
2S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Phys. Rev.
Lett. 80, 960 �1998�.

3D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, Opt.
Express 15, 5550 �2007�.

4M. F. Yanik, W. Suh, Z. Wang, and S. Fan, Phys. Rev. Lett. 93, 233903
�2004�.

5U. Fano, Phys. Rev. 124, 1866 �1961�.
6P. W. Anderson, Phys. Rev. 124, 41 �1961�.
7J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, Phys. Rev. B 59,
1551 �1999�.

8P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson,
Phys. Rev. Lett. 100, 033904 �2008�.

9D. F. Walls and G. J. Milburn, Quantum Optics �Springer, Berlin, 1994�,
Chap. 7, p. 123.

10B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207
�2005�.

11Z. Yu and S. Fan, Nat. Photonics 3, 91 �2009�.
12A. Taflove and S. C. Hagness, Computational Electrodynamics: The

Finite-Difference Time-Domain Method, 2nd ed. �Artech House, Boston,
2000�.

13B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Elec-
tron. 26, 113 �1990�.

14E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanable, and T.
Watanabe, Appl. Phys. Lett. 88, 041112 �2006�.

15S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, Opt.
Lett. 15, 60 �1990�.

16L. Gu, W. Jiang, X. Cheng, and R. T. Chen, IEEE J. Sel. Top. Quantum
Electron. 14, 1132 �2008�.

17Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, Opt. Ex-
press 15, 430 �2007�.

18Z. Yu and S. Fan �unpublished�.
19T. W. Hänsch, Rev. Mod. Phys. 78, 1297 �2006�.
20C. Otey, M. L. Povinelli, and S. Fan, J. Lightwave Technol. 26, 3784

�2008�.

T

0.0

0.5

1.0

0.2345 0.23550.2350
ω (2πc/a)

(b)

(a)

0.0

0.5

1.0
T

0
1
2
3
4 x 10

4(c)

0.2345 0.2350 0.23550

1

2

3 x 104(d)

ω (2πc/a)

0.010 0.014
0.234
0.236
0.238
0.240

Ω

ω
0

(e)

102

104

106

Q

0 0.05 0.1
∆ε/ε

(f)

D
el
ay
(c
/a
)

D
el
ay
(c
/a
)

FIG. 4. �Color online� Theory and simulation for the photonic transition
process for the structure in Fig. 2. �a� Transmission spectrum for the un-
modulated structure. �b� Transmission spectrum in the presence of modula-
tion. The modulation has a frequency �=9.8�10−3�2�c /a� and a strength
of �� /�=1.63�10−2. �c� Group delay spectra, with �� /� fixed at 1.63
�10−2. The blue, red, and green lines correspond to �=9.8�10−3, 11.3
�10−3, and 12.8�10−3�2�c /a�, respectively. �d� Group delay spectra, with
� fixed at 9.8�10−3�2�c /a�. The blue, red, and green lines correspond to
�� /�=1.63�10−2, 3.27�10−2, and 6.53�10−2. �e� Resonant frequency as
a function of the modulation frequency. The blue and red circles corresponds
to modulation strength of �� /�=1.63�10−2 and 3.27�10−2, respectively.
Circles are simulation results as determined the peak location of group delay
spectra, and the line is from analytical calculation. �f� Quality factor as a
function of modulation strength. Circles are simulation results as determined
from the peak width in �d�, the line is from analytic calculation.
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