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Abstract—Based on the effects of photonic transitions, here we
show that a linear, broadband, and nonreciprocal isolator can
be accomplished by spatial–temporal refractive index modula-
tions that simultaneously impart frequency and wave vector shifts
during the photonic transition process. This paper demonstrates
that on-chip isolation can be accomplished with dynamic photonic
structures in standard material systems that are widely used for
integrated optoelectronic applications.

Index Terms—Integrated optical isolator, nonreciprocal optics,
photonic transition, refractive index modulation.

I. INTRODUCTION

ACHIEVING on-chip optical signal isolation is a funda-
mental difficulty in integrated photonics [1]. The need to

overcome this difficulty, moreover, is becoming increasingly
urgent, especially with the emergence of silicon nanophoton-
ics [2]–[4], which promises to create on-chip optical systems at
an unprecedented scale of integration.

To create complete optical signal isolation requires simulta-
neous breaking of both the time reversal and the spatial inver-
sion symmetry. In bulk optics, this is achieved using materials
exhibiting magneto-optical effects [5]–[10]. However, on-chip
integration of magneto-optical materials, especially in silicon
in a CMOS-compatible fashion, remains a challenge since
magneto-optical materials are not the standard material system
used in the CMOS process. Alternatively, optical isolation has
also been observed using nonlinear optical processes [11], [12],
or in electro-optic modulators [13]. In either case, however,
optical isolation occurs only at specific power ranges, or with
either associated modulation sidebands or substantial intrinsic
loss [13]. In addition, there have been works aiming to achieve
partial optical isolation in reciprocal structures that have no
inversion symmetry (e.g., chiral structures) [14]. In these sys-
tems, the apparent isolation occurs by restricting the allowed
photon states in the backward direction, and would not work for
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arbitrary backward incoming states. None of the aforementioned
nonmagnetic schemes can provide complete optical isolation.

In this paper, we review and expand our recent works [15],
[16] on creating complete and linear optical isolation using dy-
namic photonic structures, where the refractive index of the
structure is modulated as a function of time and space. In these
works, the temporal profile of the modulation is chosen to break
the time-reversal symmetry, while the spatial profile of the mod-
ulation is chosen to break the spatial inversion and the mirror
symmetry. While the existence of nonreciprocity in electro-optic
and acoustic modulation has long been noted before [17], the
possibility of creating complete optical isolation based on such
modulation was not explicitly studied and is the subject of this
paper.

The underlying physical mechanism of our isolator structures
relies upon the photonic transition effect as induced by refrac-
tive index modulation. It was shown theoretically [18] that when
photonic structures are subjected to temporal refractive index
modulation, photon states can go through interband transitions,
in a direct analogy to electronic transitions in semiconductors.
Such photonic transitions have been recently demonstrated ex-
perimentally in silicon microring resonators [19]. In our recent
work [15], [16], we showed that with appropriately designed
band structure, and by choosing a spatially and temporally vary-
ing modulation format that simultaneously imparts frequency
and momentum shifts of photon states during the transition
process, the transmission behavior of a photonic structure can
become nonreciprocal. As seen in the finite-difference time-
domain simulations [20], when a silicon waveguide is under a
modulation, the details of which will be described in the fol-
lowing sections of the paper, light of frequency ω1 in forward
direction is converted to a higher frequency mode ω2 by the
modulation [see Fig. 1(a)]. At the same time, light of frequen-
cies ω1 or ω2 in the backward direction are not affected by the
modulation [Fig. 1(b) and (c)]. Combined with an absorption
filter centered at ω2 , this structure can absorb all light incident
from one direction at ω1 , while passing those in the opposite
direction, and thus, creates a complete isolator behavior. It was
also shown that the finite-difference time-domain simulations
can also be well reproduced by coupled mode theory [15].

In this paper, we will use the coupled mode theory to discuss
the performance and design considerations for dynamic isolator
schemes. The paper is organized as follows. In Section II, we
review the physical mechanism of using interband transition for
optical isolation. In Section III, we analyze the performance of
the isolator including the bandwidth and device size. Finally, in
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Fig. 1. Finite-difference time-domain simulation of an isolator based on pho-
tonic transitions. The box indicates the regions where the refractive index is
modulated. Blue/red show the amplitude of electric fields. Arrows indicate
propagation directions.

Section IV, we demonstrate two alternative isolator structures to
suit different performance requirements.

II. THEORY OF THE NONRECIPROCAL MODE CONVERSION IN

INTERBAND PHOTONIC TRANSITIONS

We start by considering the photon transition process in a
silicon waveguide. The waveguide (assumed to be 2-D for
simplicity) is represented by a dielectric distribution εs(x),
which is time-independent and uniform along the z-direction
[Fig. 2(b)]. Such a waveguide possesses a band structure, as
shown in Fig. 2(a), with symmetric and antisymmetric modes
located in the first and second band, respectively. An inter-
band transition between two modes with frequencies and wave
vectors (ω1 , k1), (ω2 , k2) located in these two bands, can be in-
duced by modulating the waveguide with an additional dielectric
perturbation

ε′(x, z, t) = δ(x) cos(Ωt − qz) (1)

where δ(x) is the modulation amplitude distribution along the
direction transverse to the waveguide and Ω = ω2 − ω1 is the
modulation frequency. Fig. 2(c) shows the profile of the modu-
lation. Such a transition with k1 �= k2 is referred to as an indirect
photonic transition, in analogy with indirect electronic transi-
tions in semiconductors.

We assume that the wave vector q approximately satisfies the
phase matching condition, i.e., ∆k = k2 − k1 − q ≈ 0. In the
modulated waveguide, the electric field becomes

E(x, z, t)=a1(z)E1(x)ei(−k1 z+ω1 t)+a2(z)E2(x)ei(−k2 z+ω2 t)

(2)
where E1,2(x) are the modal profiles, satisfying the orthogonal
condition (For simplicity, we have assumed the TE modes where
the electric field has components only along the y-direction.)

vgi

2ωi

∫ ∞

−∞
ε(x)E∗

i Ej = δij . (3)

In (3), the normalization is chosen such that |an |2 is the photon
number flux carried by the nth mode. By substituting (2) into

Fig. 2. (a) Band structure of a slab waveguide. (b) Structure of the silicon
(εs = 12.25) waveguide. Modulation is applied to the dark region. (c) Modu-
lation profile at two sequential time steps.

the Maxwell’s equations, and using slowly varying envelope
approximation, we can derive the coupled mode equation

d

dz

(
a1

a2

)
=


 0 i

π

2lc
exp(−i∆kz)

i
π

2lc
exp(i∆kz) 0


 (

a1

a2

)

(4)
where

lc =
4π

ε0
∫ ∞
−∞ δ(x)E1(x)E2(x)dx

(5)

is the coherence length. With an initial condition a1(0) = 1 and
a2(0) = 0, the solution to (4) is

a1(z) = e−iz∆k/2

[
cos

(
z

2lc

√
π2 + (lc∆k)2

)

+ i
lc∆k√

π2 + (lc∆k)2
sin

(
z

2lc

√
π2 + (lc∆k)2

)]

a2(z) = ieiz∆k/2 π√
π2 + (lc∆k)2

sin

(
z

2lc

√
π2 + (lc∆k)2

]
.

(6)
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Fig. 3. (a) Spatial evolution of the photon number flux of two modes (dashed
line: mode 1 and solid line: mode 2) when a phase matching modulation is
applied to the waveguide. (b) Maximum photon flux in mode 2 for nonzero
phase mismatch.

In the case of perfect phase matching, i.e., ∆k = 0, a photon
initially in mode 1 will make a complete transition to mode 2
after propagating over a distance of coherence length lc [see
Fig. 3(a)]. In contrast, in the case of strong phase mismatch, i.e.,
lc∆k � 1, the transition amplitude is negligible [Fig. 3(b)].

The system described earlier exhibits strong nonreciprocal
behavior: the modulation in (1) does not phase match the mode
at (ω1 ,−k1) with any other mode of the system [Fig. 2(a)].
Thus, while the mode at (ω1 , k1) undergoes a complete pho-
tonic transition, its time-reversed counterpart at (ω1 ,−k1) is
not affected at all. Such nonreciprocity arises from the break-
ing of both time reversal and spatial inversion symmetries in
the dynamics. The modulation in (1) is not invariant with either
t → −t or z → −z.

As a specific example, we consider a silicon (ε = 12.25)
waveguide of 0.27 µm wide, chosen such that the first and
second bands of the waveguide have the same group velocity
around wavelength 1.55 µm (or a frequency of 193 THz). The
modulation has a strength δmax/εs = 5 × 10−4 , a frequency
Ω/2π = 20 GHz, and a spatial period 2π/|q| = 0.886 µm (all
these parameters should be achievable in experiments). The
modulation is applied to half of the waveguide width so that
the even and odd modes can couple efficiently. The modula-
tion length L is chosen as the coherence length lc0 = 2.19mm
[Fig. 2(b)] for operation frequency ω0 at 1.55 µm wavelength.
Fig. 4(a) shows the transmission for forward and backward
directions. The bandwidth is 5 nm with contrast ratio above
30 dB.

For the loss induced by refractive index modulation schemes,
e.g., carrier injection modulation, the contrast ratio remains ap-
proximately the same as the lossless case, since the modulation
loss applies to transmission in both directions. Thus, the iso-
lation effect is not affected. As an example, the modulation

Fig. 4. Forward and backward transmission spectra without (a) and with (b)
modulation loss.

strength used here δ/εs = 5 × 10−4 results in a propagating
loss of 1.5 cm−1 in silicon [21]. This causes an insertion loss
of about −3.5 dB while the bandwidth remains approximately
unchanged [Fig. 4(b)].

In general, similar nonreciprocal effects can also be observed
in intraband transitions. However, since typically Ω � ω1 , and
the dispersion relation of a single band can typically be approx-
imated as linear in the vicinity of ω1 , a cascaded process [19],
which generates frequencies at ω1 + nΩ with n > 1, is unavoid-
able, and it complicates the device performance. In contrast, the
interband transition here eliminates the cascaded processes.

We would like to emphasize that the modulation frequency
can be far smaller than the bandwidth of the signal. This is, in
fact, one of the key advantages of using interband transition. The
transition occurs from a fundamental even mode to a second-
order odd mode. The generated odd mode can be removed with
the use of mode filters that operate based on modal profiles.
Examples of such mode filters can be found in [22] and [23]. It
is important to point out that such mode filters are purely passive
and reciprocal, and can be readily implemented on chip in a very
compact fashion. Moreover, in Section IV, we will discuss the
implementation of an isolator without the use of modal filters.

In order to achieve the required modulation profile, partic-
ularly the spatial periodic modulation, one can use three uni-
formly modulated regions for each spatial period. Each region
is modulated by an oscillating signal of frequency Ω. In ad-
dition, the neighboring region has a phase difference of 2π/3.
Such scheme provides a simplified implementation of the mod-
ulation profile in (1) with negligible performance difference, as
verified by coupled mode calculation.

III. DEVICE PERFORMANCE

The isolation effect and results of the coupled mode theory
have been verified by numerical simulation using the finite-
difference time-domain method [15], which solves Maxwell
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equation without any approximation. Based on the coupled
mode theory, we analyze in detail various aspects regarding the
performance of the proposed isolator, including, in particular,
its operational bandwidth and device size, later in this section.

A. Bandwidth

The dynamic isolator structure creates contrast between for-
ward and backward propagations by achieving complete fre-
quency conversion only in the forward direction. As discussed
earlier, the modulation is chosen such that it induces a phase-
matched transition from an even mode at the frequency ω0 to an
odd mode at the frequency of ω0 + Ω. The length of the waveg-
uide is chosen to be the coherence length lc (ω0) for this transi-
tion, such that complete conversion occurs at this frequency ω0
for the incident light. In order to achieve a broadband operation,
one would need to achieve near-complete conversion for all in-
cident light having frequencies ω in the vicinity of ω0 as well.
From (6), broadband operation, therefore, requires that

∆k(ω) = 0

lc(ω) = L = lc (ω0) .
(7)

The first condition in (7) implies that the phase matching
condition needs to be achieved over a broad range of frequen-
cies, and the second condition implies that the coherence length
should not vary as a function of frequency. Deviations from
these conditions result in a finite operational bandwidth.

We consider the phase matching condition first. In the vicinity
of the design frequency ω0 , the wave vector mismatch can be
approximated by

∆k = k1(ω)− k2(ω + Ω)− q ≈
(

1
vg1(ω)

− 1
vg2(ω + Ω)

)
∆ω

+
1
2

(
d2k1(ω)

dω2 − d2k2(ω + Ω)
dω2

)
∆ω2

∣∣∣∣
ω=ω0

.

Thus, to minimize the phase mismatch, it is necessary, first of
all, that the two bands have the same group velocities, i.e., the
two bands are parallel to each other. Moreover, it is desirable that
the group velocity dispersion of the two bands matches with one
another. As a quantitative estimate, assuming that lc(ω) ≈ L for
all frequencies, Fig. 5(a) shows the forward transmission as a
function of L∆k. For a transmission below−30 dB, this requires
a phase mismatch of L∆k < 0.1. As a concrete example for
comparison purposes, Fig. 6(a) shows the phase mismatch L∆k
as a function of wavelength for the structure simulated in Fig. 4.
Notice that L∆k < 0.1 over a bandwidth of 5 nm due to the
mismatch of group velocity dispersion in the two guided mode
bands.

For the second condition in (7), we note that in most wave-
guide structures, since the coherence length is determined by
the modal profile, it generally varies slowly as a function of
frequency. For example, for a waveguide with parameters cho-
sen in Section II, the coherence length varies less than 2% over
20 nm bandwidth around 1.55 µm wavelength [Fig. 6(b)]. As a
simple estimate of how coherence length variation impacts de-
vice performance, assuming ∆k(ω) = 0 over a broad frequency

Fig. 5. (a) Forward transmission as a function of phase mismatch. (b) Coher-
ence length variation.

Fig. 6. (a) Phase mismatch and (b) coherence length as a function of wave-
length for the device simulated in Fig. 4.

range, we calculate the forward transmission as a function of
coherence length given the modulation length L = lc(ω = ω0)
[Fig. 5(b)]. For 2% variation of the coherence length, the for-
ward transmission remains below −30 dB. Comparing Fig. 6(a)
and (b), therefore, we conclude that for the structure simulated
in Fig. 4, the 5 nm bandwidth is primarily limited by group
velocity dispersion of the two waveguide bands. Since the struc-
ture used in Fig. 4 is rather simple, we believe that substantial
further enhancement of operating bandwidth is achievable by
optimization of waveguide geometry.
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Fig. 7. (a) Transition diagram for low-frequency modulation. (b) Spatial evo-
lution of photon flux in the backward direction for an even mode at 1.55 µm
wavelength (dashed line) and an odd mode (solid line) that is 20 GHz lower in
frequency. The structure has the same parameters as described in Section II.

B. Device Size

The size of the isolator is determined by the coherence length
lc . Starting from (5), and taking into account the normalization
of E field [see (3)], the coherence length can be written as

lc =
4π

ε0
∫ ∞
−∞ δ(x)E1(x)E2(x) dx

=
2π

γ

√
vg1vg2

ω1ω2

≈ λ0 ×
1
γ
× vg

c
(8)

where

γ =

∫ ∞
−∞ δ(x)E1(x)E2(x) dx√∫ ∞

−∞ ε(x)|E1 |2dx
∫ ∞
−∞ ε(x)|E2 |2dx

characterizes the effect of modulation. In deriving (8), we as-
sume that ω1 ≈ ω2 ≡ 2πc/λ0 , where λ0 is the wavelength in
vacuum, since the modulation frequency is typically far smaller
than the optical frequency. Moreover, the two bands are assumed
to be parallel to each other, i.e., vg1 ≈ vg2 ≡ vg . Equation (8)
indicates that the device size is proportional to the group velocity
and is inversely proportional to the modulation strength. For a
rough estimate, with a modulation strength γ ∼ (δ/ε) ∼ 10−4 ,
operating at a wavelength of λ ∼ 1.5 µm and vg ≈ c/3, the
coherence length lc ∼ 5 mm. To reduce the size, one can use
stronger modulation strength and/or slow light waveguides.

C. Near-Phase-Matched Transition in the Backward Direction

In general, due to energy conservation constraint, a mode
with a frequency of ω1 can only make a transition to modes
at ω1 ± Ω. In our design, the modulation is chosen to create a
phase-matched transition in the forward direction. However, for
most electro-optic or acoustic–optic modulation schemes, the

modulation frequency Ω ≤ 100 GHz is much smaller than the
optical frequency. Consequently, as can be seen from Fig. 7(a),
in the backward direction, the transition to the mode in the
second band with a frequency ω3 = ω1 − Ω becomes nearly
phase-matched. The wave vector mismatch of this transition is

∆kb = −k2(ω1 − Ω) + k1(ω1) + q ≈ 2Ω
vg

. (9)

Such a transition results in loss in the backward direction, and
thus, a reduction of contrast between the forward and backward
directions.

To calculate such transmission loss in the backward direction,
we replace ∆k in (6) with ∆kb . In general, in order to suppress
such backward transmission loss, one needs to have

∆kbL ≥ 1. (10)

Combining with (8), the condition of (10) is then transformed
to

2λ0

c
× Ω

γ
≥ 1. (11)

Remarkably, we note from (11) that for electro-optic or
acoustic–optic modulation schemes, the effects of weak refrac-
tive index modulation γ and low modulation frequency Ω cancel
each other out. The use of weak refractive index modulation re-
sults in a long coherence length, which helps in suppressing the
transition processes that are not phase-matched. It is precisely
such a cancellation that enables the construction of dynamic
isolators with practical modulation mechanisms.

For the example shown in Fig. 4, the near-phase-matched
transition in the backward direction has a ∆kb = 2π/2.06 mm,
and thus, ∆kbL = 6.7, which results in a loss of −0.22 dB for
the backward transmission [Fig. 7(b)].

IV. DESIGN FLEXIBILITY

In the previous sections, we have shown that by using inter-
band transition, one can create nonreciprocal mode conversion
in a waveguide. Such a waveguide works as an isolator when
combined with a modal filter. The performance of such a device
can be analyzed and optimized using coupled mode theory. In
this section, we present two examples to show that such nonre-
ciprocal photon transition can be exploited in a wide range of
structures to form nonreciprocal optical devices that satisfy di-
verse performance requirements. In the first example, we design
a four-port isolator/circulator using nonreciprocal phaseshift in
the interband transitions. In the second example, we use a non-
reciprocal ring resonator to demonstrate a compact design for
optical isolation.

A. Four-Port Circulator

Fig. 8(a) shows the design of a four-port circulator [16].
The structure consists of a Mach–Zehdner interferometer, in
which one waveguide arm is subject to the dynamic modula-
tion described previously. In contrast to the design in Section
III, however, here the length of the modulation region is chosen
to be twice the coherence length L = 2lc . Thus, light pass-
ing through the modulated waveguide in the forward direction
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Fig. 8. (a) Schematic and (b) transmission spectrum of a four-port circulator.
The dynamic index modulation is applied to the waveguide in the dashed red
box.

will return to the incident frequency [Fig. 3(a)]. However, such
light experiences a nonreciprocal phaseshift due to the photonic
transition effect. The use of a Mach–Zehnder interferometer
configuration then allows one to construct a circulator. Here,
no filter is required, which significantly reduces the device
complexity.

For concreteness, we assume that the interferometer has two
arms with equal length, and uses two 50/50 waveguide couplers.
For such an interferometer, the transmission is described by [24](

bu

bl

)
OUT

=
1
2

(
1 i

i 1

) (
T exp(iϕp) 0

0 exp(iϕp)

)

×
(

1 i

i 1

) (
bu

bl

)
IN

. (12)

Here, the subscript “IN” and “OUT” label the input or output,
bu/l are the input or output amplitudes in the upper/lower arm,
and ϕp is the phase acquired due to propagation in the absence
of modulation.

In (12), the transmission coefficient through the upper arm
has an additional contribution from the photon transition

T = e−iz∆k/2

[
cos

(
z

2lc

√
π2 + (lc∆k)2

)

+ i
lc∆k√

π2 + (lc∆k)2
sin

(
z

2lc

√
π2 + (lc∆k)2

) ]
(13)

which influences both the transmission amplitude and the phase
as the wave passes through the upper arm. In our design, we as-
sume a phase matching modulation with ∆k = 0 for the forward
direction, and use a modulated region with L = 2lc . Equation
(13) shows T = −1. In contrast, for the light in the backward
direction in the upper arm, in general, the phase matching con-
dition is not satisfied. Hence, T ≈ 1. Thus, in this design, the
modulation does not create any frequency conversion. Instead,

Fig. 9. (a) Schematic of ring resonator designed for nonreciprocal frequency
conversion. The dark regions are modulated. (b) Schematic of the modes in the
ring waveguide coupling region.

its sole effect is to induce a nonreciprocal π-phaseshift in the
upper arm.

The interferometer in Fig. 8 exploits such nonreciprocal phase
to create a circulator. We have used the coupled mode theory
developed in Section III to simulate this structure, assuming the
same waveguide parameters as in Fig. 4. The results, shown
in Fig. 8, indicate that lights injected into port 1 completely
output through port 3, while in the time-reversed case, lights
injected into port 3 end up in port 2. Therefore, this device has
exactly the same response function of a four-port circulator [25].
Unlike conventional design, however, no magnetic components
are used inside the structure. Alternatively, the device can also
function as a two-port isolator. Fig. 8(b) shows the transmission
spectra in both directions between ports 1 and 4: lights incident
from port 4 transmit to port 1, while the reverse transmission is
completely suppressed. The contrast ratio for the two directions
is above 30 dB for a bandwidth of 5 nm [see Fig. 8(b)].

B. Nonreciprocal Ring Resonator

As discussed before, the device size is determined by the
coherence length, which, typically, is above millimeters, unless
slow light waveguides are used. Substantial reduction of the
device footprint can be accomplished using resonator structure
at the expense of a smaller operating bandwidth [15]. As an
example, we consider a ring resonator [Fig. 9(a)] that supports
two anticlockwise rotating resonances, at frequencies ω1 and ω2 ,
respectively. Each resonance is further characterized by its wave
vectors k1 and k2 in the waveguide that forms the ring. These
two resonances are coupled by applying a dielectric constant
modulation along the ring with a profile δ(x) cos[(ω1 − ω2)t −
(k1 − k2)z], where z measures the propagation distance on the
circumference of the ring in counterclockwise direction.

To describe the action of this structure, we note that upon
completing one round trip, the circulating amplitudes a1,2 and
b1,2 of these two modes [Fig. 9(b)] are related by(

a1

a2

)
=

(
T11 T12

T21 T22

) (
b1

b2

)
(14)
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Fig. 10. Transmission spectra of a ring resonator isolator. ω0 corresponds to
1.55 µmwavelength. The waveguide ring transmit coefficient is assumed to be
r1 ,2 = 0.95.

where the matrix elements are related to the transition ampli-
tudes for a single round trip, and can be calculated using (4).
Each of these modes is also coupled to an external waveguide
as described by


b1

B1

b2

B2


 =




r1 jt1 0 0

jt1 r1 0 0

0 0 r2 jt2

0 0 jt2 r2







a1

A1

a2

A2


 . (15)

The external waveguide is also assumed to support two modes
with opposite symmetry at the frequencies ω1 and ω2 , respec-
tively. Here, the subscripts label the two frequencies, and A1,2
and a1,2 (B1,2 and b1,2) are the photon flux amplitudes in the
external and ring waveguides before (after) the coupler. The
coefficients r and t are taken to be real [26] and r2

1,2 + t21,2 = 1.
With incident light in mode 1 (i.e., A1 = 1, A2 = 0) of the

external waveguide, combining (14) and (15), we have

B1 =
r1 − T11 − r1r2T22 + r2Det[T ]
1 − r1T11 − r2T22 + r1r2Det[T ]

(16)

where Det stands for determinant. Thus, the condition for com-
plete frequency conversion (i.e., B1 = 0) is

r1 − T11 − r1r2T22 + r2Det[T ] = 0. (17)

In the case that ring is lossless, Det[T] = 1 and T11 = T22 =
cos( π

2
L
lc

), where lc is the coherence length and L is the cir-
cumference of the ring. Complete conversion between the two
modes can be achieved when the length of the ring is chosen to
be

cos
(

π

2
L

lc

)
=

r1 + r2

1 + r1r2
. (18)

With r1,2 → 1, L/lc → 0, the device, therefore, can provide
complete frequency conversion even when its length is far
smaller than the coherence length.

As an example, now we use the same waveguide discussed
in Fig. 4 to form a ring with a radius r = 12.3 µm. Such a
ring supports two resonant modes: a first band resonant mode at
1.55 µm and a second band mode that is 50 GHz higher in
frequency. (This is always achievable by fine-tuning the radius

and width of the waveguide.) A phase matching modulation is
applied to the ring with a coherence length lc = 2.37 mm. At
the design wavelength 1.55 µm, the forward transmission is
completely suppressed (see Fig. 10). Here, complete isolation
is achieved with a device size much smaller than the coherence
length.

V. CONCLUSION

In this paper, we have provided some of the detailed theo-
retical considerations for the dynamic isolator structures that
we have recently proposed. In contrast to previously consid-
ered isolators based on material nonlinearity [11], [12], where
isolation is only achievable for a range of incident power, the
photonic transition effect studied here is linear with respect to
the incident light: the effect does not depend upon the ampli-
tude and phase of the incident light. Having a linear process is
crucial because the device operation needs to be independent
of the format, the timing, and the intensity of the pulses used
in the system. In conclusion, the structure proposed here shows
that on-chip isolation can be accomplished with dynamic mod-
ulation in standard material systems that are widely used for
integrated optoelectronic applications.
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