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We propose a scheme for achieving negative differential thermal conductance in near-field

electromagnetic thermal transfer. As an example, we show that the scheme can be implemented

with two slabs of silicon carbide brought in close proximity to each other. We also describe how a

bistable thermal switch can be constructed in this manner. VC 2012 American Institute of Physics.

[doi:10.1063/1.3679694]

Consider two thermal bodies 1 and 2, at temperatures T1

and T2, with T1> T2. Bringing them into thermal contact will

result in a heat flux per area Q that flows from body 1 to 2.

For this system, we define the differential thermal conduc-

tances ð@Q=@T1ÞjT2
and ð�@Q=@T2ÞjT1

. Typically, these con-

ductances are both positive, since the heat flux typically

increases with the increase of the temperature difference.

When the opposite is true, i.e., when either ð@Q=@T1ÞjT2
or

ð�@Q=@T2ÞjT1
becomes negative, the system exhibits a nega-

tive differential thermal conductance.

Negative differential thermal conductance is a direct ther-

mal analogue of the negative differential electrical conduct-

ance, an effect that has been widely exploited in electronic

circuit design.1–3 The phenomenon of negative differential

thermal conductance4 has attracted recent interest as a key

building block of thermal circuits.5 Reference 4 uses phonon

as thermal carrier. In contrast, here, we theoretically demon-

strate that negative differential thermal conductance can be

observed using photon as the thermal carrier.

To study photon-based thermal transport, we consider

thermal bodies separated by vacuum as shown in Fig. 1(a). If

these bodies were blackbodies, and we assume that they each

have an infinite flat surface facing each other, applying Ste-

fan’s law, heat flux density (i.e., heat flux per unit area) from

body 1 to 2 is Q ¼ rðT4
1 � T4

2Þ, where r is the Stefan-

Boltzmann constant. Thus, differential thermal conductances

ð@Q=@T1ÞjT2
and ð�@Q=@T2ÞjT1

are both positive.

To achieve negative differential thermal conductance

for photonic system, we build upon and extend concepts that

has been proposed to achieve photonic thermal rectifica-

tion.6,7 Instead of using blackbodies that have very broad-

band thermal electromagnetic fields, we assume that both

bodies support narrow-band resonances in its thermal elec-

tromagnetic fields. Here, again, we assume that these bodies

both have flat infinite surfaces facing each other. Thus, sig-

nificant thermal transfer occurs only when the resonances

overlap. We further assume that the frequencies of these

resonances are temperature dependent.

Suppose we have two bodies made of the same material,

the resonance frequencies of the two bodies should then

align when T1¼T2, as shown in Fig. 1(b). If we increase the

temperature bias, by either increasing the temperature T1 of

body 1 or by decreasing the temperature T2 of body 2, the

resonances of the two bodies will start to misalign, as shown

in Fig. 1(c). Such a misalignment may lead to the reduction

of thermal transfer, and hence the possibility of negative dif-

ferential thermal conductance, at sufficiently large tempera-

ture difference between the two bodies.

As a concrete implementation, we consider the system

shown in the inset of Fig. 2(b), where two bodies of SiC of

the 6H polytype are placed in close proximity to each other.

The extraordinary axis is set normal to the slab surfaces.

SiC-vacuum interface supports well defined surface phonon-

polariton which dominates the thermal electromagnetic fields

in the near field.8–12 The temperature dependence of the opti-

cal phonon frequencies for bulk SiC was provided in Refs.

10 and 12. The temperature dependence of the surface

phonon-polariton frequency at the SiC-vacuum interface can

be directly calculated from these data. The calculated reso-

nance frequency is temperature dependent as depicted in

Figs. 1(b) and 1(c), satisfying the operating principles as out-

lined above.

To calculate the heat flux for this system, we follow

closely the computational procedure described in details in

Refs. 6, 13 and 14. Very briefly, we use Rytov’s formalism

where thermal transport is modeled by considering fluctuat-

ing current sources in each body, with the amplitude of the

fluctuation related to both the temperature of the body and

the imaginary part of the dielectric constant. The heat flux is

then determined by integrating the contributions from all

sources. The result of the calculation is the spectral heat flux

per area from body 1 to body 2

SðxÞ ¼ ½Hðx; T1Þ �Hðx; T2Þ�
ð

d~b
2

p3
jkzvj2

� Reðkz1oÞReðkz2oÞ
jC?j2

þ Reð��1okz1eÞReð��2okz2eÞ
jCPj2

" #
:

(1)

The integration of S(x) over x results in heat flux per area Q
from body 1 to body 2. In Eq. (1), Hðx; TÞ ¼ �hx

e�hx=kBT�1
is the

mean thermal energy for a given mode at a frequency x,
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kz1o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1oðx=cÞ2 � b2

q
; kz2o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2oðx=cÞ2 � b2

q
kzv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 � b2

q
; kz1e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1oðx=cÞ2 � b2�1o=�1e

q
kz2e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2oðx=cÞ2 � b2�2o=�2e

q
CP ¼ ð�1okzv þ kz1eÞð�2okzv þ kz2eÞeikzvd

�ð�1okzv � kz1eÞð�2okzv � kz2eÞe�ikzvd

C? ¼ ðkzv þ kz1oÞðkzv þ kz2oÞeikzvd

�ðkzv � kz1oÞðkzv � kz2oÞe�ikzvd:

(2)

Here, �0s are the dielectric constants, b is transverse wave-

number, and the o and e subscripts correspond to the ordi-

nary and the extraordinary axes, respectively.

As shown in Eq. (1), S(x) contains a factor

[H(x,T1)�H (x,T2)], which increases monotonously as

DT: T1�T2 increases. The remaining part in S(x) has an

implicit dependence on temperature since the dielectric con-

stants of the materials change with temperature.

Using Eq. (1), we study the thermal transfer properties

of a few structures. We first set the spacing of the bodies at

d¼ 100 nm and T1¼ 700 K. We vary T2 while maintaining

T1> T2. We plot the net heat flux between the bodies as a

function of temperature bias DT: T1� T2 in Fig. 2(b) (blue

solid line). At small DT, the heat flux increases as DT. The

heat flux reaches a maximum at DT¼ 435 K, beyond which

the heat flux starts to decrease as a function of DT. The sys-

tem thus exhibits the effect of negative differential thermal

conductance.

Below, we illustrate the physical mechanism of negative

differential thermal conductance, by considering the thermal

electromagnetic field spectra at various temperature biases

(Fig. 2(a)). Since the system is in the near-field regime, with

the separation d far below the thermal wavelengths, the spec-

tra consist of resonant peaks. The location of the peaks is

well aligned with the surface phonon-polariton frequencies

of the two SiC-vacuum interfaces. In Fig. 2(a), we keep the

temperature of body 1 fixed. We see that, for all temperature

biases, there is always a peak in the vicinity of 27.91 THz

(red dashed arrow, Fig. 2(a)). The location of this peak corre-

sponds very well to the frequency of surface phonon-

polariton at the interface between vacuum and body 1. On

the other hand, we see a second spectral peak (green solid

arrow, Fig. 2(a)) moving towards higher frequency, as we

increase the temperature bias and hence decrease T2. This

second peak corresponds to the surface phonon-polariton at

the interface between vacuum and body 2. Combining Figs.

2(a) and 2(b), we can, therefore, attribute the existence of

negative differential thermal transfer, to the temperature de-

pendence of the surface phonon-polariton frequencies at the

two interfaces.

In Fig. 2, we have demonstrated negative differential

thermal conductance, in a scenario where the temperature

gradient is increased through the decrease of temperature T2

of the colder body. In such a scenario, the difference in mean

thermal energy per mode, i.e., [H(x,T1)�H (x,T2)], varies

relatively slowly as a function of T2 and, in fact, saturates

when T2 is sufficiently low (dashed curve, Fig. 2(b)). Hence,

the behavior of the spectral thermal flux S(x) is largely

determined by the temperature dependence of the dielectric

constant. For this scenario, our proposed mechanism through

a temperature-dependent spectral misalignment is very

effective.

In contrast to the scenario above, we now consider in

Fig. 3 an alternative scenario, where we instead increase the

temperature differences between the bodies through an

increase of the temperature T1 of the hotter body, while

keeping the temperature T2 of the colder body fixed. In this

case, the difference in mean thermal energy per mode, i.e.,

[H(x,T1)�H (x,T2)], increases drastically as T1 increases,

making it more difficult to achieve negative differential

FIG. 1. (Color online) (a) The schematic of a system made of body 1 and

body 2. (b) and (c) Two bodies are made of the same material and the black

lines denote the temperature dependence of electromagnetic resonance of

such material. (b) illustrates the case of T1¼T2 and (c) illustrates the case of

T1=T2. For concreteness, the curve shown here is the surface phonon-

polariton frequency of silicon carbide of the 6H polytype, with the extraordi-

nary axis normal to the surface.

FIG. 2. (Color online) (a) Spectral heat flux between body 1 and body 2 at

different DT:T1�T2, for the device made of two SiC-6H slabs as shown

in the inset of (b), with T1¼ 700 K and separation d¼ 100 nm. In each sub-

plot, the red dashed arrow and green solid arrow denote the surface phonon-

polariton frequencies for body 1 and body 2, respectively, as shown in Figs.

1(b) and 1(c). (b) The blue solid line, pertaining to the left y axis, is the net

heat flux between body 1 and body 2 as a function of DT for the device

shown in the inset, with T1¼ 700 K and d¼ 100 nm. The black dashed line,

pertaining to the right y axis, shows [H(x,T1)�H (x,T2)] as a function of

DT, with T1¼ 700 K and x corresponding to the surface phonon-polariton

frequency of 6H silicon carbide at 700 K (Figs. 1(b) and 1(c)).
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thermal conductance (dashed curve, Fig. 3(a)). In Fig. 3, we

see that negative differential conductance is nevertheless

accomplished, but at a much closer spacing d¼ 10 nm

between the two bodies, and with a much larger temperature

difference.

An interesting implication of negative differential ther-

mal conductance is the effect of thermal bistability. As an

illustration, we again consider the system shown in Fig. 3,

where we provide, in Fig. 3(b), an enlarged view of the

region exhibiting negative differential thermal conductance.

In this region, in equilibrium, at a constant externally

injected heat flux Q0 through the system (dashed line, Fig.

3(b)), with T2 fixed, body 1 can exhibit three different equi-

librium temperatures T
ðaÞ
1 < T

ðbÞ
1 < T

ðcÞ
1 . These different tem-

peratures have different stability: Denoting any of these

temperatures T
ð0Þ
1 , and assuming a small temperature fluctua-

tion dT of body 1 around T
ð0Þ
1 , we then have

C
dðdTÞ

dt
¼ Q0 � QðTÞ ¼ Q0 � QðTð0Þ1 Þ þ QðTð0Þ1 Þ � QðTÞ

¼ � dQ

dT

����
T
ð0Þ
1

dT;

where C is the heat capacity of body 1. We see, therefore,

that a negative dQ/dT implies an instability with respect to

temperature fluctuation. Thus, only T
ðaÞ
1 and T

ðcÞ
1 in Fig. 3(b)

correspond to a stable situation. With a constant externally

injected heat flux, the system, therefore, is a bi-stable ther-

mal switch.

As final remarks, we comment on some of the consider-

ations for the experimental realization of our prediction. The

slab-to-slab separation that we assume, at a distance of

10–100 nm, should be technically feasible in light of recent

thermal transfer experiments.9,15,16 Our theory is directly ap-

plicable to planar structures, with relatively large surface

areas. Very recently, enhanced near-field thermal transfer

has been observed in Ref. 16, which uses a structure with a

surface area of a few mm2. The excellent agreement between

theory and experiment in Ref. 16 indicates that at such a sur-

face area, finite-size effect is not important. This is the same

regime that we are predicting our effects as well. To demon-

strate our effect, the bodies need to be maintained at a con-

stant temperature, hence the bodies need to be efficiently

connected to a heat sink. The typical amount of heat flow for

the structure in Fig. 2(b) is approximately 110 000 W/m2. In

Refs. 9 and 15, one can infer a maximum heat flux of about

62 000 W/m2 for a small area device. Our heat flow density

is comparable. We have a much larger area, thus the need to

maintain constant temperature at the surface should be less

severe. The thermal expansion of SiC can cause gap size to

change by as much as a few nm. However, all the near field

experiments use feedback control scheme to maintain a con-

stant gap size. Finally, while for simplicity, we have used a

planar geometry, we expect similar effects might be

observed in other experimental geometries as well, provided

the bodies support tunable, temperature dependent electro-

magnetic resonances.
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FIG. 3. (Color online) (a) The blue solid line is the net heat flux between

body 1 and body 2 as a function of T1, for the device made of two SiC-6H

slabs as shown in the inset of Fig. 2(b), with T2¼ 700 K and d¼ 10 nm. The

black dashed line shows [H(x,T1)�H (x,T2)] as a function of T1, with

T2¼ 700 K and x corresponding to the surface phonon-polariton frequency of

6H silicon carbide at 700 K (Figs. 1(b) and 1(c)). (b) Operating region of a bi-

stable thermal switch, corresponding to the rectangle in (a). Q0 is a constant

external heat flux into body 1. Here, we assume that Q0¼ 1.1185� 107 W/m2.
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