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A model is developed which permits a detailed examination of the effects of impurity scattering and
deviations from a strictly one-dimensional transport topology on the trapping rate and on the mean-square
displacement of mobile species in systems which are nearly one-dimensional in their transport
characteristics, i.e., quasi-one-dimensional. The model is applied specifically to Frenkel excitons in
molecular crystals, but may be readily adapted to other types of systems. Both coherent (wavelike) and
incoherent (diffusive) microscopic modes of exciton transport are considered. In the strictly one-
dimensional limit following pulsed optical excitation, a time-dependent trapping rate function is obtained
as opposed to the commonly employed trapping rate constant. It is demonstrated that the coherent and
incoherent trapping rate functions have identical dependencies on time and on impurity concentration and
the macroscopic rate of transport can be calculated. To treat deviations from strictly one-dimensional
transport topology, it is necessary to consider anisotropic walks on the system’s “superlattice,” i.e., the
array of molecular chain segments which are bounded by scattering impurities. Montroll's Green function
formalism is employed to obtain solutions to various walk topologies which have not previously been
reported in the literatore. In the quasi-one-dimensional case, a time-dependent trapping rate function is
also obtained unless the walk on the superlattice is nearly isotropic. The various trapping rate functions
are then employed to provide explicit expressions for the time-dependent trap population which is
proportional to the intensity of time resolved optical emission, a widely used experimental observable.
Finally, the exciton mean-square displacement for a quasi-one-dimensional system with scattering
impurities is shown to remain basically one dimensional even in situations where exciton trapping behaves

in a manner best described in terms of a three-dimensional topology.

1. INTRODUCTION

Systems which exhibit near-one-dimensional energy
transport are currently a topic of extensive experi-
mental and theoretical research. These include exciton
and electron transport in biopolymers, electron trans-
port in organic polymers (SN,), electron transport in
organic metals (TCNQ-type salts), and electron and ex-
citon transport in organic molecular crystals.! In the
following we will develop a model for Frenkel exciton
dynamics in one-dimensional organic molecular crystals
which may also be adapted to these other systems.
Previously, most attention has been focused on phonon
interactions and on the magnitude of the intermolecular
interaction responsible for the one-dimensional exciton
transport. ! In order to develop a model for exciton dy-
namics which closely resembles the situation found in
actual experimental samples, it is also necessary to
consider the effects of impurities and deviations from
a strictly one-dimensional transport topology. Sys-
tems which are close to, but not strictly one-dimen-
sional, will be referred to as quasi-one-dimensional
systems. Impurities, which may be isotopic, chemical,
or lattice defects, can be of two types. Those which
have an excited state energy level below that of the cor-
responding host crystal exciton band can inhibit exciton
transport by localizing, i.e., trapping, a mobile ex-
citon.® Impurities with energy levels above that of the
corresponding host crystal exciton band can scatter a
mobile exciton, also inhibiting transport,? In either
case, a well-defined impurity site will exist if S, the

2 Alfred P, Sloan Fellow.

1996 J. Chem. Phys. 69(5), 1 Sept. 1978

0021-9606/78/6905-1996$01.00

difference in energy between the impurity level and the
band center, is large relative to 8, the intermolecular
interaction matrix element responsible for excitontrans-
port, i.e., §>8.° (If S=B, the impurity level will be
amalgamated into the band and will produce nonlocal
scattering. %)

Previously, it has been demonstrated that impurity
scattering sites in low concentration can dramatically
alter the nature of transport in one-dimensional crys-
tals, causing microscopically wavelike transport {co-
herent), to be macroscopically diffusive. ¢ In another
study, the effect of scattering sites on exciton trans-
port which is microscopically incoherent, i.e., micro-
scopically diffusive, was discussed. " In both cases,
caging the exciton between scattering impurities trans-
forms rapid exciton motion along the principal axis into
a smaller net macroscopic displacement involving a
comparatively slow stepping frequency between adja-
cent cages. Since S>3, the transmission probability
past the impurity is small and excitons remain caged
long enough for the time-averaged probability to become
uniform.* Migration can be thought of as a random
walk between linear cages, “supersites,” on a lattice of
cages, a “superlattice.”

In addition to reducing the exciton mean-square dis-
placement along the one-dimensional axis, caging of the
exciton can have other important consequences which
were not considered in previous studies. In a real sys-
tem, almost negligible interchain interactions give rise
to infrequent steps to parallel one-dimensional chains
of molecules. Since scattering impurities obstruct mi-
gration only along the principal axis, the along-chain
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cage stepping frequency can be comparable to the cross-
chain frequency. Thus, while such a crystal has an ex-
citon band dispersion which is one-dimensional, its ex-
citon transport may behave as a random walk on a two-
or three-dimensional superlattice. This changes the
character of the exciton trangport since multidimen-
sional walks greatly increase the total number of dis-
tinct lattice sites sampled? and consequently increase
the ability of an exciton to reach a distant trap site.

Time-resolved optical emission from trap states has
frequently been used as a probe of both singlet and
triplet exciton dynamics.%® The main focus of this
work is to describe the influence of impurity scattering
and small multidimensional interactions on the time
dependence of exciton trapping and on the exciton mean-
square displacement in quasi-one-dimensional systems.
To this end, the strictly one-dimensional problem is
treated. A more restricted solution for the coherent
one-dimensional problem has previously been applied
to the trapping of triplet excitons in 1, 2, 4, 5-tetra-
chlorobenzene (TCB) crystals at low temperature. In
the TCB system, which is basically one -dimensional,
the naturally occurring isotopic impurity monodeutero-
TCB (0. 03% abundance) produces well-defined scatter-
ing sites. The preliminary theory was able to come
close to reproducing the experimental trapping data
without adjustable parameters, demonstrating the need
to consider the effect of impurity scattering on trapping
in one-dimensional systems. Here we present general
solutions to the incoherent and coherent problem, and
the quasi-one-dimensional problem.

Caging an exciton greatly extends the exciton-trap
interaction time in cages which have trap sites and con-
sequently those cages act as “supertraps.” Thus, en-
tering such a cage always results in trapping4 even if
the single encounter f{rapping probability is quite small,
and irrespective of the detailed description!® of the
trapping event, The two limiting cases of exciton-pho-
non scattering are treated. Either exciton—impurity
scattering greatly dominates exciton-phonon scattering
(microscopically coherent) or exciton—phonon scattering
greatly dominates exciton~impurity scattering (micro-
scopically incoherent). The case in which the rates of
exciton—-phonon scattering and exciton—impurity scatter-
ing are comparable could be treated using, for example,
the Knox and Kenkre!! or Silbey!? formalisms to recal-
culate the cage escape time [Eqs. (6) and (10)]. The
rest of the development of the sampling functions and
trapping rate functions presented below would remain
unchanged.

Recently, several experimental studies®® of trapping
in quasi-one-dimensional exciton systems have em-
ployed a phenomenological trapping rate constant to
analyze the trapping experiments and to infer the micro-
scopic details of exciton transport. It will be demon-
strated below that in the strictly one-dimensional case,
a time-dependent trapping rate function is obtained—
not a rate constant. The trapping rate constant is a
rigorous result only in the long time limit of virtually
isotropic transport on the superlattice. Since dilute
traps in one dimension are separated by large dis-

tances, the trapping rate function can be used to deter-
mine the macroscopic rate of transport which is in turn
determined by the details of microscopic transport.

A physical parameter which is readily varied in an
experimental sample is the concentration of scattering
impurities. A good deal of experimental work has been
performed using this approach in disordered solids in
which the effect of large concentrations (~50%) of im-
purities is considered. 13 For low impurity concentra-
tion quasi-one-dimensional systems, two new results.
emerge. First, the dependence of the trapping rate on
scattering impurity concentration is the same for both
the coherent and incoherent modes of transport, and
therefore it is not possible to infer the microscopic
mode of transport from a concentration study alone.
Second, the rate of trapping varies only gradually with
the scattering impurity concentration although this is
contrary to some common intuitive ideas. These re-
sults will be used subsequently to interpret data ob-
tained from a concentration study of time resolved trap
emission in TCB at low temperature. !4

Il. THE TRAPPING RATE EQUATIONS

The model presented here considers a single exciton
population ensemble, e.g., a singlet exciton band or,
in the absence of spin-lattice relaxation, one triplet
spin sublevel exciton band, interacting with dilute im-
purities. N, is the mole fraction of trapping impurities
and x is the mole fraction of scattering impurities. The
case of interest is where 1>>x>N,. As discussed
above, in quasi-one-dimensional systems with scatter-
ing sites, all traps behave as supertraps, and therefore
the trapping rate function is directly related to S(#), the
number of distinct lattice sites sampled by the exciton
from time £=0 to time {. The instantaneous rate of
exciton localization per unit population, the trapping
rate function, is given by (see Appendix A)

_ 1 ds(#)
K. (t) _1n(—1 —NT) T (1a)
and since In(1/1 - N;) =N, for small N,
ds(¥)
KL(t)::NTT . (1b)

Equation (1b) has been employed previously with its der-
ivation based on physical arguments. 15 The form of
S(#), and thus of K,(t), is dependent on the mode and
dimensionality of the transport. As noted in a recent
review of ginglet exciton energy transfer, ®**’ K,(f) may
be considered to be the fundamental observable in trap-
ping experiments. If S(#) istime independent, then K ()
becomes a trapping rate constant. However, in general,
K, (#) is a time-dependent trapping rate function.

For an ensemble of excitons, the time-dependent
populations of the band states E(f) and trap states T(¢)
are described, respectively, by the rate equations

E(f)=- Ky +K,(D]E(@) , (2a)
T(t) = = Ko T(t) + K. (D) E(t). (2b)

Ky is the decay rate constant for band states in the ab-
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sence of trapping and K, is the decay rate constant for
trap states. At sufficiently low temperatures, ther-
mally assisted promotion from a localized state to a
mobile band state is negligible16 and therefore will not
be considered.

Equations (2a) and (2b) are solved for initial condi-
tions E(0) =1 and T(0)=0. This corresponds to im-
pulse optical excitation of the sample in a manner pro-
ducing partially or totally localized excitons which are
on the average far removed from the dilute traps. This
initial condition will occur, for example, if excitation
takes place into a high lying vibration of the excited
state. The poor Franck —Condon factors will cause
the intermolecular interactions to be small relative to
the local potential fluctuation and therefore the exciton
is self-trapped. Radiationless relaxation to the vibra-
tionally unexcited exciton band will be basically an in-
tramolecular process. Once in this band, the Franck-
Condon overlap increases and exciton transport can be
coherent or incoherent. Under the special condition
that narrow band excitation of the exciton origin (£ =0)
is used, a highly delocalized initial state can result and
E(0) and T(0) may have to be chosen differently. In-
serting Eq. (1) into Eq. (2) gives

E(t) =expl— Kyt - NpS(#)], (3a)
' o
T(t) =exp(- K, 1) fo NS(t)

xexpl~ (Kz ~Kp) t' = NpS(t"]at' . (3b)

These equations provide a route, from the observed
time resolved emission through S(¢), to the factors in-
fluencing exciton transport.

I11. EXCITON TRAPPING AND THE SAMPLING
FUNCTION St/

At time =¢, the number of distinct lattice sites visited
by an exciton is S(¢). Exciton transport is a random
walk on the superlattice with the cage stepping fre-
quency determined by the microscopic mode of trans-
port. The sampling function gives the total number of
distinct sites sampled, which is the product of cage
size and number of supersites sampled:

SSITES(t) =(cage Size)XsCAGEs(t). (4)

E. W. Montroll developed a Green’s function formalism
for calculating the properties of random walks on lat-
tices of various dimensionality and configuration. %17
Montroll’s approach is used to determine S(#) for a var-
iety of transport topologies and the population equations
[Eq. (3)] are solved.

A. Cage stepping frequency for strictly one-dimensional
transport

When exciton—-impurity scattering dominates exciton—
phonon scattering, exciton transport is microscopically
coherent. In a lattice containing periodically sub-
stituted scattering sites, the stepping frequency for a
particular % state is given by Eq. (3) of Ref. 4

: Excitons in molecular crystals

1 3
vy(k) = ’h*(:g%ﬁ— sinka| , (5)

where a is the lattice spacing and la={x"!-1)a is the
cage size. If the exciton band is in thermal equilibrium
at temperature 7, an ensemble average over % states
yields the thermal average stepping frequency of co-
herent excitons between cages18

’ (T)_1617“2 1813 Iy o(y)
comT = NTo1 WSt (5/2)771(y)

where y=128/KT| and I; and Iy, , are modified Bessel
functions. This result will also be useful in Sec. III. C
when small interactions between parallel one-dimen-
sional chains are considered. Real crystals contain a
random distribution of scattering impurities, and this
result is obtained in Sec. III. B.

(6)

When exciton—-phonon scattering is fast relative to
the time required for an exciton to move one lattice
site in a wavelike manner, the % state dependent de-
tails of migration are averaged out and exciton motion
is a microscopic random walk from site to site. The
microscopic stepping frequency v yc can be calculated
using the formalism, of Kenkre and Knox'® and is given
by

242
Ve = ol (0
This result assumes that the memory function for loss
of coherence decays exponentially with rate ¢. « can
be obtained from spectroscopic information if the ab-
sorption line shape is Lorentzian.

The effect of scattering impurities on incoherent ex-
citon transport was considered for a periodic distribution
of scattering sites.’ In that treatment the exciton prob-
ability must first achieve near uniform density in the
cage and then a random step can be made to either ad-
jacent cage. If the cage is too large, uniform density
is not achieved and the procedure is not applicable.

This sets a minimum concentration of impurities for
which a calculation can be performed. The stepping
frequency between adjacent cages is given by

Tv 1-P 1+P
— Z7INC e e
ViNcon = T ( 3P, )ln( 1‘“Pe> ) (8a)
P,=1-(1-T)™ (8Db)
2 1/2 3 7
<”>=’( }) (“ 817 ~ 1281 +> ' (8c)

P, is the probability of escape from the initial cage be-
fore a uniform distribution is achieved and (») is the
mean number of exciton collisions with the nearest im-
purity site before a uniform distribution is achieved. T
is the transmission probability for a single exciton—-im-
purity collision, vy is the microscopic exciton stepping
frequency, and the cage size la is the average size for
a mole fraction x of scattering impurities. A reason-
able estimate of T can be obtained by taking the exciton
to be a Wannier function, i.e., composed of equal
weights of all # states. Using the penetration probabil-
ity for a single k state! and averaging yields
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TABLE I. The cage stepping frequency
voon between adjacent cages along a one-
dimensional chain of molecules for an
ensemble of coherent excitons at 1.4 °K
{Eg. {6)]. The bandwidth is 48=40 cm™,

veoy (sec™)
Impurity concentration
s/8 10t 1072 1078
10 2.7x108  2.5x107 2.4x10°
33 2.5x107  2.3x10% 2.2%10°
100 2.7x10%°  2.5x10° 2.4x10%

28° 9
T= (o) = 2 ®
Substituting, the stepping frequency of incoherent ex-
citons between supersites is
v 8% (1-P, 1+P,
Vincor = X_le_' -1 _S‘T( P, )111(1 -p,)’ (10a)

and, if Eq. (7) is applicable,

167284  [1-P,\ 1+P,
Vincon = (3T 7)o 77%S? \"p, ) In 1 -Pe> . (10p)

This result is also used when small interactions between
adjacent chains are considered.

Equations (6) and (10) give the stepping frequency be-
tween supersites for coherent and incoherent excitons.
As the concentration of scattering impurities increases,
the stepping frequency increases since there are more
frequent encounters at the ends of the cage. However,
the distance per step decreases and the net effect is to-
reduce the transport rate. The transmission probability
is inversely proportional to S/B8, where S is the energy
gap between the center of the band and the impurity and
B is the intermolecular interaction. For coherent ex-
citons the transport rate also depends on 8/KT, where
T is the temperature, since the coherent group velocity
is sensitive to thermal partitioning of excitons among
the % states.“!® Table I presents the stepping frequency
for coherent excitons having a bandwidth of 40 cm™!.
This would correspond to a large triplet band or a small
ginglet band. Table II presents the results for incoher-
ent excitons, where the microscopic hopping frequency
vinc has been set equal to 10'2 sec™!. These tables il-
lustrate the effect of cage size and band impurity sep-
aration on the stepping frequency,

B. Strictly one-dimensional sampling and trapping
rate equations

In this section, the sampling function and trapping
rate function for a strictly one-dimensional lattice are
calculated. It is a well-known result that random walks
in one dimension sample distinct sites of the lattice (in
this case supersites on the superlattice) according to®

S(= (M)mh + o [(wey']}, (11)

T

1999

where v is the stepping frequency and o{x) signifies
“terms on the order of x.” In nearly all cases, these
terms decay very quickly and are neglected.

For coherent excitons migrating amongst randomly
distributed impurities (hence between randomly sized
cages), the sampling function [Eq. (4)], for each & state
and each cage length [ is

1/2

') =1 [B—'ﬁﬂ‘—k)—t] , (12)

where v,(k) is given by Eq. (5). Averaging over the im-
purity distribution function P(I) =x(1 — x)? yields

25/2771/2)( 3/2 sin
(n(1/1 -7 ®7%s

If the exciton—phonon scattering rate is fast enough to
maintain thermal equilibrium and slow relative to the
exciton—-impurity scattering rate, an ensemble aver-
age®® over # states gives the thermal average site
sampling function

SHH) = lpaltt/?, (13)

(2 D) g
S(t)_{[ln(l/l-x)P” 57T BT }’”2’

(19)

where y =|28/KT| and I, and I3, again are modified
Bessel functions.

Substitution of S(¢) into Eq. (1) gives the trapping rate
function for microscopically coherent transport in one

dimension,
K(t)=Acont''?, (15)

where the time-independent parameter Aoy is given
by

_ 2YI0(5/4)1,, ,(y) Npx FEIKE
Acon =7 135 Ti/1= g PT WS - (19)

It should be noted that Egs. (15) and (16) are more gen-
eral than the Gaussian diffusion model of exciton migra-
tion and trapping used in Ref. 4. An important feature
of Eq. (16) is that all the necessary parameters 3, S,

TABLE II, The cage stepping frequency
Vmnecon between adjacent cages along a one-
dimensional chain of molecules for an
ensemble of incoherent excitons [Eg. (10).
The microscopic hopping frequency has

been set to vpye=10'? sec, and VINCOH &
VINCe
vmvcon (sec™)
Impurity concentration

s/8 107 10 1078

10 1,9%x10° 5.5x10® b

33 2.0x10® 1.6x107 5.6x10%
100 2.2x107  2.0x10° 1.7%10°

2These results are approximate. See dis-
cussion surrounding Eq. (8).
PEquation (8) is inapplicable.
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X, and T can be independently experimentally deter-
mined. The observed time resolved trap emission is
proportional to the trap population and therefore can be
calculated for an exciton system which is microscopi-
cally coherent and strictly one-dimensional.

The number of distinct lattice sites sampled by an
incoherent exciton is found by combining Eqs. (4) and
(11):

s(t) = '—f—'[s(x'i; Dvixg (1;P¢)

e
1+P,\1"?
xln——iﬂ §i/2

<1_Pe

Using Eq. (1), we obtain the trapping rate function for
incoherent excitons in one dimension

1)

K () =Amcount™? (18)
and
Amcou—NTlBI [2()( um(l—P=>
P,
172
x1 (-1-1+—PL)] (19a)
_4ngNpr2xt-1) (1-P,
- hS an p,
1+P,\]"?
— e
(3]
where Eq. (19b) has used Eq. (7) for v;yc. Both micro-

scopic modes of transport yield the same functional de-
pendence on time., This is because both modes of mi-
gration result in a random walk among the supersites

on a time scale long relative to the impurity scattering
time. For coherent excitons, the trapping rate coef-
ficient Aoy = x/[In(1/1 - x)]*/2. However, for relatively
dilute impurities, In[1/1 -x]=x, so that the trapping
rate coefficient Agon < x}/?, which is the same depen-
dence manifested by A;ycon [Eq. (19)] for incoherent ex-
citons. The x~'/? dependence on concentration is thus

a strict test for one-dimensional transport regardless
of the microscopic mode of migration.

The effect of various concentrations of impurities on

TABLE IlI, The trapping rate coefficient
Acoy for coherent excitons at 1.4 °K on

a strictly one-dimensional chain of mole-
cules containing dilute scattering im-
purities and traps [Eq. (16)]. The con-
centration of traps is 5xX10°. The band-
width 48=40 cm™,

Acop (sec™/?)

Impurity concentration

s/g 107 107 107
10 3.5 12 38
33 1.1 3.6 12

100 0.35 1.2 3.8

Wieting, Fayer, and Diott: Excitons in molecular crystals

TABLE IV, The trapping rate coefficient
Amcon for incoherent excitons on a
strictly one~dimensional chain of mole-
cules containing dilute scattering im-
purities and traps [Eq. (16)]. The con-
centration of traps is 5 %10, The in-
coherent hopping frequency is 101 sec",

172
and Amycon V.

AINCOH (SGC-I/ 2)

Impurity concentration .

s/ 101 107 107
10 16 292 b
33 5.1 16 30%

100 1.7 5.6 16

3These results are approximate. See
‘the discussion surrounding Eq. (8).
PEquation (8) is inapplicable.

the trapping rate coefficient is shown in Table III for
coherent excitons at 1. 4°K with a bandwidth of 40 cm™!,
and in Table IV for incoherent excitons where the micro-
scopic hopping time has been chosen to be v;%,c =1 psec.
Tables III and IV give the coefficients of "1/ ? in the trap-
ping rate function K;(¢), where from Eqs. (15) and (18),
K, (8 =AtY? Various values of band-impurity energy
separation S are used. Increasing S decreases the trap-
ping coefficient. As the impurity concentration becomes
larger, the step length becomes smaller faster than the
step frequency increases, thus decreasing the trapping
coefficient.

The population rate equations can now be solved.
Since both modes of transport have the same form of
the trapping rate function, K,(t)=A¢"'/?, inserting this
form into Eq. (3) yields

E(f) =exp(- Kyt - 24¢1%) |
/ TTAZ i1/2 AZ
o =emi-r0 (2 x;) (i)

(excss - ot 2+ Gy -ent i)

(20a)

where erf(x) is the error function of argument x. If
Ky =K =K, then these solutions are

E(#) =exp(~ Kt - 2A£72) |

(21a)
(21b)

where A is given by Eq. (16) or (19) for coherent or in-
coherent excitons, respectively.

The time-dependent trap population is displayed in
Fig. 1. To illustrate triplet systems, a lifetime of 20
msec for the exciton band and of 50 msec for the trap
state is used. A range of trapping coefficients is dis-
played. These values of A could result from a variety
of conditions, e.g., mode of transport, 3, S, coherence
decay rate a, scattering impurity concentration, and
temperature. Note that larger values of A cause a very
abrupt rise in the trap population, while smaller values
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FIG, 1. Calculated trap populations as a function of time are
used to illustrate the effect of increasing the coefficient A of
the time-dependent trapping rate function for strictly one-
dimensional transport on the time-dependent intensity of trap
emission following impulse optical excitation of the exciton
band. Each curve can be arrived at from a variety of possible
combinations of the parameters which affect the nature of ex~
citon transport. The rate constants for the exciton and trap
decay, K zandK ; respectively, are 50 and 20 sec”!. These
rates are typical of triplet systems. As A is increased, the
population maximum is shifted to shorter times and the inte-
grated population of the trap increases.

shift the maximum to longer times. As A decreases,
the total integrated trap population decreases and more
emission would be observed from the exciton band.

C. Quasi-one-dimensional sampling and trapping rate
equations

A complete model of a one-dimensional system must
allow for nonvanishing interactions between adjacent
chains of the ensemble. An exciton is localized in a
cage by the impurities and confined on a chain by small
cross-chain interactions, but in the general case can
still execute a random walk on a three-dimensional
superlattice whose supersites are the linear cages of
molecular lattice sites. For the calculations presented
below, two different three-dimensional arrangements of
chains will be used to provide lower and upper bounds
to the three-dimensional trapping function K (#). In
both cases, the discussion of Sec. II concerning trapping
sites applies, i.e., any supersite containing a trap site
within it will behave as a supertrap.

In the calculations presented below, the results for
the two different topologies will be obtained by employ-
ing the procedure developed by E. W. Montroll.*'” For
each topology, ‘there is a set of neighboring supersites
to which a step can be made, and a corresponding set
of step probabilities. The Fourier expansion of the
stepping probability function is called the structure
function A(¢) of the random walk. This is easily con-
structed from a set of the vector displacements and cor-
responding probabilities. The appropriate function A(¢)

2001

is then inserted into the expression for the generating
function of all walks which end at the origin, the Green’s
function U(z, 0). Employing a Tauberian theorem, the
number of distinct lattice sites sampled in a walk of n
steps S(n) is then obtained from the asymptotic behavior
of U{z, 0) as 2~ 1.

The lower limit properties are obtained from an ar-
rangement of the one-dimensional chains in which all
of the chains and all of the scattering sites are aligned
in the horizontal and the vertical direction (see Fig. 2).
This provides a lower bound for the sampling of distinct
lattice sites because a scattering site cannot be by-
passed via off-chain exciton motion. This minimizes
the sampling of distinct sites. The lattice arrangement
forms a simple cubic topology and steps occur to cage
positions (+1, 0, 0) along the one-dimensional direction
or to cage positions (0, +1, 0) or (0, 0, +1) on adjacent
chains, The random walk structure function Moy, ¢,
$3) for this topology has been given as®

Ae(d1, ¢a ¢3) =Lcosg;+Ccosgp,+Ccosgs, (22)

where ¢, is the displacement variable on the ith axis.
The constants L, C, and C’ are the probabilities of
steps to cage locations (+1, 0, 0), (0, +1, 0), and (0,
0, £1), respectively.

The upper limit properties are obtained from an ar-
rangement comprised of staggered layers of planes,
each plane consisting of staggered cages, as shown in
Fig. 3. This arrangement maximizes the ability of an
exciton to bypass the scattering impurities by motion

(A)

FIG. 2. (A) A cross section of the infinite three-dimensional
lattice consisting of one-dimensional chains of molecular lattice
sites (open circles) containing periodic substitutional scattering
impurities (solid bars), The chains are arranged so that all
the imputities lie in parallel planes, An exciton may step

from a given cage to either neighbor along the chain, or to one
of four neighbors in orthogonal directions. This arrangement
provides a lower bound for the rate of sampling of new cages
since excitons must tunnel through an impurity to move in the
one-dimensional direction. The topology is that of a simple
cubic lattice, (B) The same lattice is viewed in cross section
from the one-dimensional direction, where each linear chain

is represented by a square.
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(A)

(B)

FIG. 3. (A) A cross section of the upper bound lattice consist-
ing of one-dimensional chains of molecular lattice sites (open
circles) containing periodic substitutional scattering impurities
(solid bars). In a single plane, alternate chains are arranged
so that each scattering impurity site lies next to the centers

of the cages on the neighboring chains. In this staggered to-
pology no two neighboring linear cages are completely aligned
with each other. This provides an upper bound for the rate of
sampling of new cages, since steps in directions orthogonal to
the chains can allow transport along the chains without tunnel-
ing past a scattering site. For further discussion see Appendix
B. (B) The same lattice is viewed from the one~dimensional
direction in a cross section containing impurity sites, The
dark squares indicate impurity sites in a plane of the cross
section and the light squares impurity sites one-half cage
length from the plane of the cross section. Each successive
layer of chains is shifted one half the chain separation.

off of a chain, thus maximizing the sampling of distinct
lattice sites. The random walk structure function for
this staggered topology is developed in Appendix B,
where a more detailed discussion of this lattice is in-
cluded. The result is

Apldy, B, Pg) =Lcosg+Ccosgy cos-¢2—2

+ -;— C'[cos( %Z- - ¢3> +cos %1' cos (jzlz‘ + ¢3>] (23)

where the ¢; are the same as before and the constants
L, C, and C’ represent the relative probabilities of a
step to one of three distinct sets of cage locations.
These probabilities for both topologies are given by

On chain 1D direction: L=v;/vior,

in plane: C=vs/Vror

Interchain {

out of plane: C’=v¢./Vror, (24)

Vpor =V +Vc+ Veor o

The frequency of steps in the one-dimensional direction
v, is taken from Sec. II. A, Eq. (6) or Eq. (10), de-
pending on the microscopic mode of transport. The
structure function and thus the trapping rate function
can be calculated for arbitrary values of the small off-
chain stepping frequencies v, and v..

The site sampling function is obtained for these three-

Wieting, Fayer, and Diott: Excitons in molecular crystals

dimensional structure functions through the Green’s
function of all walks which end at the origin,

L 4
1 doiddedo
Uz, 0) = m Ly e . 25
(= 0) @n)? )] 1-2M01, @2 ¢3) 29
The number of distinct lattice positions sampled by a
walker after »n steps S(n) can be obtained through the ex-

pansion of U(z, 0) as z—~ 1, followed by the application
of a Tauberian theorem to the expansion.® Thus

Sy = 2, (26a)
U
where
em)=1+ n—%—'r‘# 7+ o(n?) . (26b)
0

The number of new sites per step is thus a constant,
given by ua‘ , in the asymptotic limit of large », since
the corrections to unity in Eq. (26b) will vanish and
C(n)~1. For nearly all cases, the terms o(n!) decay
very rapidly compared to the first two terms of Eq.
(26b) and can be neglected. The functional form of S(x)
[Eq. (26a)] will become a sum of two terms, one pro-

portional to # and the second proportional to #'/%, The

constants u, and x; are given by

uy=U(1, 0), @7

we =1/@mLCC')/?, (28a)
r !

umzl/[27r2<L+ % +—§——><c+ %)c']“? (28b)

where uy; and u,q (see Appendix B) are the expressions
obtained from lower and upper bound walk topologies,
respectively. u; must be evaluated using Eq. (25) with
z=1 and the structure function A(@) appropriate to the
walk topology. The triple integral U(1, 0) is convergent
for any three-dimensional topology® and may be obtained
by numerical integration.

The behavior of the sampling function [Eq. (26)] for
lower and upper bounds is illustrated by Tables V and
VI. Anisotropy in the random walk tends to increase
the importance of the correction term in Eq. (26b), par-
ticularly when relatively few steps have been made.
Thus, Eq. (26) is not the best form of the sampling
function when the walk is approaching the one- or two-
dimensional limit. In those limits the analysis must
back up to the random walk structure function appro-
priate to the dimensionality, e.g., with C=C'=0or
C’ =0, and derive the form of S(n) from the z—1 di-
vergent behavior of the Green’s function [Eq. (25)].
The one-dimensional problem is treated in Section B
and the two-~-dimensional problem in Appendix C. In
nearly isotropic situations the sampling function is
linear in time. This is true for the upper and lower
bound topologies, although a comparison of the tables
shows that the importance of the correction term de-
creases for the staggered topology compared to the
cubic topology. The staggered topology emphasizes
the three-dimensional character of the walk, as well as
increases the absolute rate of sampling. Note that the
lower and upper bound topologies give virtually the
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TABLE V. Three-dimensional random walk sampling param-
eters for the lower bound (simple cubic) topology (Fig. 2).
The interchain step probabilities [Eq. (24)] C and C’ have been
set equal. L+C+C’=1,

Along-chain

step probability e 20,/

L [Eq. 27)] [Eq. (28a)] 5! x(2u /7 %uy)
0.9999 0.010999 55,872 0.61454
0.999 0.034771 17.671 0.61443
0.99 0.10964 5.5972 0.61368
0.9 0.33662 1.8024 0.60671
0.8 0.45933 1.3043 0.59909
0.7 0.54075 1.0943 0.59176
0.6 0.59733 0.97926 0.58494
0.5 0.63487 0.91212 0.57907
0.4 0.65538 0.87727 0.57494
1/3* 0.65946 0.87028 0.57392
0.3 0.65337 0.87223 0.57425
0.2 0.64001 0.90866 0.58155
0.1 0.58693 1.0475 0.61482
0.01 0.42368 2.1738 0.92100

Reference 8 obtained this result.

same numerical values for a given random walk, From
the values in Tables V and VI and Eq. (26) it can be
seen that «™; is less than 109% greater in the upper bound
although toward the two-dimensional limit the differ-
ence becomes somewhat larger. In the same way the
coefficient of the time decaying correction term, given
by 2u,/uyn!/? [Eq. (26b)], is less than 20% smaller for
the upper bound over the same range, Toward the two-
dimensional limit the correction becomes somewhat
larger. Thus, it suffices to use the lower bound
topology, which is mathematically simpler.

Since the number of steps in time £ is n=vor ¢,
where Vpop is the total frequency of steps, Eq. (26)
can be employed [neglecting terms o (#™!) in Eq. (26b)]
to give the time-dependent cage sampling function

v

TOL t(1+ Ry t71/?)

Seaas ()= 7

(29)
where the constant coefficient 2, of the correction term
is

2u -1/2
Ry = .”17'21_ vk

In order to illustrate the behavior of the time-depen-
dent nature of S(f), several sets of walk parameters will
be considered. The following calculations will employ
the lower limit formulas and take vo=v., i.e., C=C’,
since with these conditions all of the properties of three-
dimensional topologies can be illustrated and a conve-
nient closed form expression is available for 1,2

(30)

ue=Us (1, 0)= 2 I[(L/OM7] (31)
where I(a) is given by
Ka)=4(y+ 1)V = (y 1)V 2] K(Ry))K(Ry)/ an ? | (32a)

By=3[(y-1)1/2 —(y-3)“2][(~,+1)"2—(~)-1)”2] , (32b)

2003

By=3[ly = DY2 4 (y =302} [(y + 1M/ 2= (y = 1)12] | (32¢)

y=(4+3a%/a?, (32d)

and where K(k) is the complete elliptic integral of the
first kind of modulus k. For example, consider a sys-
tem with site-to-site hopping frequency vy =10 sec™.
The on-chain frequency between supersites v;, is typi-
cally (Sec. III. A) 107 sec™. If the frequency of steps
between adjacent chains is scaled down by ~10° from
Vinc, then the interchain cage stepping frequency will
be of the order of v,~10% sec™'. This results in a walk
which is predominantly one-dimensional along a single
chain, since from Eq. (24) it is seen that L ~0.9999 and
Vror= 107 sec™. Using the values from Table V in Egs.
(27)-(30), the cage sampling function is S(#)~ 0. 11¢x
(1+18¢7'/?), with ¢ in units of usec. The correction
term 18£71/2 is still half as large as unity at 1 msec
and at times less than 10 usec (equivalent to 100 steps)
the correction term is much greater than one, making
S(t)ect1/?, which is the time-behavior characteristic of
purely one-dimensional random walks [see Eq. {11)].
When confined to a linear chain, the exciton frequently
revisits (nontrap) sites whereas even one off-chain step
dramatically increases S(t).

In the limit that the walk becomes strictly one-dimen-
sional, L approaches unity, the coefficient ua‘ of Eq.
(26) goes to zero, and the coefficient of the n*/? term
of Eq. (26b) diverges. However, as seen in Table V,
the product of these coefficients is a constant (~ 0. 615),
so that the time-dependent cage sampling function [Egs.
(29) and (30)] is given by S(t)~0.615 v'/2¢1/2, This
should be compared to the one-dimensional form S()
~1.60 v!/?£1/? from Eq. (11). The numerical factor of
~2.5 can be ascribed to the inappropriate application
of the Tauberian theorem near the limit L =1, but the
important point is that the functional forms are identi-
cal, indicating the reliability of the limiting behavior
in this situation.

TABLE VI. Three-dimensional random walk sampling param-
eters for the upper bound (staggered lattice) topology (Fig. 3).
The interchain step probabilities [Eq. (24)] C and C’ have been
set equal. L+C+C’'=1,

Along-chain

step probability ug! 20,/ 7,

L [Eq. 211 [Eq. (28b)]  ug! X (2u /7!/2)
0.9999 0.0173 48.3 0.748
0.999 0.0367 16.7 0.611
0.99 0.114 5.20 0.593
0.9 0.349 1.65 0.576
0.8 0.477 1.19 0.565
0.7 0.565 0.984 0.556
0.6 0.629 0.869 0.546
0.5 0.675 0.797 0.538
0.4 0.708 0.749 0.531
1/3 0.7230 0.7278 0.5263
0.3 0.729 0.720 0.525
0.2 0.738 0.708 0.523
0.1 0.733 0.714 0.524
0.01 0.718 0.745 0.535
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FIG. 4. The time-independent leading term of the trapping
rate function K for a quasi-one-dimensional system is plotted
as a function of the along-chain cage stepping frequency vy for
several different interchain cage stepping frequencies vo. The
scattering impurity concentration is 107? and the concentration
of traps is 5x10”, K; is much more strongly dependent on

vy, when vy > ve.

The trapping rate function is now obtained from the
number of distinct lattice sites sampled in a time {.
Equations (4), . (24), and (27)-(30) may be combined to
give the sampling function for distinct lattice sites

S(H=(x"1-1) i’ffl H1+Ry 2"V, (33)
(i}

Using Eq. (1), the trapping rate function is found to be

K, () =K, +B, r'/? | (34)
where the time-independent parameters are
K,=Np(x'=1) 315:21 , (35)
0
RK,  Nglx ™t -1) vk
B, = 12 L T(Xﬁl/zu?‘) TOTH1 (36)

u, and u; must be chosen for the appropriate topology,
and the microscopic details of the transport enter
through the various parameters in Eqs. (33)-(36). If
the second term is negligible, the localization rate func-
tion becomes a simple rate constant K, (f) =K.

The time dependence of the trapping rate function
given by Eq. (34) is a general consequence of the nature
of random walks with three-dimensional topology. This
functional dependence on time was employed by Soos
and Powell in a study of singlet exciton trapping for a
three-dimensional molecular lattice!> with near-isotro-
pic interactions. The model presented here also con-
siders a random walk with a three-dimensional topology

Wieting, Fayer, and Dlott: Excitons in molecular crystals

but this topology arises from consideration of scattering
impurities in quasi-one-dimensional systems and leads
to a different physical interpretation of the walk, which
has several important consequences. First, as dis-
cussed above, this model does not evaluate a sampling
function for a random walk between lattice sites, but
rather for a random walk between supersites. The
topology of the random walk may be three dimensional
in nature even though the intermolecular interactions
responsible for exciton migration are essentially one
dimensional. Thus, the time dependence of the trapping
rate predicted by Eq. (34) is expected for a variety of
systems, not just those which have truly three-dimen-
sional intermolecular interactions. Furthermore, a
random walker on the three-dimensional superlattice
associated with quasi-one-dimensional transport has a
relatively low stepping frequency compared to the iso-
tropic pure crystal case, This greatly enhances the
importance of the ¢*'/% “correction” term [e.g., Eqgs.
(29) or (34)] especially for excitations with short life-
times, regardless of the relative anisotropy of the ran-
dom walk,

The behavior of the leading term of the trapping rate
function K is illustrated in Figs. 4 and 5 for a range of
values of v; and v., the cage stepping frequencies along
the chain and off the chain, respectively. The details
of the calculation of these frequencies are left unspeci-
fied, although a constant value of the scattering im-
purity concentration x = 10-2, is used for all curves, So
the range of along-chain frequencies would represent
variation in the physical parameters other than x (see
Sec. INI. A). The trap concentration is Np=5%10"%, In
Fig. 4 it can be seen that K; has a much stronger depen-
dence on v; when v, »>v., vc.. In Fig. 5 a family of

& 6
"‘IO3—'O
.
X

5 -
I02H10 X =107
Ny=5xI0"
VC = VC,
1 1 | S 1
ToRd g4 g3 10?2 10"
¥ /Yror

FIG. 5. The time-independent leading term of the trapping

rate function K;, for a quasi-one-dimenstional system is plotted
as a function of v;/vqor (or L), the fraction of cage steps along
the chain, for several values on the on-chain stepping frequency
v. The ratio L ranges from zero (the two-dimensional limit)
to unity (the one-dimensional limit). The maximum trapping
rate constant is obtained at L=1/3, i.e., cage steps are
equally probable in all three directions. Whe L—1, K7 —0,
and the time-dependent term constitutes the entire trapping
rate function.
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curves of K; v8 V;/Vpor i displayed for various con-
stant total stepping frequencies vyor. AS the walk
changes from two dimensional (v, /vVyor = 0) to nearly
three dimensional, the value of K, increases to a maxi-
mum at v, /vror=1/3. At the one-dimensional limit
(vi/vror— 1), the value of K, declines precipitously

to a value of zero, In this situation the “correction”
term B,t"!/? constitutes the entire rate of trapping.
Each subsequent curve represents a factor of 10 in-
crease in K; at every point since K; <vyyr. These
calculations use Eq. (31) in (35). It can be seen that
the trapping rate function has a complex dependence on
all the physical parameters including the off-chain step-
ping frequencies. The mode of microscopic transport
and the molecular parameters 8, S, and T in combina-
tion with the mole fraction of scattering impurities x
enter into a straightforward evaluation of v, through
Egs. (6) or (10). However, since x also enters directly
into K, . (2) through the cage size, the overall dependence
on y depends in turn on the relative magnitudes of v,
and v, V. If v, > vg, Ve, then from Eq. (35), K. (f)
o« (x"'=1)¥2, This is the behavior of a one-dimensional
random walk, In contrast, if v, <vg,vce, then K, (f)

o (x"1=1). In this limit the trapping rate increases
linearly with cage size, and is independent of the along-
chain cage stepping frequency [Eqs. (6) or (10)]. This
behavior is illustrated in Fig. 6, a log—log plot of the
parameter K; vs y for quasi-one-dimensional migration
which is microscopically coherent with 8=0.5 cm™,
S=32 ¢cm™, and the temperature 1.4°K. An analogous
calculation could be performed for microscopically in-
coherent transport. The lowest curve represents the
case where v; =~ 10°-107 sec™ > v, =10° sec™, and the
expected slope 0.5 is observed. The top curve illus-
trates the other limit, i.e., v, ~10% sec™ < vy =10’
sec™!. This curve has a slope of 0.9, which approaches
the limiting value of unity. Thus, the concentration de-
pendence reveals the extent of deviation from a one-di-
mensional topology.

The dependence of K, (t) on the other parameters of
the system-—the mode of migration, 8, S, and T—also
depends in turn on the relative magnitudes of v, and
Ve, Voo as it did for . However, these parameters en-
ter into the calculation only through the stepping fre-
quency v;. The results of typical calculations are tabu-
lated along with the time #,,, , at which the correction
term By t™1/? is down to 10% of the leading term K, .
Table VII lists the values of K, and B; for coherent mi-
gration along chain at a temperature of 1, 4°K with B
=10 cm™, S/B=33, and N,=5%10"%, Table VIII gives

}

E(t)=exp[- (Kz+ K;)t-2B, /7] ,

K
T(t)zexp(—KTt)[KL+KE_KT {1 -exp[- &, +K; -
o =Bl \'* exp[BY/ (K, + Kz - Kp)]( 1
K, +Ky-K, L T R T AT

B

: Excitons in molecular crystals 2005

Slope=09  Coherent T=14°K
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FIG. 6. The effect of scattering impurity concentration on

the time-independent leading term of the trapping rate function
K; for a quasi-one-dimensional system is illustrated for sev-
eral values of interchain cage stepping frequency vo=vc'. A
hypothetical molecular system is used for the entire figure,
having coherent exciton migration at 1.4 °K with an intermo-~
lecular interaction matrix element 8=0.5 cm™. The scatter-
ing impurities are S=32.0 cm™ in energy above the center of
the band, The concentration of traps in 5x10%, When the
frequency of steps along the linear chain vy is much greater
than the interchain cage stepping frequency v¢, the slope of
one-half results, demonstrating the essentially one-dimension-
al nature of this system (e.g., in this system when x=0.1 and
ve=10° sec™). In the opposite case vy, < vp (e.g. x=107,
ve=10" sec™), the slope is approaching unity indicating the
multidimensional nature of that system.

the values of K; and B; for incoherent migration along
chain, also with S/8=33, but the microscopic hopping
time v 1hc =1 psec. Only when v, t> 1 can the correc-
tion term be neglected. This must be considered when
formulating the trapping rate function, for if B, ¢™1/2

is negligible, the results are simplified. In addition,
both K, and B; have a linear dependence on the concen-
tration of trap sites N;. Therefore, N, affects only the
overall rate of trapping, not the relative importance of
the two terms in K (f). '

The population equations can now be solved. Both the
lower and upper bound three-dimensional lattices yield
the same form for the localization rate function, K(¢)
=K, + By t™1/?, The solutions are obtained by inserting
this form into Eq. (3) to yield

X \erfd [(Ky+Ky—-Kp) ]2 + L
( {[( L E KT)] (KE—KT+KL)1/

(37a)
Kp)t-2B, 17}
- __J&___)
K.+ Ky Ky
B
2} —erf[(KE—K:+KL)”2—_\)] , (370)
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TABLE VII. Coefficients of the quasi-one-dimensional trap-
ping function Ky (#) =Ky +Byt™1/2, In this example, the exciton
migration along chain is coherent at 1.4 °K, with =10 em™!
and $/B=33. The trap concentration is 5x10®, The time at
which By t712=10% K, is defined at ¢,y3. Each block of num-
bers is, in descending order, K (sec™!), B;(sec™/?), 1o

Interchain

stepping

frequency

ve=ve Impurity concentration

(sec™) 107 . 107 1078

108 3.6x10° 1.3x104 6.5x%10
0.71 3.0 23
3.9 usec 5.3 usec 12 usec

10t 350 1.2x10° 3.7%x10°
0.69 2.3 7.4
0.39 msec 0.37 msec 0.40 msec

10° 35 120 360
0.69 2.3 7.2
39 msec 37 msec 40 msec

vy (sec™)? 2.5%10" 2.3x10% 2.2x10°

2The along-chain cage stepping frequency for each impurity
concentration (see Table I).

where erf(x) is the error function of argument x. If
the correction term is negligible over the time domain
of the walk, then the solutions become

E()=exp[- (K, + Kp) 1] , (38a)
K
T(t) = exp(- K 1) m
x{1 - exp[~ (K, + Kz —K) ]} . (38b)

Small deviations from strictly one-dimensional trans-
port can have a dramatic effect on exciton trapping.
This effect is illustrated in Fig. 7. For all curves in
this example, exciton transport along the linear chain
is taken to be incoherent with vjhc=1 psec and S/8
=100. The impurity concentration is 10”2, and the trap
concentration is 5X10™>. The exciton and trap decay
rates are 50 and 20 sec™!, respectively. The bottom
curve uses the strictly one-dimensional formula [Eq.
(20b)]. Here, Apycon=>5.6 sec™/? (see Table IV). In
the top three curves small interchain step frequencies
are included, i.e., vo=vg =10%, 10% and 10° sec™!,
respectively, and Eq. (38b) is employed. Even cross-
chain stepping frequencies which are 10™ of on-chain
site-to-site frequencies have a large effect. The inte-
grated trap population which is proportional to the trap
intensity under steady state conditions is also very sen-
sitive to the small degree of interchain exciton trans-
port. This figure should be compared to Fig. 1. It
can be seen that very small interactions between adja-
cent chains can produce the same effects as variations
in the parameters associated with a strictly one-dimen-
sional random walk. In Fig. 7, as the trapping param-
eter decreases, a more gradual and later buildup to
maximum is observed, and the maximum is broader.
The total integrated populations also decrease.

: Excitons in molecular crystals

1.0
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o2l K;=20sec! vy =1 psec
S/B =100
X =10
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FIG. 7. The effect of very slow cross-chain transport on the
time-dependence of the trap population following impulse ex-
citation of the exciton band is displayed. The bottom curve is
for strictly one-dimensional transport with a site-to-site in-
coherent stepping time v}§c= 1 psec. The exciton and trap
decay rate constants (inverse lifetime) are 50 and 20 sec™,
respectively. The scattering impurity and trap concentrations
are 107 and 5 %107, respectively. The other three curves
are calculated using an identical set of parameters but also
include varying degrees of cross-chain stepping, i.e., 10°,
104, and 10° sec™! moving from bottom to top. These cross-
chain frequencies are 6 to 9 orders of magnitude smaller than
the on chain site-to-site stepping frequency, yet have a very
large influence.

TABLE VIII, Coefficients of the quasi-one-dimensional trap-
ping function K (t) =Ky +B#'/:. The exciton migration along
chain is incoherent with a microscopic hopping time vijc=1
psec, S/B =33, and the trap concentration is 5X 107, The time
at which By ™12 =10% K is defined as t;3. Each block of
three numbers is, in descending order, K (sec™), By (sec

t1og»

-1/2)
s

Neglect-

Interchain
stepping
frequency
Ve=ve' Impurity concentration
(sec™) 107 107? 107
108 9,9%10° 3.1x104 8.3x10*
2.0 6.4 23
3.9 usec 4.2 usec 7.8 usec
10 290 3.1-10° 5.9+ 10°
2,0 6.1 12
0.39 msec 0.39 msec 0.39 msec
10° 99 310 580
2.0 6.1 11
39 msec 39 msec 39 msec
vy (sec™)? 2,0x108 1.6%x107 5.6x10%®

2The along-chain cage stepping frequency for each impurity
concentration (see Table II). )

PThis result is approximate. See the discussion surrounding
Eq. (8).
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ing the correction term B, ¢'/? is a reasonable assump-

tion for this time domain (see Table VIII). In Fig. 8(A),
the lowest of the three quasi-one-dimensional trapping
curves of Fig. 7, where v,=10% sec™!, is displayed with
and without the correction term. In contrast, Fig. 8(B)
uses the same random walk—trapping parameters, but
involves a quite different time domain by virtue of much
faster exciton and trap decay rate constants, now 5x10°
and 2x10°% sec™!, respectively. In this time domain the
correction term dominates the leading term. By itself,
the leading term accounts for only ~ 5% of the total in-
tegrated trap population. This figure clearly demon-
strates that the time domain determines the effective
functional form of K;(#). In this last example, a much
better description is probably offered by the strictly
one-dimensional random walk of Sec. III. B.

1V. TRAPPING, TRANSPORT, AND THE MEAN-SQUARE
DISPLACEMENT

In the previous sections the effect of very small off-
chain interactions on the trapping rate was discussed.
The trapping rate for a quasi-one-dimensional system
can behave as if it had a two- or three-dimensional
topology on the superlattice. However, the transport
of excitons as measured by the RMS displacement along
the chain as well as in the two orthogonal directions
will remain predominantly one dimensional. For exam-
ple, consider the mean-square displacements of a
macroscopically random walking exciton on an idealized
simple cubic topology of uniform cages, as in Sec.

m. C,

(Dz):Vx td_z.-_— th(x-l —1)2a2 ,
(Dﬁ):vyt(—i_f,:uytaz N

(Db:vzt&_ﬁ:v,taz s (39)

where (D% is the total mean-square displacement, v,
is the stepping frequency, and d f the mean-square dis-
placement per step in the ith direction, The mean step
size between adjacent chains is of the order of one lat-
tice site spacing a. In contrast, the mean step size
along the chain is the number of lattice sites in a cage
times a, (' -1)a. If the trapping, and hence the sam-~
pling of cages, behaved completely isotropically, then
all the stepping frequencies would be equal v,=v,=v,
=y, The RMS displacement in three-dimensional space
would be given for the ith direction by D{,.=(DH)!/?,
so that the vector displacement would be

Dpys= 00" 2a[(x - 1)1+ +Kk], (40)

where the above definition of Dy, has been employed

in combination with Eq. (39). The usual definition of
the unit vectors i, j, and k has also been used. This
displacement describes a three-dimensional Gaussian
probability distribution which would appear to be a long,
thin, tapering cylinder along the one-dimensional direc-
tion. This basically one-dimensional displacement of
excitons occurs for a system whose trapping properties
behave as if its topology were isotropically three dimen-
sional. Therefore, in real quasi-one-dimensional sys-
tems, scattering impurities and very small interactions
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FIG. 8. The calculated trap population for a quasi-one-dimen-

sional system is plotted as a function of time. In the upper
curves of both figures the BLt'” % term was included [i.e., Eq.
(34a) was used] and in the lower curves of both figures this
term was neglected [i.e., Eq. (34b) was used]. The system is
near the one-dimensional limit, with vy =2x10° sec™ and v,
=yl = 10® sec™. The scattering impurity concentration is

10" and the concentration of traps is 5x10%, Using Egs. (35)
and (36), this yields K = 340 sec™! and By =2.2 sec’}2, (A)
The exciton and trap decay constants are 50 and 20 sec™,
respectively. In this situation, the inclusion of the Bpt™/2
term causes only a small change in the maximum and inte-
grated populations, since the long time domain ensures that
very many cage steps will occur, This term is only 10% of
the leading term K; at 3.9 msec. (B) For the same system,
the exciton and trap decay constants are set 10° times faster,
i.e., 5x10° and 2x10°® sec™!, respectively. In this situation,
the “correction” term by far dominates the leading term, ac-
counting for 95% of the integrated population, since the short
time domain permits relatively few cage steps.

between adjacent chains can cause the trapping proper-
ties to follow a topology which may be quite unrelated
to the transport topology of excitons as measured by
their displacements in physical space.

V. SUMMARY

In order to closely model real systems with almost
one-dimensional energy transport, the effects of low
concentration scattering impurities and small devia-
tions from one dimensionality on exciton migration and
trapping in molecular crystals were considered. The
trapping rate function has the same dependence on time
and on impurity concentration for microscopically co-
herent or incoherent excitons. In the strictly one-di-
mensional limit, the trapping rate function is always
time dependent. Small multidimensional interactions
change the effective trapping topology. At short times,
a time-dependent trapping rate function results. If the
multidimensional interactions are sufficient to produce
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a very large number of off-chain steps during the ex-
citon lifetime, then the trapping rate function tends to-
ward a constant and trapping appears as if transport
were three dimensional. Regardless of the apparent
dimensionality of trapping, the exciton mean-square
displacement remains one dimensional. However, trap-
ping is greatly increased by even a small amount of
multidimensional transport.

The model provides a way to examine the dimensional-
ity of exciton transport and the rate of cross-chain
steps through the scattering impurity concentration de-
pendence of exciton trapping. Detailed analysis of time-
dependent trapping data can provide direct information
on the macroscopic rate of exciton transport. In a sub-
sequent publication, 4 an experimental study of triplet
exciton trapping in 1, 2, 4, 5-tetrachlorobenzene (h,-
TCB) doped with deuterated scattering impurities will
be presented. In these systems, transport is clearly
dominated by exciton—impurity scattering, The y™1/?
concentration dependence predicted here is observed.
TCB is shown to be overwhelmingly one dimensional
witha cross-chain stepping frequency less than 5x10°
sec™. Thus, the model provides a framework for the
investigation of transport topology, small intermolec-
ular intéractions, and macroscopic exciton transport,
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APPENDIX A. THE TRAPPING RATE FUNCTION

The relationship between the trapping rate function
K, (f) and the sampling function S(f) is obtained from a
simple consideration of exciton population dynamics.
The exciton population at any time is the product of the
probability of not having decayed ¢ ¥£* and the probabil
ity of not having trapped. The probability of not sam-
pling a trap site is (1 - N)*'?, the normalized number
of ways of sampling S(f) nontrap sites, Thus, the ex-
citon population is

E(t)= e ¥5t (1 - Np)5®

- expl:— Kpt- 1“<T-1N_T> s(t)}.

Since the time evolution of this population is also de-
scribed by the rate equation

E()=-K E({)-K,(DE() ,

{Ala)
(AlDb)

(A2)

Excitons in molecular crystals

Eq. (Alb) can be substituted into Eq. (A2) and the iden-
tification

K, (f) = ln( (A3)

- _INT>S°(t)

is made.

APPENDIX B. THE RANDOM WALK FUNCTIONS OF
THE THREE-DIMENSIONAL STAGGERED TOPOLOGY

The staggered three-dimensional arrangement of
quasi-one-dimensional chains generates an upper limit
to the sampling function S(t). This topology is illus-
trated in Fig. 3. A step from any supersite occurs to
an adjacent supersite which can be in one of three clas-
ses of distinct positions. The stepping probability of
each class is given in Table IX. The total probability
of a class is given by the stepping frequencies of the
random walk [Eq. (24) Sec. III. C] and is defined as the
probability of a step to a position times the number of
such positions. Thus, L=2P;, C=4P,, and C' =4P..

A random step occurs to any one of 12 supersites ac-
cessible by a single step. The first class of supersites
consists of the two neighbors along the linear chain,
The second class will be the four neighbors on the ad-
jacent chains. They are centered on the impurity sites
which bound the initial supersite. Both classes of super
sites lie in the initial plane. In this arrangement, each
impurity site of a chain is centered relative to the cen-
ters of the supersites on the two neighboring chains so
that no two impurity sites are adjacent in the plane |see
Fig. 3(A)]. The third class, consisting of two subclas-
ses, can be visualized from Fig. 3(B), a cross section
containing impurity sites (black squares) and perpen-
dicular to the chains. Relative to the central white
square in the array the first subclass consists of the
two white squares staggered above and below that
square. The supersites represented by these squares
and the central square all have impurities in the planes
one-half supersite from the plane in the figure; thus, a
step to this subclass is weighted by the full probability
of this step P.». The remaining four supersites, whose
impurities lie in the plane of the cross section, are
represented by the black squares to the left and right,
Steps to these four supersites are weighted by one-half
probability 7 P.., because each has an “overlap” with
the initial supersite of 3.

The structure function for this topology is obtained
in the standard way!"® from these positions and in-
dividual probabilities

Al By, Doy D3)= P, (exp(idy) + exp(~i¢y)) + Polexpli(dy/2) + ¢,)] + exp[i(dy/2 - ¢,)]
+expli(— ¢1/2 + ¢,)] + expli(— ¢4/2 - ¢,)]) + Pes (exp[i( D,/ 2 - ¢3)]
+expli(— y/2+ $)]) + 3 Ppi (expli(d,/2 + o/ 2 + ¢3)] + expli(— ¢1/2 + ¢5/2 + ¢4)]

+expli($y/2 - ¢5/2 — ¢3)] + expli(~ 61/2 - 6,/2 - 8,)]) .

(B1)
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TABLE IX., The stepping probability for each class.

Position Individual Class total
class Position probability probability
Original chain: (+1, 0,0) Py L
(1D direction)
Adjacent chain:
(in plane) (+3,+1,0) P, C
Adjacent chain:  (0,~-%,1) p
(out of plane) N ¢
(0, 2y 1) Cc’
L1
(3,2, 1) } éPc'
(i%’ - %’ -~ 1)

Using several trigonometric identities and substituting
the group probabilities L, C, and ' for the individual
step probabilities, the result is obtained in its most
convenient form for the numerical evaluation of the
Green’s function U(1, 0):

APy, Bq, ®3) =L cose, + Ccos(%‘—) cosd,

+ —;—C'[cos(%—z- —¢3> +cos-%1- cos(%z- +¢>3>] .

(B2)
The other important quantity to be calculated from
the structure function is the correction term in S(¢)

[Eq. (28b)]. Montroll showed that the Green’s function
could be expanded in z as z—~1:

Ulz, 0)=uy -u, (1 —2)1/2+0(1 -2), (B3)

The coefficient #; may be deduced from the behavior of
Ay, ¢, ®3) near the origin [see Ref. 17(a), p. 181].
Equation (B2) may be rewritten using a trigonometric
identity as

A (94, @5, #3)= Lcoso, + Ccos-(-g1 coso,

+ C’(cos2 %1 cos %—2— cos¢, + sin %1- sin—é—’z- sin¢3> .

(B4)

Expanding this form for ¢ near the origin yields

Auldy, b, ¢3)z1_%[<“%+_c8'_> .
+<C+ —i—’) ¢% + C! ¢§+O(¢4)] , (B5)

and using Montroll’s method the identification can be
made

’ ’ -1/2
u1m=[21r2<L+ —i— + %—)(C+i—>c'] . (B6)

APPENDIX C. THE TWO-DIMENSIONAL LIMIT IN
QUASI-ONE-DIMENSIONAL TRANSPORT

In quasi-one-dimensional systems with interchain in-
teractions in only one dimension, the exciton migrates

2009

on a plane. Here we will consider only the lower bound
topology in which the scattering impurities are aligned
in the plane as in Fig. 2(A). This forms a “square”
topology because steps occur either to cage position
(+1, 0) along the one-dimensional direction or to cage
position (0, +1) in the orthogonal direction. This ideal-
ized lattice provides a lower limit for the two-dimen-
sional sampling of new lattice sites, in analogy to Sec.
III. C. The sampling function can be readily obtained
for this lattice once the two stepping frequencies are
specified. These quantities provide the relative step-
ping probabilities and the total stepping frequency

L=P(Q1,0)+P(-1, 0)=v;/vror,
C=P(0, 1)+ P(0, -1)=vo/vgor,

1D direction:
Interchain:
Vpor =Vi + Ve . (c1)

The stepping frequency in one dimension v, is taken
from Eq. (6) or (10) depending on the microscopic mode
of transport,

The trapping rate can be calculated for arbitrary v.
Montroll showed by use of a Tauberian theorem that the
number of distinct sites sampled after » steps S(n) can
be obtained in the asymptotic limit of large n from the
behavior of the random walk Green’s function U(z, 0)
as z-1:

1 1 28LCz2°
12(LC) [E g ara ol —z)] , (C2)

where L and C are the relative step probabilities in the
two directions. He obtained S(n) in the special case
that L = C,® an isotropic two-dimensional walk, In what
follows, a generalization for L+ C is presented. First,
we must use the relationship for A(z), the generating
function of the number of additional distinct lattice sites
sampled after each step,

Uz, 0)=

Az (C3)

. S—

(1-2)U(z, 0) -
We find then that

Alz) =2m(LC)V/?2 2%/ [- (1 = 2)In(1 - 2)
~(1-2)In{l +2)+2(1 =2)Inz+ (1 —z)InLC
+6(1-2)In2+2(1 -2)0(1-2)]. (C4)

To use the Tauberian theorem the asymptotic behavior
of A(z) as z— 1 is required. Making the substitution
€¥=z, then as z—~1, y~0 so that 1 —z~y. Thus,

A(2)~2m(LC)/ (1 - y)¥/[-yIny -y In(2 —3)
+2yIn(l -y)+yInLC+6yIn2+2y0(y)]  (C5)

as y— 0 (equivalent to z—1). This can be rearranged
to give

Alz)~ (%) (L)1 -9)¥/[1n(1/y) = 1n(2 ~ )

+2In(1 —y) + InLC+ 6 1n2 + 20(y)]. (C6)

Finally, in the limit y -0, the third and sixth terms of
the denominator vanish to give

A(z)”(?) (LCY?/[1n(1/9) + InLC + 51n2] (0§}
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as z—1. Applying the Tauberian theorem, we choose
(with x=97")
2n(LC)!/?
LW =1mten cs)
o=1,
so that S(n)~#°L(n) and the generalized result is
2r(LC)Y,
Stn) = T L on (€9)

This is the central result for the two-dimensional ran-
dom walk which applies if » is not small. The number
of steps in time ¢ is n=vyor t. Recalling that each cage
sampled contains lz(x'1 - 1) sites, all of which are sam-
pled, the site sampling function is [see Eq. (4)]

27(v v )t %
10(2°v,; v t/Vror)

S(t)=("-1) (c10)
Using Eq. (1), the localization rate per unit population
is found to be

2n(v vo)Y
In(2% vt/ Vror)

x [1=1/1n(2% vt/ veor)] -

The two-dimensional result is more complicated than
either the one- or three-dimensional result. Equation
(C.11) can be substituted into Eq. (3), and while an
analytical expression is not available, the time depen-
dence of trap populations in this special limit can be ob-
tained by numerical integration.

K ()=Np(x'-1)

(c11)
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