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A series of experiments in which the time resolved triplet x-trap emission from single crystals of 1,2,4,5-
tetrachlorobenzene (TCB) at 1.35°K is presented for various concentrations of the doped-in scattering
impurity, d,-TCB. It is demonstrated that exciton-impurity scattering is the dominant process affecting
macroscopic exciton transport and trapping. The time-dependent trapping rate is found to be proportional
to the inverse square root of the scattering impurity concentration in agreement with theoretical
prediction. This implies that transport is close to strictly one-dimensional. Excellent agreement between
the data and a model involving microscopically incoherent transport is found, but the data also shows
generally good agreement with a model employing microscopically coherent transport. From the
concentration dependence and time-dependent trapping curves, an upper bound of ~5x 10° sec™ can be

placed on the frequency of multidimensional steps between one-dimensional chains. Transport is
macroscopically diffusive. The basic parameters characterizing long range exciton migration and

trapping are obtained.

. INTRODUCTION

The transport of Frenkel excitons! in molecular crys-
tals has been examined by a wide variety of experimen-
tal and theoretical methods for a considerable number
of years and yet basic questions concerning the funda-
mental processes which govern exciton transport re-
main unanswered. It is clear that the strengths of in-
termolecular interactions, ? the extent of exciton-pho-
non** and exciton-impurity scattering, “ =" the rate of
exciton trapping 2 ®~% and the topology of exciton trans-
port” all influence the overall nature of exciton migra-
tion. Experimental techniques which have been em-
ployed as probes of transport include optical absorption
and lineshape analysis, %1 optically detected magnetic
resonance, * spin-locking experiments, 1 gspin-echo
measurements® and the observation of trap optical
emission in both steady state?® and time-resolved® %13
experiments. In this paper we will focus our attention
on the time dependence of trap optical emission follow-
ing impulse excitation of the host exciton band since
this experimental observable can be related to the mac-
roscopic dynamics of exciton transport and it is strongly
influenced by the processes mentioned above. In a re-
cent theoretical study, a detailed model of the effect of
impurity scattering on the time-dependence of trapping
of excitons undergoing basgically one-dimensional trans-
port was presented. 7 Both the coherent (wavelike) and
incoherent (diffusive) microscopic modes of transport
were considered and the effects of deviations from
strictly one-dimensional transport topology (quasi-one-
dimensional) were treated in detail. In one dimensional
systems well-defined impurity scattering sites, 4 i.e.,
impurities having excited states with higher energy than
the corresponding host molecule excited state and which
are not amalgamated® into the host exciton band, can
severely inhibit transport by “caging” a mobile ex-
citon. 7 That is, the exciton is restricted to a chain
of molecules bounded by scattering sites until it either
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tunnels past a scattering site at one of the ends

or takes a non-one-dimensional step to an adjacent
linear chain, Exciton trapping in this type of system is
governed by a time-dependent trapping rate function
which has a form dependent on the microscopic mode

of transport, the topology of transport and various phys-
ical parameters of the system. Only in the case of
nearly isotropic transport does this time-dependent
trapping rate function reduce to a time-independent
trapping rate constant.

Several recent experimental studies!? of exciton trap-
ping in one-dimensional systems have employed phenom-
enological trapping rate constants and rate equations
which neglect the effects of scattering impurities and
deviations from a strictly one-dimensional transport
topology. This led to incomplete interpretations of ob-
served results, Although not nearly as visible as their
trap counterparts, scattering impurities can play the
dominant role in exciton transport and in trapping ex-
periments in one-dimensional systems by forcing the
macroscopic mode of transport to be diffusive regard-
less of the microscopic transport mode. &7 The influ-
ence of scattering impurities on observables associated
with trapping in one-dimensional systems was suggested
in a preliminary study on time dependent trap emission
in the 1, 2, 4, 5-tetrachlorobenzene triplet exciton sys-
tem.® In that experiment, the time-dependent optical
emission from the x-trap found in neat crystals of TCB
was shown to be explicable in terms of the effects of im-~
purity scattering on exciton trangport. The scattering
impurity was taken to be the naturally occurring iso-
topic impurity of mondeutero TCB. Thus, even in so
called “pure crystals, ” intrinsic scattering species,
which may be isotopic impurities, lattice defecis, or
difficult to remove chemical impurities, cannot be ne-
glected. It has long been recognized that traps are pres-
ent even in the most highly purified samples of molec-
ular crystals. This is demonstrated by the fact that
there is some degree of trap optical emission at very
low temperatures from virtually all crystals. It is much
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more difficult to directly detect impurities with excited
state energies above that of the host crystal’s exciton
band since these exciton scattering species do not un-
dergo activated luminescence and their low concentra-
tion makes detection in an absorption experiment all but
impossible.

In this paper a series of experiments is presented
which demonstrate the applicability of the recently pub-
lished model of exciton migration, impurity scattering,
and trapping in one-dimensional systems. These ex-
periments measure the time-dependence of optical emis-
sion from the triplet x-trap found in crystals of 1, 2,4,
5-tetrachlorobenzene (TCB) following impulse excita-
tion of the TCB triplet exciton bands, A series of sam-
ples containing a range of known concentrations of the
isotopic scattering impurity d,-TCB is employed, and
the results compared to the predictions of the model.
Excellent overall agreement is shown between theory
and experiment. The observed trapping rate was found
to be proportional to the inverse square root of scat-
tering impurity mole fraction. This concentration de-
pendence is in exact agreement with theoretical predic-
tion, * and demonstrates that impurity scattering deter-
mines the rate of exciton trapping in the TCB systems
studied. From the observed concentration dependence
and the physical parameters associated with the TCB
system, it is possible to place an upper limit of 10°
sec”! on the frequency of cross-chain steps in this
system.

Detailed analysis of the experimental time dependent
trapping curves provides a better estimate of the cross
chain stepping frequency. If exciton transport in TCB
is strictly one-dimensional then a model assuming micro-
scopically incoherent transport is found to be consistent
with the observed trapping results when the formalism
of Knox and Kenkre® is used to calculate the one-dimen-
sional site-to-site hopping frequency. Interms of the
strength of the cross-chain intermolecular interactions,
the definition of strictly one-dimensional varies with the
physical parameters of the particular molecular crys-
tal. A system is strictly one-dimensional if the prob-
ability of taking a cross-chain step is vanishingly small
during a time period corresponding to the exciton ex-
cited state lifetime. Strictly one-dimensional calcula-
tions for microscopically coherent transport give results
which are somewhat too slow to account for the experi-
mental data. However, a cross chain stepping fre-
quency of less than 5x10° gsec™! produces an increase in
the rate of trapping sufficiently great to bring calcula-
tions using a coherent quasi-one-dimensional transport
model into agreement with observation. Therefore a
better estimate of the cross chain stepping frequency
is <5x10°% gec™!.

The net result is that independent of the microscopic
mode of transport, impurity scattering forces exciton
transport in quasi-one-dimensional systems to be mac-
roscopically diffusive. Macroscopic transport is char-
acterized by the exciton cage-to-cage stepping frequen-
cies which are obtained from the analysis of the trap-
ping concentration dependence and the time-dependent
trapping curves.
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Il. THE TRAPPING EQUATIONS

Well-defined scattering sites have a transport block-
ing effect which causes an exciton to remain confined to
a linear chain of molecules between two such sites, a
cage, for a relatively long time before tunneling past
an impurity site onto an adjacent chain of molecules.
During this time the exciton probability will become uni-
formly distributed in the initial cage, ensuring equal
probability of a step to either adjacent cage. Thus, the
transport will describe a random walk between cages
on the infinite linear chain when viewed on a time scale
long relative to the time required to tunnel out of a par-
ticular cage. Such transport is strictly one-dimen-
sional. %7’

A more complete treatment of one-dimensional sys-
tems includes the effects of very small interactions
leading to transport between adjacent linear chains.’
This motion will be incoherent in nature since local po-
tential fluctuations will certainly be much larger than
cross chain interactions in systems near the one-dimen-
sional limit. The frequencies of interchain steps will
be quite small compared to the frequency of site-to-
site motion along a given linear chain. However, an in-
terchain step is a step to a different cage, while on
chain a great number of site-to-site steps occur before
enough encounters with the caging scattering impurities
permit a single cage step. Thus, the frequency of steps
between cages on adjacent chains may be comparable to
or greater than the frequency of steps between cages on
a single chain. This results in a change in the effective
exciton transport topology. Transport will be a two- or
three-dimensional random walk (not necessarily iso-
tropic) between linear cages, supersites, on the super-
lattice, i.e., the lattice of all linear cages. This will
have a significant effect on trapping since multidimen-
sional random walks greatly increase the total number
of distinct lattice sites sampledls with a concomitant in-
crease in the probability that an exciton will sample a
low concentration trap site.

The caging effect of well-defined scattering impurities
also has an important consequence for the trapping
event. An exciton in such a system is confined to a
small set of molecules in a cage for a relatively long
time, so that if a trap site is present in that cage the
exciton-trap interaction time is greatly extended and
the exciton will trap on its first visit to the cage, even
if the single encounter trapping probability is quite
small, &7

The model presented below is the result of the above
considerations applied to the time evolution of an exciton
population ensemble interacting with dilute scattering
and trapping impurities in a one-dimensional system. ’
The time-dependent populations of the band states E(¢)
and the trap states T(¢) are described by the rate equa-
tions

E(f)=- [Kg + K, (D] E()
T(t) = - Kp T(D) + K, (DE(2).

(1a)
(1b)

K is the decay rate constant (inverse lifetime) for band
states and K, is the decay rate constant for trap states.
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Thermally assisted promotion from a localized trap
state is not included in this scheme, since it is negligible
at sufficiently low temperatures.'' K,(¢) is the in-
stantaneous rate of exciton localization per unit popula-
tion, the time-dependent trapping rate function, the
form of which depends on the effective transport topol-
ogy. For impulse duration excitation of the system,

the solutions in Eq. (1) require only the form of K,(¢).
In what follows, N, is the trap concentration, x is the
scattering impurity concentration, g3 is the intermolec-
ular interaction matrix element responsible for on chain
one-dimensional transport, and S is the energy differ-
ence between the scattering impurity site excited state
energy and the exciton band center.

A. Strictly one-dimensional transport

The time-dependent trapping rate function for strictly
one-dimensional systems is given by

K (t)=At"V?

and is independent of the microscopic mode of trans-
port.” The value of the trapping rate coefficient, A,
does depend on the mode of transport and can be evalu-
ated using the parameters of the system, all of which
are amenable to experimental determination.

(2)

For an ensemble of coherent excitons {exciton—pho-
ton scattering is slow relative to exciton-impurity scat-
tering) at temperature 7, the trapping coefficient is

23/ 2]--'(5/4)13/ 4(}’)
(/2 1(y)

Acon =

« NTX I BI 3/2
(In(1/1-x)P7* W'

(3

where y =|28/KT| and I, and I, , are modified Bessel
functions. For incoherent excitons (fast exciton-pho-
non scattering) with an on chain site-to-site stepping
frequency viyc, the trapping coefficient is given by

A _ Nl z(x-1_1)ymc<1—p (1P 1/2
INCOH — S p ___—ﬂe 1_P:

(4a)
A _ 4npNp[2-1)/1-P, I 1+P, \]1/?
INCOH — hS an Pe T Pe

(4b)

where Eq. (4b) has used the explicit form of v;yc given
by Knox and Kenkre, %
167°8*

Vine = T

(5)

The parameter « is the decay rate constant for the loss
of coherence of the exciton state, and in principle can
be determined from spectroscopic information (see Ap-
pendix II), The terms involving P, in Eq. (4) correct
for the probability of escape or “leakage” from the ini-
tial cage before a uniform distributionis achieved in that
cage, If P, becomes large, the resultslose accuracy. In
practice this somewhat limits the diluteness of impurities
for which a calculation canbe made. P, is given by
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2\ (n)+i
pe=1_<1-2—3r> (6a)

S

1/2
w=(3) (- DI+ - 1= =1,

(6b)
where (n) is the mean number of exciton collisions with
the impurity site it last traversed before a uniform ex-
citon probability distribution is achieved in the cage.

Equations (3) and (4) show that the dependence of the
rate of exciton trapping on scattering impurity concen-
tration is basically identical for the coherent and in-
coherent microscopic modes of exciton transport. For
coherent excitons, Acoy < x/[In(1/1 —x)]¥%. However,
for reasonably dilute impurities In(1/1 -x)=x, 80 Acoy
a«x~1/2 which is also the dependence manifested by
Arncon, EQ. (4), for incoherent excitons, Thus indepen-
dent of the microscopic mode of transport, the concen-
tration dependence can be used to access the transport
topology and, as shown below, determine the frequency
of cross chain steps. It is also worth noting that the
rate of trapping varies relatively slowly with scattering
impurity concentration.

Using Eqs. (1) to (6) the time-dependent exciton and
trap populations are obtained for an exciton system which
is strictly one-dimensional in its transport. A is ob-
tained from Eq. (3) or (4).

E(f)=exp[- K t- 241" (7a)
7TA2 1/2 AZ
ro=esi- o (g7) ene(ir)
X [erf <[KE —-KT)t]I/z + (T—ZAK_HW—Z—)
A
-er( i) )

where erf(x) is the error function of argument x.

B. Quasi-one-dimensional transport

For systems in which transport is close to but not
strictly one-dimensional, an exciton undergoes a multi-
dimensional random walk among the cages formed by
the scattering impurities. Each cage, which is com-
posed of many lattice sites, is a single supersite in the
superlattice composed of all cages. An exciton per-
forms a macroscopic random walk among the sites of
the superlattice. This results in an identical time-de-
pendent form of the trapping rate function for both mi-
croscopic modes of exciton migration, ’

(8)

The values of the trapping parameters K; and B; depend
on all of the physical parameters of the strictly one-di-
mensional problem and on the rate and relative aniso-
tropy of the exciton walk on the three-dimensional super -
lattice.

K, (y=K,+B,t"'/?

The frequency of cage steps along the linear direction,
denoted by v;, is given by the strictly one-dimensional
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cage stepping frequency. For an ensemble of coherent
excitons at temperature T, the thermal average fre-
quency of cage steps is given by

1611“2 IBI3 () (9)
(y/2) Iy(y)

where y =1 ZB/KTI and I and I3, , are modified Bessel
functions. If the microscopic mode of transport is in-
coherent with a site-to-site stepping frequency vy, the
frequency of cage steps is given by

v g (1-pP, 1+P,
et S ( P, >1 (1 P> (10a)

v, (COH) =

v, (INCOH) =

or using Eq. (5),

167°8* <1-pe 1+P,
T_ 1) ahzsg Pe )111( 1 —Pe . (].Ob)
Note that the dependence on x, the scattering impurity
mole fraction, is identical in Eq. (9) and Eq. (10) when

P, in Eq. (10) is small, i.e. when P, is in its regime of
usefulness.

v, (INCOH) = o

Generalized three-dimensional arrangements of one-
dimensional molecular chains employed in this model
included cross chain motion through the use of two pa-
rameters, v, and v.., the frequencies of interchain
steps in the two orthogonal off-chain directions. The
relative probabilities for steps in different directions
in the three-dimensional array of molecular chains are

On chain: L=v;/vror

C=v,./v
Interchain: { c/ ToT

C'=ve/Veor
(11)
From these relative probabilities the two leading terms
of the random walk Green’s function can be obtained, %

The remaining terms are negligible. The first term is
the convergent integral

Vror=Vy Ve tve. .

1 f j 5 do1ddadey
= . 2
Y= ; 1 - (Lcosgpy+Ccospy+C cosps) (12)
In all cases this may be evaluated by numerical integra-
tion. However, if vo=v,,, i.e., C=C’, a convenient
closed form expression is obtained, 17

= z1(L/CI? (13)
where I(a) is given by
o) =4[y + DV2 = (y ~ )V 2] K(kp)K(Rg) /am (142)
Rp=z[(y =DV 2 - (y=3)V2 [y + 1)V 2 - (y = 1)1/2]  (14b)
=zl - D2+ =)y + DV 2= (y - DV (14c)
y=(4+30%/a? (14q)

and K(k) is the complete elliptic integral of the first kind

of modulus 2. The second term is
uy=1/(2n%LCCHY 2 (15)

The quasi-one-dimensional trapping rate parameters,
K, and B;, are given by
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Ky =Ng{x!- l)ﬁuﬂ— (16)
_ 1/2
B,= N(x™! — I)VTOTuI (17)

The concentration dependence of K; and B, contains in-
formation pertaining to the relative anisotropy of the
random walk and hence about the magnitude of the in-
terchain interactions. If v; >v, and v.., then K; and
B, are proportional to (x™! —1)!/2, This is essentially
the one-dimensional behavior and indicates that such a
system is very close to the strictly one-dimensional
limit. However, if v, =v. a stronger dependence on
scattering impurity concentration results, and in the
limit that v, < v, and v the dependence goes as (x™!
—1). The net effect can be to produce trapping which
behaves topologically multidimensional even though the
intermolecular interactions and the total extent of ex-
citon motion is virtually one-dimensional.

The trapping rate parameters are used with Eq. (8)
to solve the population rate equations, yielding the time-
dependent populations

E(t)y=exp[-(K, +K,;) t - 2B, t'?] (18a)

K
= -_—
T(1) = exp( KTt){—L—_KL+KE—HT
Bl

172
X( 1 - g Kg*Kg-Kp)t-2Bi +<
) Ky +Kg

172
‘KT>

X eB‘zL/(KLﬁKE-KT)<1 - __L—K
K, +Ky Ky

B
— 172 L
X[erf([(KL +KE KT)t] + (KL+KE—KT)1/2>

B
-erf<(KL+KE"K1‘)“2>]} , (18b)
where erf(x) is the error function of argument x. In the

strictly one-dimensional limit, the expression of Eq.
(7) should be used.

llIl. EXPERIMENTAL

TCB (Eastman Kodak) was three times recrystallized
from ethanol, vacuum sublimed, and zone refined under
N, for 200 passes. The center section of the zone-re-
fined material was again zone-refined for 200 passes.
Dideutero-TCB was synthesized from 99.5% CD, (Al-
drich) by chlorination with Cl, gas. The d,-TCB was
recrystallized from ethanol, vacuum sublimed, and
zone-refined. The concentration of 4,-TCB in each TCB
sample was determined by quantitative preparation in
the following way. Relatively high concentration sam-
ples were prepared by accurate weighing of the two ma-
terials followed by vacuum sublimation into individual
crystal growing tubes. Single crystals were then grown
from each mixture using the Bridgeman technique.
Relatively low concentration samples were prepared in
the same fashion by dilution of the more concentrated
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samples. The temperature of the samples immersed in
liquid He was monitored by measurement of the pressure
of He vapor with a digital manometer. All the time-de-

pendent trapping experiments were performed at 1.35°K,

A % meter Spex monochromator was used to charac-
terize the phosphorescent x-trap and exciton spectra.
In the time-resolved measurements, the initial triplet
exciton population was prepared either by direct triplet
excitation with a 20 nsec doubled ruby laser pulse or
via the singlet manifold with a 3 usec xenon flash lamp
filtered to pass light in the 2500 A region of the spec-
trum. The results were the same with either excitation
method. The time-decaying x-trap emission signals
were detected at right angles with a photomultiplier tube
and the monochromator set to the x-trap origin, digitally
recorded and signal averaged with a Biomation 805
transient recorder interfaced to a D.G.C. Nova 2 com-
puter. Data was transferred to magnetic tape for sub-
sequent analysis.

Important considerations pertaining to the TCB ex-
citon and trap lifetimes, which spin sublevels are in-
volved in the experiment and the concentration of the
TCB x-traps in the samples are dealt with in complete
detail in Appendix I. The results of Appendix I are used
in the following discussion.

IV. RESULTS

The experiments employed TCB crystals doped with a
range of concentrations of the isotopic scattering im-
purity, d,~TCB, and the time-dependent phosphores-
cent emission from the intringic TCB x-trap was moni-
tored following impulse optical excitation. Typical data
is displayed in Fig. 3. At short times the trap phos-
phorescence intensity increases as the exciton popula-
tion flows into the trap. At longer times, all the popula
tion has trapped, and the trap emission decays expo-
nentially (see Figure AI-1 Appendix I). As the scatter-
ing impurity concentration increases, transport is
hindered, the buildup of the trap phosphorescence be-
comes more gradual, and the maximum is shifted to
longer time. Inthe TCB system it is possible to cir-
cumvent difficulties caused by the multiplicity of levels.
ESR experiments have demonstrated that spin polariza-
tion is preserved on trapping18 and temperature-depen-
dent measurements have shown that spin-lattice relaxa-
tion between triplet sublevels of the first excited state
is negligible at liquid He temperatures. % Thus, the sub-
level populations can be considered to be separate, non-
interacting ensembles. In the x-trap, radiative emis-
sion from one of the triplet sublevels is symmetry-for-
bidden to the vibrationless ground state and of the re-
maining two, another has a negligible radiative rate con-
stant.® Thus, x-trap phosphorescence at low tempera-
tures unambiguously reflects the population of a single
spin sublevel ensemble (see Appendix I). For the ex-
citons, the symmetry restrictions are lifted and all
three sublevels are observed to radiatively decay to the
ground state. 1% yging the procedure detailed in Ap-
pendix I, it was possible to determine which of the three
TCB triplet exciton spin sublevels to associate with the
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single x-trap triplet spin sublevel under observation.
The concentration of x-traps is also obtained in Appen-
dix I. Therefore physical constants which are neces-
sary to use the models described above are known. The
trap rate constant for decay to the ground state is K,
=25.5 sec”! and the appropriate exciton decay rate con-
stant in the absence of trapping is K, =235.3 sec™!. The
trap concentration is Ny =1/22000. The TCB one-di-
mensional intermolecular interaction matrix element
was previously determined to have a value of 3=0.35
em™!, %9 A reasonable value of the impurity-band cen-
ter energy difference, S, can be obtained by using the
difference between triplet state energies of #,-TCB and
dy,-TCB in a d,-TCB host crystal. Spectroscopic mea-
surements yield a value of S=20.9 em™!. The concen-
tration of d,-TCB scattering impurities is known from
the sample preparation and all experiments were per-
formed at 1.35°K.

The functional dependence of the observed time re-
solved data on scattering impurity concentration is the
fundamental test of the importance of exciton-impurity
scattering and of the effective exciton trapping topology.
As discussed in Sec. II, if the transport topology in TCB
is strictly one-dimensional or deviates only slightly
from that limit, the observed trapping rate function will
vary with scattering impurity concentration in a manner
which is directly proportional to (x! - 1)/?, or approxi-
mately the inverse square root of the scattering impur-
ity concentration, x. The concentration dependence of
the trapping rate function is determined by the behavior
of its time independent coefficients. UsingEq. (7b) andthe
known decay rate constants, Kz and K, an observedtrap-
ping rate function coefficient, A, is obtained from the opti-

mal fit to data from each sample. (Equation (18b) could
be employed to obtain identical results.) These experi-
mentally determined trapping coefficients are plotted
versus (x1 =112 in Fig. 1. The solid line through the
data (crosses) shows that the theoretically predicted
proportionality occurs over a 30-fold range of concen-
trations and at all but the lowest scattering impurity
concentrations. (The lowest concentration regime is
discussed below.) This observation confirms the im-
portance of the role played by scattering impurities in
the transport and trapping of triplet excitons in TCB
crystals, and demonstrates the applicability of the model
to real systems. The deviation from the predicted con-
centration dependence at low concentrations (doped-in
scattering impurities = 0. 1%) suggests that additional
impurities are also present in the samples and that these
dominate at low concentrations. This is not an unex-
pected result since there are, at the very least, addi-
tional scattering impurities in the form of the naturally
occurring isotopic impurity hd-TCB® which is 0.03%
abundant. Additionally, it is known that trichlorobenzene
and tetrachlorobenzene isomers may remain in very low
concentration even after extensive zone refining. 13b
Other scattering sites, such as low concentration crys-
tal lattice defects 2! (the high energy counterparts of x-
traps), may also hinder transport when the doped-in
impurity concentration is sufficiently low to unmask
their effects.
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(x'-1)

FIG. 1. The experimentally determined trapping rate coeffi-
cients, A, of the time-dependent trapping rate function Ky ()
=At"12(crosses) are plotted as a function of (x™'—1)!/?, where
X is the mole fraction of the scattering impurity d,-TCB doped
in various concentrations in h,-TCB host crystals. The pre-
dicted linear dependence, i.e. .the solid line, is observed for
all but the lowest concentrations., The crosses corresponding
to concentrations less than 10 M/M fall below the line, dem-
onstrating that in this case the d,-TCB scattering impurities
are dominated by residual impurities and intrinsic defects
present in the h,-TCB.

It is clear from the agreement between the experi-
mental and the theoretical scattering impurity concen-
tration dependence that exciton-impurity scattering is
the dominant factor in controlling the rate of triplet ex-
citon trapping in TCB. Since all the required physical
congtants are known for TCB, a realistic upper bound
can be placed on the deviation from strict one-dimen-
sionality. First consider the strictly one-dimensional
model of Sec. II-A. This model was employed to cal-

TABLE I. The theoretical trapping rate co-
efficients, A, for strictly one-dimensional
transport in TCB doped with dy-TCB. Aoy is
given by Eq. (3). Arycon is given by Eq. (4)
using the theoretically predicted site-to-site
hopping time of 1 psec.

% d)~TCB  Acog (sec™?)  Amcon (sec™?)
14.9 0.486 2.10 (0.510)%
4.96 0.913 3.83  (0.930)
1.06 2.03 8.31 (2.02)
0.51 2.95 11.8 (2.86)

2The numkers in parentheses are the results of
a calculation which treated the incoherent hop-
ping time as an adjustable parameter, set to
17 psec in Eq. (4a).
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FIG. 2. Theoretically predicted trapping rate constants for
TCB in the strictly one-dimensional limit are plotted along
with the data (crosses) versus (X! —1)!%2, where x is the mole
fraction of scattering impurity. The open circles are calculat-
ed for a model of microscopically incoherent exciton migration
using the Knox—Kenkre formalism for the site-to-site stepping
time. The triangles are calculated for a model of microscop-
ically coherent exciton migration. If small multidimensional
interactions are considered, agreement between the data and
the coherent model will be greatly improved.

culate the trapping rate coefficient, A, without the use
of adjustable parameters for both the coherent (Eq. (3))
and incoherent (Eq. (4)) cases. The resulting values of
Acon and A g0y for the various concentrations of the
d,-TCB scattering impurity are given in Table I. These
two models predict quite different rates of trapping.

The incoherent calculation used Eq. (4b), i.e., the
Knox—-Kenkre formalism was employed in calculating the
microscopic hopping frequency, viyc. For TCB this ap-
proach yields a value of vy =1 psec-! (see Appendix II).

The experimental data points and these calculations
are plotted in Fig. 2, where it can be seen that the val-
ues of Apycop (circles) agree exceedingly well with the
observed data. The coherent transport calculations pre-
dict values of Aoy (triangles) which are rather too slow
to account for the observed results. The actual trap-
ping data and incoherent theoretical curves are dis-
played in Fig. 3 for each impurity concentration. It
can be seen that the overall agreement is excellent.
However, the close agreement obtained from the model
of incoherent trangport may be due to a fortuitous cal-
culation of v;yc using the Knox-Kenkre formula. As
discussed in Appendix II, this formula is not exactly
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FIG. 3. Time resolved trap
emission from TCB crystals
doped with various concentra-
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curves obtained without re-
course to adjustable param-
eters using the model of micro-
scopically incoherent one-di-
mensional transport and em-
ploying the Knox—Kenkre for-
malism for the incoherent site-
to-site stepping frequency.

TIME (msec)

applicable for the TCB physical situation. If the incoher-
ent site-to-site hopping time is arbitrarily chosen to be
vikc =117 psec, virtually identical results are obtained
from the coherent and incoherent models. These re-
sults are given in parenthesis in Table I. Furthermore,
both calculations neglect the increase in trapping rate
which results if interchain interactions do not vanish.

In the TCB system, the x~!/? concentration dependence
of the trapping shows that any cross chain interaction
must be small indeed. If these interactions are not
negligible, TCB will behave as a quasi-one-dimen-
sional system and the model of Sec. II-B can be used to
interpret the observed time resolved x-trap phosphores-
cence. The necessary cage-to-cage stepping frequency
can be calculated from Egs. (9) and (10) for coherent
and incoherent transport, respectively. The results
of these calculations for the various scattering impurity
concentrations are given in Table II. Cage stepping
frequencies in the linear direction are orders of mag-
nitude slower than the inverse time for site-to-site mo-
tion along that direction, typically ~10'-10'? sec*!.
Thus, even very low frequency cross chain steps can
cause a significant deviation from strictly one-dimen-
sional transport. As discussed in Sec. II-B, the pro-
portionality to (x"! - 1)}/ 2 will be observed only if a sys-
tem is very near the strictly one-dimensional limit,
i.e., vy > v and ve,. If interchain steps were not much
slower than intrachain cage-to-cage steps, the trans-
port topology will be much more isotropic and the con-
centration dependence will be stronger, i.e., it will ap-
proach x“‘. " Thus, for the TCB the requirement that
vy > v implies that interchain steps occur at a rate no
greater than ~10° sec™!.

In the absence of an estimate of the anisotropy in the
interchain interactions, it is assumed that all such

J. Chem. Phys., Vol. 69,

TIME (msec)

nearest neighbor interactions are equal. In this case
the closed form expression describing exciton motion

on the three-dimensional superlattice, Eq. (13), may

be employed to calculate the trapping rate function,

Eq. (8), for each scattering impurity concentration. The
different on-chain cage stepping frequencies, v, are
given in Table II. Therefore the only unknown param-
eter is v, and a single choice of v, should be able to
reproduce the experimental exciton trapping curves for
the entire range of scatter impurity concentrations.

Values of v, were combined with the values of v,(COH)
in Table II to evaluate the trapping parameters K,; and
B; via Eq. (11) and Eqgs. (13)-(17). These parameters
were then used in Eq. (18b) to calculate the time-depen-
dent exciton trapping curves. For coherent transport,
the value v, =2,5x103 sec”! gave the best overall agree-
ment -between theory and the different trapping experi-
ments. The values of K; and B; are listed in Table III
and the calculated curves along with the experimental
data are displayed in Fig. 4. Once again, agreement
between observation and theory is generally quite good,
although for this model significant disagreement is ob-
served at the greatest impurity concentration. The

TABLE II. The intrachain cage stepping frequency , vy, of
excitons in TCB doped with d,~-TCB. For coherent transport
Eq. (10) was used. For incoherent transport Eq. {11) was
employed with a site-to-site hopping time vikc=1 psec.

% dyp-TCB v, (COH) (sec™) vy (INCOH) (sec™)
14,9 1.02x107 9.79x107
4.96 3.04x10° 2.90%107
1.06 6.25%10° 5.76x10%
0.51 2.99x10° 2.64 x10°
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FIG. 4. Time resolved trap
emission from TCB crystals

1 doped with various concentra-
tions of scattering impurity and
the best fit obtained from the

microscopically coherent mi-
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gration model. In this calcu-
lation the extent of multidimen-
sional transport in this basic-
ally one-dimensional system

| was adjusted. The calculated
curves were obtained using a
cross chain stepping frequency
of vo=2.5x10% sec™!,
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10 20 30 40 50 60 10
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assumption that the cross-chain interactions are iso-
tropic may be partially responsible for the deviations.
However, the overall agreement between experiment
and both models is sufficiently good that a clear choice
between them is not possible. Thus, coherent trans-
port is also consistent with the observed trapping data.

V. DISCUSSION

Observing the effects of scattering impurity concen-
tration on trapping in TCB demonstrates that the TCB
triplet exciton system is virtually one-dimensional and
that in the samples studied, exciton-impurity scattering
is the dominant influence on the macroscopic rate of ex-
citon transport. Furthermore, these results give ad-
ditional strength to the argument that exciton-impurity
scattering strongly influences energy migration in pure

TABLE III, The theoretical trapping

rate coefficients, K; and B, for quasi-
one-dimensional transport in TCB doped
with d,-TCB. The intrachain one-dimen-
sional transport is microscopically co-
herent with cage stepping frequencies given
in Table II. The interchain transport is
assumed to be isotropic with a cross chain
step time vo=2.5x%10% sec™.

% d,-TCB K, (sec™) By (sec™'/?)

14,9 66.0 0.261
4.96 121 0.478
1.06 267 1.06
0.51 387 1.53

30 40 50 60
TIME (msec}

TCB crystals as well. From the functional form of the
concentration dependence it is possible to put an upper
bound on the cross chain stepping frequency of ~ 10°
sgc'i. Detailed analysis of the time dependence of the
trapping data gives a better estimate of <5x10° sec™l.
Comparing this to on chain site-to-site transfer fre-
quencies of 10''~10'2 gsec™! shows that the cross chain
frequency is down some eight orders of magnitude.
Taking the cross chain frequency to be proportional to
the square of the cross chain intermolecular interaction
would put that interaction at <10™* of the on chain inter-
action, corresponding to less than 10~* cm™!. Thus the
impurity scattering concentration study provides a sen-
sitive probe of the dimensionality of the exciton trans-
port system.

Both the coherent and incoherent microscopic modes
are consistant with the experimental trapping data. Im-
purity scattering forces long range transport to be a
diffusive process involving a random walk among cages,
irrespective of the microscopic mode of transport.
Thus a trapping experiment in this type of system ex-
amines the long distance macroscopic rate of transport.
Analysis of the trapping data provides the trapping rate
parameters once the question of the transport topology
has been sorted out. These parameters give directly
the cage-to-cage stepping frequency which is the basic
quantity characterizing long range energy transport in
quasi-one-dimensional systems.
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APPENDIX |

In order to apply the theory presented in this paper
to triplet exciton dynamics in TCB it is necessary to
accurately determine the physical parameters which al-
low calculation of the time-dependent trap intensity.
These have been obtained by a variety of optical and
ESR techniques.

The phosphorescent emission spectrum of pure crys-
tals of TCB at low temperature (1.5-4,2°K) consists
of a vibrational progression of exciton emission originat-
ing at 26 676 cm™! and a similar progression of emis-
sion originating at 26 658 cm™! due to an x-trap. At
4.2°K the ratio of exciton emission to x-trap emission
at the origin is ~10:1. At 2°K the same ratio is ~1:10,
indicating a transfer of population from band states to
trap states. % Several authors have used the tempera-
ture dependence of the emission from the x~trap, which
is in Boltzmann equilibrium with the band, to determine
the excited state intermolecular interaction matrix ele-
ment, B, and the concentration of x-traps, N,. Al-
though independent methods have determined 8 with good
agreement, 2% yalues for N7 range from 3x10° to
2.6x105, %8150 1, thig Appendix the various experi-
ments are reinterpreted to show that the data of all
authors is consistent with the value N ',.1 =2.2%10* and
that the inconsistencies in the reported values are due
either to errors in determining parameters involved in
the calculation of N, or to erroneous assumptions in

Exciton migration and trapping

deriving the relationship between the temperature-de-
pendent trap intensity and N,.

This relationship is obtained from the partition func-
tion for the exciton band-trap system, Z(T).>* For any
number of band states =20, Z(T) rapidly converges to

Z(T)=1+e /KT (4) /N, , (AI-1)

where A is the trap depth, i.e., the spectroscopically
observable splitting between 2=0 and the trap state, K
is Boltzmann’s constant, and the zero of energy is at the
trap. I,(y) is the zeroth order modified Bessel function
of argument y, where y=128/KT|. For TCB in the
range 2°K=T=5°K, 1.01=],(y)=1.05, so that this
term could be set to unity. The fraction of population

in the trap is given by x(T) =Z(T)!. However, in the
case that the exciton and trap lifetimes are unequal, the
temperature-dependent partitioning of excitation between
the states results ina temperature dependent total en-
semble population. % In this case the observed inten-
sity is the product of the trap sublevel radiative rate
constant, the total population, and x(T). In Ref. 2c this
is given by

(AI-2)

K1) =1(T,)[KTX(T') + g1 = X(Tr))] x(T,)

Kpx(T)+Kz(1-x(7) | x(1) °

where T, is a reference temperature. All intensities
are scaled with respect to I(7,), the intensity at this
reference temperature. This procedure eliminates the
trap radiative rate constant. Treating all terms which
depend on T, as constants, the resulting trap intensity
(as suggested by Knox ??) is

-1
I(1)=C [ 1+ 22 1y(y) em-A)/“] (AI-3)
KT T

N

Thus N, can be determined as accurately as B, A, K,
and K,. Figure AI-1 is a log plot of phosphorescence
intensity of the x-trap origin of TCB versus time at
1.5°K following impulse excitation. After the trap
buildup, the decay is a single exponential with lifetime
39.2+0.2 msec, i.e., K;=25.5 sec’!. (This corre-
sponds to a single trap sublevel as discussed in Sec.IV.)
ESR experiments indicate that spin polarization is pre-
served upon trapping18 and a detailed analysis of the ex-
citon decay from steady state as a function of tempera-
ture in the range 4.2-80°K demonstrates that the effect
of spin-lattice relaxation (SLR) is minor at 4.2°K. 19
Therefore, only one spin sublevel exciton band com-
municates with the single trap sublevel which is ob-
served in this experiment.

The time-dependent emission from the exciton band
origin at 4.2°K was obtained and clearly decomposable
into three exponentially decaying components with life-
times of 2.7, 11, and 28.4 msec.!® At 4.2 °K trapping
is negligible and the data is taken to be emission from
the three independent triplet spin sublevel bands. Since
SLR at this temperature is very slow, the observed de-
cay rates are very close to the actual decay rates. At
temperatures below 4.2 °K the decay is dominated by
trapping and therefore it is difficult to obtain accurate
lifetime information.

J. Chem. Phys., Vol. 69, No. 6, 15 September 1978



Diott, Fayer, and Wieting: Exciton migration and trapping 2761

1 T T
K.'rl = 39.2 msec
a0}/ 1
|5
3
L) =-i_
% 30 Kg = 28.4 msec i
73
4
wi
=
o 20r 7]
[T
3
o -1
l;l KE = [1.0 msec
i
H 10k N
@
o
K,__f' = 2.7 msec
0I.O 2.0 3.0 40

TEMPERATURE (°K)

FIG, AI-2. Results of a temperature dependent study of the
observed decay rate for time resolved trap emission from k.-
TCB (soild circles). The observed trap decay rate will be an
average of the band and trap rate constants weighted by the
appropriate Boltzmann factors. The individual band sublevels
in TCB have lifetimes of 28.4 msec, 11.0 and 2.7 msec. The
solid curves are the theoretical predictions for coupling be-
tween the observed trap sublevel (see Fig., AI-1) and the pos~
sible band sublevels. The temperature dependence demon-
strates that the trap sublevel is coupled to the 28.4 msec ex-
citon band sublevel.

In order to determine whether the fast (2.7 msec), me-
dium (11 msec), or slow (28 msec) exciton sublevel is in-
volved in the trapping experiments, the temperature de-
pendence of the apparent trap lifetime was studied. In
the region between 1.8 and 4. 2°K the existence of ther-
mal equilibrium implies fast exchange of population be-
tween band and trap. Thus the observed trap decay con-
stant should approach the band rate constant as the tem-
perature increases. Figure AI-2 plots the observed life-
time of the single trap sublevel which emits to the origin
versus temperature. The solid lines in Fig. AI-2 are
calculated curves assuming rapid equilibration between
the trap and band for the fast, medium, and slow band
sublevels. These curves are calculated using the rela-
tion

Kohs=X(T)KT+(1 ‘X(T))KE > (AI-4)

that is, a weighted average of the trap and band decay
rates. From Fig. AI-2 it ig clear that the apparent
rate constant can only be due to population exchange be-
tween the single trap sublevel observed in the trapping
experiments and the slow (28. 4 msec) exciton sublevel.
Thus, we can assign K, =35,3 sec”!. In the determina-
tion of Ny the greatest error is in K, since SLR may not

be completely absent at 4,2°K. However, this value is
accurate within 10% and from Eq. (AI-3) this will re-
sult in an uncertainty of 10% in N.

The value for A is 17.3+0.2 cm™!, This has been de-
termined by several groups and by two independent
means: by emission spectroscopy2° and by a determin-
ation of the activation energy for detrapping.'® In Ref.
2a and 22 the erroneous value A =213 cm™ appeared
and this value was used by several subsequent au-
thors. ¥ 13 All workers now agree that the 17.3 em™!
value is indeed correct.

This leaves 8 and N, as the only unknown parameters
which determine the nature of the temperature-depen-
dent trap intensity. In Ref. 2c the data are in excellent
agreement with theory for 8=0.34 cm™! and N3 =5500,
However, in this work K is given as 150 sec™!. This
erroneous rate constant was obtained from a single ex-
ponential fit to a multiexponential decay. Since
Eq. (AI-3) contains only the ratio K;/N,, an error in
Ky will produce the same error in N,. Thus the cor-
rect exciton rate constant results in the values, 8=0. 34
em™! and N3} =2.2+0.2x10%. The revised calculated
intensity is unchanged and appears exactly as in Ref.
2c. An interesting feature of this data is that the value
of 43=1.35 cm! determined by trap intensity agrees
very closely with the value 48=1.25 cm™! determined
by optical detection of the exciton band-to~band ESR
transition by workers in the United States in 1971, %
and the value 48=1.40 cm™! determined by conventional
ESR methods in the Netherlands in 1977.% It should be
noted that the value of 43=0.6 which was reported in
Ref. 23 and employed in Ref. 13b, was “estimated”
from the intensity of ESR transitions between TCB di-
mers in d,~-TCB host. Although this estimate is in fair
agreement with the measured values, it is by no means
as accurate a determination as those discussed in the
above three references.

Finally, we turn our attention to the wide discrepancy
between literature values of N,. Fayer and Harris®
developed the theory of band-trap equilibrium and made
the first determination by this method of 43=3.5 ¢m™!
and N7 =9x10%, but incorrectly took A =21.3 em™'.

We have reanalyzed the data in this work and find that
with the correct trap depth it gives within experimental
error the correct values for g and N,. In Ref. 13a the
temperature dependent method was again used to deter-
mine a value of N3 =2.56x105, Here, once again, the
incorrect trap depth was used which results in a sizable
overestimation of N7\.

The most recent determination of N3} =3 +1x10% by
Wolf et al., '™ although experimentally accurate is
flawed by an incorrect analysis of the relationship be-
tween N, and the observed intensity of steady state trap
and band emission. Equation (9) of that work gives (in
our notation)

i |
(T:f) = Nrexp(a/KD) (AL-5)

where (P,/Pg) ¢y is the ratio of the trap and band popula-
tions in steady state at temperature T. By comparison
with Eq. (AI-3) it can be seen that the assumptions im-
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plicit in Eq. (AI-6) are: 1) the bandwidth 48=0, and

2) the ratio Kz/K,=1, For the TCB system, these as-
sumptions are fairly accurate since the finite bandwidth
contributes only a few percent error and we have deter-
mined K;/K,;=1,4, a 40% error. However, the flaw in
this determination is the assumption that the observed
ratios of trap and band infensifies are equal to the ratios
of the trap and band sublevel populations i.e., ([;/Iz) ¢y
=(P;/Pg)sr. The radiative rate constants for decay to
the exciton and trap origins are assumed identical.

This in general is not realistic. The correct form of
Wolf’s equation should be

(ll'- | e )ST N (&)sr = Nrexpla/kD), (A1-6

Iy Ki Py

where K7 and K} are the radiative rate constants for
the observed sublevels. The fact that these radiative
rate constants are not identical can be seen from the
data of every worker in this field. For example Fig. 2
from Wolf e¢f al. 13 shows the temperature dependence of
phosphorescence intensity of band origin and trap origin
emission. At 4.2°K the relative intensities are band
=8 and trap =0.7, and at 2.5°K they are band ~6, trap
=35, Transfer of population from band to trap would
result in a constant total emission intensity if the radia-
tive rate constants are identical. This clearly is not
the case in the TCB system, and in fact the above data
are more congistent with K7> KZ. Thig results ina
substantial underestimation of N;! using Egq. (AI-5). Fur-
thermore, the fact that exciton emission occurs from
all three triplet spin sublevels in the band but from only
one trap sublevel is ignored. The way to approach the
data is to use Eq. (AI-3) and compare the intensity of
trap emission at one temperature to the trap intensity
at another temperature since the radiative rate con-
stant divides out of the equation in the case of the TCB-
x~-trap where only a single sublevel is observed,

APPENDIX Il

If exciton trangport is dominated by fast stochastic
exciton-phonon scattering, then exciton motion is in-
coherent and may be described by a site-to-site stepping
frequency viyc. Knox and Kenkre have constructed a
formalism which employs an exponentially decaying co-
herence memory function to describe the loss of exciton
coherence through phonon interactions. ® If the rate of
coherence loss, @, is large relative to 5/h, the “rate
of energy transfer,” i.e., @ > g/h, then transport oc-
curs according to the “slow transfer” rate, Eq. (5) of
Sec. II. The exponential form of the coherence memory
function implies that the exciton band optical absoption
lineshape will be Lorentzian of half-width o.

High resolution optical absorption measurements have
been made on the exciton band origin of TCB at low tem-
peratures.* These experiments showed that the ab-
sorption line at liquid He temperatures is Lorentzian
with half-width 0.59 cm™. The decay rate o =0.59 cm™/
h=1,8x10" sec’!, In contrast, the “rate of transfer”
8/h=1.0x10" sec™!. At liquid He temperatures, TCB
is not a clearcut case for “slow transfer” since the re-
quirement o > B/h is only approximately met. Thus,
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the calculation of the incoherent site-to-site stepping
frequency should be taken as an estimate. The result is
Vine =8-9X 10" sec™, or a step time of 1 psec.
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