
Chemical Physics 58 (1981) 325-334 
North-HolIand Publishing Company 

ELECTRONIC EXCITED STATE ENERGY TRANSFER, TRAPPING BY DIMERS 
AND FLUORESCENCE QUENCHtNG IN CONCENTRATED DYE SOLUTIONS: 
PICOSECOND TRANSIENT GRA-I’ENG EXPERIMENTS 

D.R. LUTZ, Keith A. NELSON, C.R. GOCHANOUR and M.D. FAYER 
Depunmenr of Ckemko): Stanford Unimrsity, Stanford, California 94305, USA 

Received 21 January 1981 

Picosecond transient grating experiments are used to examine electronic excited state dynamics in concentrated dye 
solutions. A model based on radiationless excited state transport and trapping by dimers describes the phenomena 
responsible for fluorescence quenching. The trapping rate constant is found to have a cubic concentration dependence. 
Rhodamine 6G dimer l&times in glycerol and ethanol are 830 ps and 40 ps respectively. The difierence arises due to 
the viscosity dependence of the dimer radiationless relaxation rate. 

1. Introduction 

In this paper we examine electronic excited 

state dynamics in concentrated dye solutions. 
The experimental evidence suggests that three 
radiationless processes govern the disposition of 
eIectronic excited state energy in this type of 
system. These three processes are energy trans- 
fer between dye molecules [l], trapping by 
dimers [2], and radiationless relaxation [3] of 
the dimer excited state. A simpIe mode1 pro- 
vides a microscopic dynamicai picture of 
fluorescence quenching [4] in concentrated dye 
solutions. The results given here relate directly 
to concentration quenching in dye lasers, an 
important limiting effect [4]_ The basic model 
also has implications for the construction of 
luminescent solar concentrators composed of 
dye soIutions in plastic media which have been 
proposed as a method of augmenting photovol- 
taic solar energy conversion [S]. In addition, the 
phenomena under consideration are the 
important initial steps in photosynthesis, i.e., 
etectronic excitation transfer between chtoro- 
phyll chromophors and trapping on reaction 
centers (dimers) [6]. 
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Qualitatively, the concentration dependent 
processes which combine and result in fluores- 
cence quenching work in the following manner. 

At very low concentration, a dye solution 
absorbs light and fluoresces. At moderate 
concentrations electronic excited state energy 
transport occurs due to dipole-dipole inter- 
actions between the dye molecules [7]_ The 
energy transport causes fluorescence 
depoIarization effects [lj but does not affect the 
fluorescence quantum yield. As the concentra- 
tion is increased further, ground state dimer 
formation begins [S] and the rate of energy 
transport continues to increase. By dimers we 
mean aegregates of two dye molecules which 
have distinct spectral and other characteristics. 
Rapid transport among the monomers allows an 
excitation to i&d a diier and become trapped 
on it. The experiments indicate that back trans- 
fer from the excited dimer to monomers is 
negligible. Once the excitation is trapped on a 
dimer rapid radiationless relaxation to the 
ground state occurs, and fiuorescence is 
quenched. 

The concentration dependence of the 
fluorescence quenching is determined by the 
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concentration dependence of the trapping. The 
trapping rate constant depends on both the 
dimer concentration and the concentration 
dependent rate of- energy transport. The model 
predicts that the trapping rate constant goes 
approximately as the cube of the dye concen- 
tration. Therefore the onset of fluorescence 
quenching with increasing concentration is very 
rapid. 

Experimentally, the onset of trapping by 
dimers manifests itself as an apparent reduction 
in the excited state lifetime. In the limit that 
energy transport becomes extremely rapid, the 
trapping occurs on a time scale short relative to 
the dimer lifetime, and the excited state popu- 
lation decays with the dimer lifetime. In the MO 
systems studied, rhodamine 6G (R6G) in gly- 
cerol and R6G in ethanol, it is determined that 
the dimer lifetimes are 830 ps and 40 ps 
respectively. Presumably, the dimers have faster 
radiationless relaxation rates than the 
monomers due to the loose nature of the dimer 
complexes. The dimers undergo rapid 
configurational changes which enhance the 
radiationless relaxation rates. This is consistent 
with the longer dirner lifetime in the glycerol 
solirent. Since glycerol is much more viscous 
than ethanol, it will “hold” the ditner complex 
more rigidly and therefore slow radiationless 
relaxation. 

2. The model 

In this section a simple model is presented 
which describes the dynamics of electronic 
excited states in concentrated dye solutions. The 
important features included are excited state 
energy transport and trapping by dimers. We 
will utilize a set of rate equations with a trap- 
ping rate constant. Au exact treatnent would 
involve solution of the master equation for the 
system in a manner analogous to that used to 
describe excited state transport in moderate 
concentration single component dye systems [l]_ 
However, as discussed below, the approach 
presented here provides a reasonabie context in 
which to analyze the experimental data. The full 

theoretical treatment using the master equation 
[9] is necessary for a complete analysis of. the 
experiments. 

2.1. 17rz rate equations 

In the model the rate equations governing the 
excited siate populations are: 

dM*/dt = -KMM* - K+f*, (14 

dD* jdt = -KnD* + K=M*. (lb) 

M* is the concentration of excited monomers, 
and D* is the concentration of excited dimera. 
KS, is the rate constant for decay of excited 
monomers to the ground state by radiative and 
non-radiative processes, and Ko is the analo- 
gous rate constant for decay of dimers to the 
dimer ground state. KT is the trapping rate 
constant. The form of the trapping rate constant 
is described below. The excited monomer 
population is depleted by decay to the ground 
state and by trapping. The excited dimer popu- 
lation is depleted by decay and is increased by 
trapping. 

The solutions to eq. (1) are 

M* = M$ exp [-(KM+ K-&l, 

D* = [K$4cf~/(&+K~-&,>1 

(24 

x Cexp(-Kd) - expI-(KM + Kdtll- WI 

Mg is the initial concentration of excited 
monomers. For eq. (2b) the initial excited dimer 
concentration is taken to be zero. 

The experimental method used to examine 
the excited state dynamics is the picosecond 
transient grating technique [lo]. The method 
will be described in detail in section 3. Here we 
need to remark that the method produces au 
excited state spatial fringe pattern and the 
amplitude of this pattern is measured as a 
function of time. The signal, S(t), is given by: 

S(t) = A[OD,- OD,]“. 

OD, is the optical density of the sample at the 
peaks of the fringe pattern, where some of the 
molecules have been excited. OD, is the sample 
optical density at the nulls of the fringe pattern, 
where there are no excited states. A is a rime- 
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independent constant which involves a number 
of considerations such as laser beam geometries 
and is not important for this problem. 

The total concentration of absorbing dye 
species in solution is T, and 

T=M+D. (4) 

M is the monomer concentration, and D is the 
dimer concentration. Since there are no excited 
states at the fringe nulls, 

OD, = ~lr, (5) 

where I is the sample length and E is the 
extinction coefficient at the wavelength of the 
probe laser beam. For the experimental systems 
considered here and for the probe wavelength 
used, E is similar for monomers and dimers and 
for simplicity we will take the monomer and 
dimer extinction coefficients to be identical. This 
does not make basic changes in the inter- 
pretation of the data presented in section 4. In 
other situations, a different E for monomers and 
dimers can be used. The excited state species do 
not absorb at the probe wavelength, i.e., there 
is no excited state to higher lying excited state 
absorption; therefore 

OD,=si(T-M,” -D;), (6) 

where Mg and 0: are the excited monomer 
and dimer concentrations of the grating peaks. 
Substituting eqs. (5) and (6) into eq. (3) gives 
time-dependent transient grating signal as 

s(t) =A(&(M; to;)‘. (7) 

Inspection of eq. (7) shows that the time 
dependence of the signal is determined by the 
time evohtion of the total excited state 
concentration, T*(t), where at any point in the 
crystal 

T*(t) = (M* CD”). (8) 

Substituting eqs. (2a) and (2b) into eq. (8) 
gives: 

T*(t) = M8 (exp [-(&~+K+] 

+[KT/(&i+&--KD)l 

x+=xp (-&d - expt-Kd + WflH- (9) 

T*(f) is the time-dependent function deter- 
mined experimentally_ It is informative to note 

some special cases of eq. (9). If KT is very 
small, trapping is negiigibIe and T*(t) decays 
exponentially with the monomer rate constant, 
KM. If KD z++ KM, Kr then T*(t) decays 
exponentially with a rate constant (&+Kr). 
And if Kr * KM, KD excitations are immedi- 
ately trapped by diners and T*(t) decays 
exponentially with the dimer rate constant, &. 

2.2. 27re trapping rate constant 

In room temperature systems, excited state 
energy transport is incoherent [l]. Treatment of 
single component solutions (no dimers or other 
traps) by solving the fuIl master equation has 
demonstrated that, in general, transport is not 
diffusive in nature [l]. However, at the high 
concentrations under consideration, transport is 
non-diffusive only at very short times. Therefore 
energy transport in these systems is essentiahy 
diffusive and isotropic in three dimensions. 

In general, trapping is characterized by a 
time-dependent trapping rate function [ll]. 
Trapping occurs when an excitation has visited 
enough distinct sites so that on the average it 
has sampled one trap species. For a random 
walk on an isotropic three dimensional lattice, 
the number of distinct sites visited increases 
linearly with time [12]. Therefore, trapping can 
be characterized by a trapping rate constant 
which depends on the site-to-site hopping time. 
We will assume that trapping can aIso be 
characterized by a trapping rate constant in the 
solution systems discussed here. At high 
concentration this is reasonable since transport 
is basicahy diffusive and isotropic in three 
dimensions. Although we do not have a periodic 
lattice, the randomness in spatial distribution of 
the sites (dye molecules) associated with a solu- 
tion is taken into consideration in the cai- 
culation of the hopping time. 

The modei we are’employing assumes that 
the site-to-site hopping time is basically 
unaffected by the presence of the traps. That is, 
the hopping time can be obtained from the 
theoretical treatment of the problem of ener,qy 
transport in solution. This is only reasonable for 
low trag concentrations. Gochanour et al. [l] 



used a diagrammatic self-consistent method to 
solve the master equation. One of the proper- 
ties of the system which can be accurately cal- 
culated is G”(Z), the time dependent probability 
of finding the excitation on the site which is 
excited at t = 0. A plot of G’(t) is given in fig. 1 
for C = 1. G’(t) is obtained by numerically 
inverting its theoretically calculated Laplace 
transform. C is the unitless concentration given 
by Cl, 71: 
C =$n-R:pp. (1Oj 

p is the number density and R. is the constant 
which characterizes the strength of the inter- 
molecular transport interaction [7]. The time 
axis of fig. 1 is in units of t/r, where r is the 
monomer excited state lifetime. GS(r) scales as 
C’, thus G’(r) can be obtained for any concen- 
tration by scaling the time axis of the C = 1 
CUNfZ by c*. 

We will define the hopping time 11 as 

G’(h) = l/e, (11) 

i.e., the hopping time is the time at which the 
probability of finding the excitation on the 
initially excited molecule has fallen to l/e. For 
C = 1, this time is obtained from inspection of 
fig. 1. Since G’(t) scales as C2, the hopping 
time, h, at any concentration is related to hI, 
the hopping tune at C = 1, by 

h = hlMffM2, (12) 

where Mt is the concentration in m/e which 
gives a unitless concentration C = 1. 

The trapping time, tr, is the average time for 
an excitation to find a trap. It is the number of 
sites which need to be sampled to find a trap 
multiplied by the time for a step. Then 

t-r = hlxP> (13) 

where h is the hopping time defined above, and 

x = D/M. (14) 

l/x is the average number of distinct sites (dye 
molecules) which must be sampled to find a trap 
(dimer). P is the probability that on any step a 
distinct site is visited. It corrects for the retrrm 
to previously visited sites. For’an isotropic three 
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Fig. 1. T&e time-dependent probability, G’(r), of finding the 
excitation on the molecule which is excited at f = 0 for unit- 
less concentntion c = 1. r is the excited state lifetime. 
Curves for all concentrations can be obtained from this 
curve by appropriate scaling. See te.rt. 

dimensional random walk on a lattice, P = 0.72, 
and we will use this vahxe here. Thus the trap- 
ping rate constant is 

K, = xP/ h. (15) 

The monomer-dimer equilibrium constant 4 is 

q = D/M’, (16) 

which gives 

KT = PqMjh. (17) 

Substituting eq. (12) into eq. (17) gives the 
trapping rate constant as 

KT= PqM3/h,M;, (18) 

where the concentrations are in m/a. Eq. (18) 
shows that this model predicts that the trapping 
rate constant depends on the concentration 
cubed. Thus trapping increases very rapidly with 
concentration. This model and the simple cubic 
concentration dependence of the trapping rate 

f Our P corresponds to Montroll’s l/uO, which is 0.65946 
for a simple cubic lattice. This value was misprinted in ref. 
1121, but the correct value KID = 1.5164 was used in later 

works. See, for example, ref. [13]. 
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constant is reasonably correct only at low dimer 
concentrations for two reasons. First, the 
definition of x in eq. (14) assumes that the 
monomer concentration M is equal to the total 
concentration of dye in solution, i.e., that 
D G M. Second and fundamental to the prob- 
lem is the use of G”(f) f:om the single 
component theory to obtain the hopping time in 
this inherently two component system composed 
of monomers and traps (dime+. The single 
component theory properly accounts for 
“loops” in the transport problem [l]. An exci- 
tation leaving an initial molecule imolecule 1) 
may visit one or more other molecules and then 
return to molecule 1. All possible paths which 
return the excitation to molecule I (loops) help 
maintain the probability on molecule 1. Thus 
the loops slow the decay of G’(t) and increase 
the hopping time. 

At low trap concentrations, G*(f) will give an 
accurate hopping time. However, as the trap 
concentration increases, some paths that would 
be loops in a single component system intersect 
traps which terminate the loops. Thus the return 
of probability to molecule 1 is reduced, and 
G’(t) will decay faster. Thus G’(t) yields a 
hopping time which is too long. As the trap 
concentration becomes large, the hopping time 
obtained from the single component theory 
becomes an increasingly poor parameter to use, 
and it becomes necessary to solve the full 
master equation to obtain a complete descrip- 
tion of the problem [14]. in using the model 
presented here, there are compensating errors. 
At the higher dimer concentrations, G’(tj 
decays too slowly, but the monomer concen- 
tration is overestimated causing the decay of 
G’(t) to increase. A comparison with experi- 
ment is given in section 4. 

In analyzing the data in section 4, Ro and r 
can be determined experimentally for the 
monomer. These and G’(f) yield hr. The 
concentration of dye in solution is known and in 
principle the equilibrium constant Q can be 
determined. Therefore Kr can be obtained. This 
can be used in eq. (9) to calculate the time 
dependent signal in the transient grating 
experiment, using Ko obtained at very high 

concentration. If 4 is not known, an alternate 
approach is employed. Transient grating data at 
a single concentration are used to obtain KT, 
then points at other concentrations are cal- 
culated by scaling KT as M3. This procedure 
also yields an experimental value for q. 

Examination of T*(t), eq. (9), which gives the 
time-dependent signal shows that in general the 
decays are nonexponential. However, in the 
limiting cases of high and low concentration 
(very large and very small Ic,) the decays are 
exponential. In between these limits the shapes 
of the decays are not far from exponential. In 
the data analysis of section 4 the following 
procedure is employed. The experimental 
decays are plotted on logarithmic paper and a 
decay constant is determined for each concen- 
tration. These are then compared to a theoreti- 
cal effective decay constant, I&, obtained from 
eq. (?) by finding the time required for T”(t) to 
fall to l/e. Thus 

I&f = l/t’, 

with tt obtained from eq. (9) by 

2%‘) = l/e[T*(O)]. 

(19) 

CX!) 

3. Experimental 

The transient grating experiment [lo] is illus- 
trated schematically in fig. 2. Two time-coin- 
cident laser excitation pulses of wavelength A 
cross at an angle 8 inside the sample, creating 
an interference pattern with fringe spacing d 
given by 

d = A/2 sin (B/2). (21) 

Optical absorption results in a spatially varying, 
sinusoidal excited state concentration dis- 
tribution. Since the optical properties of the 
excited states and ground states differ, the 
periodic excited state concentration distribution 
acts as a transient grating which Bragg diflracts 
a variably delayed probe laser pulse incident at 
the Bragg angle. The grating’s difiracting power, 
defined in eq. (3), decays with time due to 
excited state relaxation processes. Tbe time 
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Fig. 2. Schematic itlustration of the transient grating 
experiment. Interference between the incoming excitation 
pulses results in an osciilatorjr density of excited states, 

,which Bragg-diffracts the subsequent probe pulse. The 
diffracted probe is the signal, which reflects the time evolu- 

tion of the excited state population. 

dependence is determined by measurement of 

the diffracted probe pulse intensity versus probe 
pulse delay. 

Transient grating experiments were used in 
these measurements for two reasons. First, a 
TG experiment is inherently more sensitive than 
a probe pulse experiment aIthough in principle 
both could provide the same information about 
the processes under consideration here.‘in 
addition the small fringe spacing associated with 
a TG experiment minimizes problems associated 
with reabsorption. Second, we found in probe 
pulse experiments that the highly concentrated 
samples required very large excitation power 
densities (small spot &es) to achieve snfficient 
bleaching of the ground state population to give 
reasonable signal. These very high POR-cr 
densities resuIted in anomalous power-depen- 
dent decays. In a TG experiment large spot 
sizes can be used so the problem is avoided. As 
the spot size increases, bleaching is decreased_ 
However, this is offset by an increase in grating 
volume and therefore the grating d&action 
efficiency remains unchanged. 

The transient grating experimental setup is 
illustrated in fig. 3. The laser is a continuousIy 
pumped Nd:YAG system which is acousto- 
optically Q-switched and mode-locked to 

YAGLASER PC P 

I 1 

DYE LASER ; 

4 
Cl 

PROBE: 4 EXCITATION 
BEAM; * BEAM 

X-Y RECORDER 

Fig. 3. Transient grating experimental setup. A single 
1.06 pm pulse is selected from the YAG mode-locked pulse 
train, frequency nipled to 355 nm, then split into two exci- 
tation pulses. ‘These excitation pulses are then recomb&d 
at the sample, creating the transient grating. Thp, remainder 
of the pulse train is frequency doubled to synchronously 
pump a tunable dye laser wizose output probes the grating 
after a v&able delay. The Bragg-diffracted part of the 
probe pulse is the transient grating signal. PC= Pockels cell: 
P=polarizer; PD=photodioda; DC-dye cep, E=etalon; 
BS = beamsplitter. 



produce trains of about 40 pulses ai 1.06 pm 
with 1.3 m.I per pulse train. A single pulse is 
selected by a Pockets cell with an avalanche 
transistor driver and frequency tripled to yield a 
5 pJ, 50 ps pulse at 355 nm. This is split into 
the two excitation pulses which are recombined 
at the sample. The rest of the YAG pulse train 
is separated by a reflecting polarizer, frequency 
doubled, and used to synchronously pump a dye 
laser which is spectrally narrowed and tuned by 
two intracavity etalons. The dye laser is cavity 
dumped using another Pockels cell with 
avalanche transistor driver to give an 8 pJ, 30 ps 
pulse with a spectral width of 1 cm-‘. Both 
Pockels cells are triggered optically by the IR 
pulse train to fur the timing between them. The 
variably delayed dye laser pulse probes the 

grating at the Bragg angle. The probe pulse is 
polarized at the magic angle. This eliminates 
time-dependent depolarization effects from the 
measurements [l]. The diffracted intensity, 
measured with a PIN photodiode and lock-in 
amplifier, is the signaL 

The samples were solutions of laser grade 
rhodamine 6G (New England Nuclear) dissolved 
in spectra grade ethanol or gIycero1. The solu- 
tions were mounted in a rotating cell to avoid 
heating effects. The ce!! consisted of two glass 
plates separated by spacers. For the most 
concentrated solutions the spacers were 5 Frn; 
for the most dilute solutions the spacers were 
200 pm. 

4. ResuIts and discussion 

Transient grating experiments were perfor- 
med on a series of soIutions of rhodamine 6G in 
giycerol ranging in concentration from 8.7 x 
10eJ to 0.05 m/e_ A typical result and log p!ot 
are shown in fig. 4. In all cases the data 
appeared to decay exponentially for several 
lifetimes. Thus the decay could be characterized 
by an effective rate constant, Kss, as discussed 
in section 2. Long range energy transport could 
carry excitations from grating peaks to grating 
nulls, washing out the grating pattern [lSj. This 
would contribute to the TG signaI decay. curves are described in section 4. 

D.R. Lutz er al. / Concennnred dye sohztions 331 

0 I 2 3 
TIME INSEC) 

Fig. 4. Transient grating results for rhodamine 6G in giy- 
cerol. Probe wavelength = 560 nm. Inset shows the log cf 
the data versus time. The effective decay constant for this 
dataset is Kefl = 9.3 x IO’S-~. 

However, the time dependence of the signal 
showed no grating fringe spacing dependence. 
This demonstrates that destruction of the grat- 
ing pattern by long range spatial energy trans- 
port is not responsible for the observed time 
dependence. 

A plot of Kc% versus R6G concentration is 
shown in fig. 5. First consider the qualitative 
features of the concentration dependence. At 
low concentration, K,, is concentration 
independent and given by the monomer decay 
rate: Kea = KM = 3.3 X iO+ s-l. This represents 

I 

Fig. 5. Eliective decay constant, Kca, versus concentration 
of rhodamine 6G in glycerol. i indicates experimental data. 
As the R6G concentration incxsses, excited state transport 
and trapping by R6G dimers becomes increasingly rapid. 
Fast radiationks relaxation by the dimers decreases the 
excited state lieticx and quenches fluoreacen~. The solid 
CUN~ is calculated using the results of section 2. The other 



the limit K==O, i.e., no trapping, since there 
are few dimers and transport is relatively slow. 
At high concentration, Kcs is essentially 
concentration independent and given by the 
dimer decay rate: Key = KD = 1.2 x 10’ s-l and 
the dimer lifetime is 830 ps. This corresponds to 
the limiting case Kr % K,-,, Khi (instantaneous 
trapping) which occurs at high concentration 
since the dimer population is substantial and 
energy transfer, characterized by the hopping 
time h, is fast. The observed concentration 
dependence also verifies the assumption that 
dimer-monomer back transfer is negligble. 
Significant back transfer would resuit in a shor- 
tening of the lifetime proportional only to the 
time spent on dimers and would result in a 
much slower change in the observed lifetime 
with increasing concentration. The absence of 
back transfer is presumably due to significant 
structural relaxation (excimer-like) by the dimer 
upon excitation. Between the two concentration 
limits, K,, varies sharply with concentration due 
to the M3 concentration dependence of KT [see 

eq. (WI. 
In addition td affecting excited state dynami- 

cal processes dimer formation should give rise 
to changes in the ground state absorption spec- 
tra of the solutions. Fig. 6 shows absorption 
spectra of low and high concentration solutions. 
The spectra are different, especially in the 
region around 500 nm. Spectra of solutions of 
many concentrations were examined, and it was 

Fig. 6. Absorption specua of R6G in @ycemI at IO-N and 
high mncentrations. The spectra have been normalized to 
the same maximum height. The change in the shape oi the 
spectra is due to dimer formation at high concentrations. 

found that the onset of spectral changes coin- 
cides with the onset of changes in the excited 
state decay rate. This clearly demonstrates that 
the concentration dependence of the decay rate 
is due to changes in the ground state molecules 
and not to processes such as excimer formation 
which only affect the excited states. 

Detailed comparison of the model and the 
experimental data is given in fig. 5. The data 
were analyzed as discussed in section 2.2. The 
monomer and dimer decay rates were deter- 
mined from the TG data at Iow and high 
concentration respectively_ Since the equilibrium 
constant, 4, is not known, TG data at a single 
intermediate concentration were used to 
determine KT. Decay constants K,, were then 
calculated at other concentrations by scaling KT 
as the concentration cubed and using eq. (9). 
The calculated values of K,E as a function of 
concentration yielded the curve (solid line) 
shown in fig. 5. The curve fits the experiment- 
ally measured decay constants over the range of 
concentrations, indicating that the microscopic 
model is basically correct. 

Knowing Kr allows calculation of the equili- 
brium constant for dimer formation from eq. 
(18). The hopping time, hl, can be calculated 
using the result Ro = 50 A determined by 
picosecond fluorescence depolarization 
measurements [l] and by spectroscopic 
measurements [16]. Eq. (10) then gives M1 = 
3.17 x lop3 m/e corresponding to the unitless 
concentration C = 1. From fig. 1, the hopping 
time is hl = 0.90~ = 2.70 ns. Finally K-r = 
1.62 x 10’ s-* at this concentration. This yieIds 
an equilibrium constant 4 = 9.7 e/m. Equili- 
brium constants for various solutions of R6G in 
glyceroi-water mixtures have been determcned 
from concentration dependent absorption spec- 
tra to range from 28 e/m in the solution with 
the most water to 11 e/m in the solution with 
the least water [8b]. The equilibrium constant 
which resulted from the time-dependent 
measurements is consistent with these values. 
This provides additional support for the basic 
model. 

The excellent agreement between the cal- 
culated solid line and the data in fig. 5 arises 
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from a cancellation of errors. As discussed in 
section 2.2, the single component theory used to 
obtain G’(t) yields hopping times which are 
increasingly too slow as the diier (trap) 
concentration increases. This is offset by the 
model’s overestimation of the monomer 
concentration at high dimer concentrations. 
Using the same set of parameters empIoyed to 
calculate the solid line, but now properly hand- 
ling the monomer concentration, yields the 
dashed line in fig. 5. As expected it falls below 
the data. The dashed line demonstrates the 
extent to which the use of G’(t) from the single 
component theory and experiments under- 
estimates the trapping rate. The dot-dash line in 
fig. 5 was calculated using the correct concen- 
tration dependence and increasing the pairwise 
intermolecular interaction parameter Ro from 
the experimentally determined value of 50 A for 
the single component system to a value of 65 A. 
This causes G’(t) to decay more rapidly, which 
increases the trapping rate. However, this pra- 
cedure affects G’(t) at all concentrations while 
in a correct theory G’(r) would only differ from 
the single component theory at high trap 
concentrations. Thus the dot-dash curve lies 
above the experimental data at the lower 
concentrations. 

The net result is that the basic physical model 
can account for the experimental data. 
However, a comprehensive description requires 
the solution of the master equation. The fact 
that the cubic concentration dependence of the 
formulation presented in section 2 reproduces 
the data (solid line in fig. 5) indicates that this 
dependence should emerge from a full 
theoretical treatment. 

Transient grating experiments were also per- 
formed on a series of soiutions of R6G in 
ethanol. The data are marred by an experimen- 
tal artifact which resuIts from CoupIing between 
the crossed laser pulses and the acoustic field of 
the solvent. This introduces time-dependent 
oscillations into the TG data. This phenomenon 
has been observed in other materials and is 
discussed in detail eIsewhere (171. It does not 
occur in glycerol, presumably because of 
unusually large acoustic damping effects. 

Approximate decay rate constants were 
estimated from the TG data and these are plot- 
ted versus concentration in fig. 7. These data 
must be considered qualitative in nature. At low 
concentration the rate constant is determined by 
the monomer decay rate: Kee = KM = 
2.7 x lo* s-l. As the concentration rises, the 
decay rate rapidIy increases. The measurement 
at the highest concentration is instrumentally 

limited by the laser pulse duration. The excited 
state decay constant at high concentration is at 
least 2 x lO*’ s-l, i.e., the lifetime is less than 
50 ps. This is in marked contrast to the glycerol 
solutions, in which the dimer lifetime is 830 ps. 

Clearly the radiationless relaxation rates of 
the loosely bound dimer are influenced by the 
solvent viscosity. The low viscosity of ethanol 
permits rapid configurational fiuctuations which 
lead to very fast radiationless relaxation_ The 
fluctuations occur more slowly in gIycero1, and 
thus the diner Iifetime is Ionger. 

5. Conchding remarks 

The two major results of this paper are as 
follows. First, a microscopic physical model of 
excited state dynamics in dye solutions invdving 
concentration-dependent trapping has been 
presented and compared to experiment. Second, 
the R6G dimer lifetime is more than an order 
of magnitude shorter in ethanol than in glycerol. 
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Fig. 7. Effective decay constant, I&, versus concentration 
of rhodamine 6G in ethanol. + indicates experimentally 
determined points. These data are qualitative due to an 
experimental artifact. See text. 
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This suggests that the radiationless relaxation 
rates of the loosely bound dimer complexes are 
strongly influenced by the viscosity of the 
medium. 

These results directly apply to concentration- 
dependent fluorescence quenching in dye solu- 
tions. Trapping on dimers, which increases as 
the cube of the djre concentration, leads to fast 
radiationless relaxation and thus quenches 
fluorescence. The solvent-dependent dimer 
lifetime also influences fluorescence quenching_ 
In high concentration R6G in ethanol solutions, 
fluorescence is completely quenched since the 
dimer radiationless relaxation rate is extremely 
fast. In high concentration glycero! solutions, 
fluorescence is only partially quenched since the 
dimer decay rate is only four times faster than 
the monomer decay rate. This allows some 
radiative relaxation to occur. 

The description of excited state dynamics in 
concentrated dye soIutions also has implications 
for the design of dye solution luminescent solar 
concentrators for photovoltaic devices. Fluores- 
cence quenching due to dimers may place a 
limit on the dye concentration which can be 
used in the solar collector. This limit will 
depend on the medium. In more viscous or rigid 
media, fluorescence quenching is reduced. Also, 
difIerent materials will have diierent monomer- 
dimer equilibrium constants. It could be neces- 
sary to use polymeric materials in which the 
chromophors are attached to the polymers in a 
manner that inhibits diner formation. We are 
currently pursuing additional experimental and 
theoretical projects on both single component 
and multicomponent concentrated dye systems 
to extend our understanding of the important 
radiative and nonradiative phenomena in these 
materials and to examine questions pertaining 
to their applications. 
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