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A theoretical study of transport and trapping of electronic excitations in a two-component disordered system
is carried out. The results are applicable to energy transport in solutions containing randomly distributed
donor and trap solute species or lattices with randomly distributed donor and trap impurities. The
diagrammatic expansion of the Green function, developed by Gochanour, Andersen, and Fayer to study
excited state energy transport in a one-component system is applied to the trapping problem. The following
quantities are calculated from the Green function: the time-dependent probabilities that an excitation is in the
donor or in the trap ensembles, the generalized diffusion coefficient, and the mean-squared displacement of an
excitation. For Forster transfer, transport properties are shown to depend on the ratio of the Forster
interaction lengths R5T and R%” as well as on the reduced concentrations of donors and traps

[Cp, = 4/3m(REPYp,, C; =4/3m (R p,]. The tranport of excitations is found to be nondiffusive. A

comparison to other theoretical treatments is presented.

I. INTRODUCTION

The problem of radiationless transport of electronic
excitations in solutions containing traps was addressed
by Forster over 30 years ago.! Trapping of electronic
excitations is responsible for phenomena such as sensi-
tized luminescence in crystals and solutions? and sensi-
tized photochemistry such as photosynthesis.’® The study
of transport and trapping dynamics has also become an
important tool for investigating biological and polymer
systems,® Fdrster considered solutions containing two
solute species: donor molecules and traps. An elec-
tronic excitation could be transferred from donor to trap
via a resonant dipole—dipole interaction. (Subsequently
the work was extended to higher multipole and exchange
interactions. %) FOrster treated the case in which the
trap concentration is much greater than the donor con-
centration. Each donor is assumed to interact only with
an ensemble of neighboring traps, so transport from
one donor to another is neglected. Forster and later
workers’ showed that in this limit, the time dependent
probability that a donor molecule has retained its elec-
tronic excitation can be calculated exactly.

Recently, Huber has treated excited state transport in
crystals containing donor and acceptor ions as randomly
distributed dilute impurities.®® Using a coherent poten-
tial approximation, he calculates the Laplace transform
of the donor fluorescence decay. Huber argues that his
approximations are valid for all values of the ratio of
donor concentration to trap concentration, provided that
the strength of interaction between donors is at least as
large as the strength of interaction between donor and
trap.

A convenient formulation of the problem of excited
state transport in a one component disordered system
has been given by Haan and Zwanzig.!? They described
the transport using a set of coupled rate equations, and
determined that transport was nondiffusive at short
times. This treatment was extended by Gochanour,
Andersen, and Fayer, hereafter referred to as GAF,
who used a diagrammatic technique to obtain an approxi-
mation to the Green function which included many high
order terms.!' Within their approximation, the trans-
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port becomes diffusive in the long time limit, and it is
very likely that diffusion at long times is also a property
of the exact solution of the problem.

In this work, we apply the diagrammatic techniques
developed by GAF to the problem of trapping in disor-
dered systems. The system under consideration here
consists of immobile donor and trap molecules or ions
dissolved in a host medium which does not participate in
the excitation transport. Excitations can be transferred
from donor to donor and donor to trap, but the trapping
step is taken to be irreversible. Our formalism is gen-
eral, and can be applied to any form of the molecular
interaction. Here we specialize to the case of dipole-
dipole interactions. Our goal is the calculation of the
system’s Green function, from which all of the trapping
and transport properties of the system can be calculated.

In Sec. II, we present the master equation and Green
function. In Sec. III, we outline the topological reduc-
tion of the Green function. A hierarchy of self-consis-
tent approximations to the Green function is discussed
in Sec. IV. We treat the calculation of experimental ob-
servables in Sec. V. Section VI contains the compari-
son of our results to other work.

1l. THE MASTER EQUATION AND GREEN FUNCTION

The system consists of N donor molecules and M trap
molecules randomly distributed in a volume @, with
number densities p, and p,, respectively. The donor
molecules are labeled 1 through N, and the trap mole-
cules N +1 through N +M. The probability that an exci-
tation is on the jth molecule in configuration R =(r,,

Ty, ..., Tyyy) at time ¢, py(R, #), satisfies the master
equation®~1!

' N
%L Z; w{pr =Py =

N M

2 Vb =0i/Ts, JSN,

k=N

dan’ N (1)

E‘%’-:Zv“pg—p;/n , N+1=j=N+M .
k=l

The distance dependent transfer rates between two donor

molecules and a donor molecule and a trap molecule are

given by w,,(r,,) and v,,(r,,). The transfer rates are
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taken to be independent of orientation and only dependent
on distance. w,; is defined to be zero. The donor~-
donor transfer rate is assumed to be symmetric: wy,
=uwy,. Tpand 7, are the measured lifetimes of the ex-
citation on the donor and the trap, respectively, in the
absence of intermolecular transfer. Later in this work,
the results will be specialized to the orientation aver-
aged Forster rate, applicable to a dipole~dipole inter-
action!?
1 (Rﬁ”’)“

“n=p\r)
1 (RQT 3
Tp \¥s ) )

(2)

The effects of including orientational factors in the
transfer rate are discussed by Gochanour and Fayer. 13
In this model, transfer of excitations from trap to donor
or trap to trap is forbidden. This is in accord with
many well defined experimental situations.'* Equation
(1) is a valid description of this system if only 2 small
fraction of the molecules is excited at any time, since
transport will be affected if donors and traps near an
excited donor are already excited. %!%

Initially we specialize to the case where the excitation
lifetimes of both species are the same (1, =7, =7). If
we give both species the donor lifetime, we will be able
to conveniently calculate the donor dynamics, which are
independent of the trap lifetime, since there is no back
transfer. In Sec. V we show how to derive the trap dy-
namics from the donor dynamics if the lifetimes are dif-
ferent, so no generality is lost.

The decay term can be eliminated from Eq. (1) with
the transformation

PR, ) =p}(R, ) expl(t/7) . (3)
The resulting equation can be recast in matrix form
B _q- pir, 1, @

where p(R, #) is a vector with components [ p¢(R, ¢),
PR, 1), ..., pyw(R, )] and Q is an N +M by N+ M ma-
trix given by

¥ N
Quzwn‘én[zwtk'*’ Z vlk] , J,R=N,
1= =N+l
Q=" » N+1SjSN+M, k=N,
=0, E>N . (5)
Equation (4) has the formal solution'®
p(R, t) =exp(¢+Q) - p(R, 0) . (6)

The quantity of interest here is the time and distance
dependent ensemble averaged density of excitations
N +M

Plr, ) = (;‘ ole, = p,(2, ) 0

where the ensemble average of a function A(R) is given
by

(AR = Q—,‘,—M [y farpna) . )

The Green function G(r, r’, t) is defined by
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Plr, )= f ar' Glr,r', )P, 0) . (9)

The Green function gives the conditional probability of
finding an excitation at position r and time ¢, given that
it originated at position r’ at time ¢=0. It is convenient
to write G(r,r’, t) as the sum of three terms

Glr,r', ) =G -r', D) +G™r -1, 1) +GT(r-r", 1), (10)
where
Gr -1, ) =6(r -r"){[exp(t Q1) , (11)
G -1, ) =(N=1X6(r;; = r +r")exp(tQ Ly , (12)

GT(r -’rl, t) =M(5(r1',,,1 -r +r')[exp(tQ)]N,1A> . (13)

We assume that no traps are excited at 1=0. The inte-
gral of G5(r —r’, #) over a small volume about r’ gives
the probability that the excitation is still on the initial
gite at time . G™(r -r’, {) and G"(r -x', {) are mea-
sures of the probability of finding the excitation on a
donor site other than the initial site and on a trap site,
respectively.

We now carry out a diagrammatic expansion of G(r
-~r', #), following the approach of GAF. It is convenient
to work with the Laplace—Fourier transform of the
Green function. The transform of F(r, f) is given by

F(k, €) =f0 dt e'e‘fdr exp(ik- r)F(r, 1) . (14)
Transforming Eqs. (11), (12), and (13) yields

G*(€) = (1=, (15)

G™(k, €) = (N - 1){explik r;)[€1- Q"] , (16)

GT(k, €) =M(exp(ik - ry,y. ) (X - Q) yu, ) amn

where I is the unit matrix. We obtain the diagrammatic
expansion of these functions by expanding the matrix

{eI -Q)! in powers of € and Q. Each of these functions
can then be written as the ensemble average of an in-
finite series of products of w;; and v, factors. Each
such product can be represented with a diagram as fol-
lows. Donor and trap sites are represented by circles
and squares, respectively. A factor wj; or vy; is rep-
resented by a solid arrow from site ¢ to site j, which
can be thought of as an increase in probability on site j
resulting from transfer from site i. A factor -w or

- v,; is represented by a solid arrow from site ¢ to site
j, followed by a dashed arrow returning to site i. These
factors correspond to a decrease in excitation proba-
bility on site 7 due to transfer of probability to site j.
This shorthand is depicted in Fig. 1. Diagrams repre-
senting a product of w,; and v, factors are constructed
by connecting the arrows for consecutive factors head to
tail. The point where two arrows connect will be called
a vertex, if the arrow leaving the point is a solid arrow,
The beginning and end points are also defined as ver-
tices. The solid dots in Fig. 1 are vertices. A dia-
gram representing a product of n @;; factors will have

n +1 vertices. Since the product will be premultiplied
by n +1 factors of €1, each vertex is assigned a value
et

The diagrammatic expansion of é‘(e) can be written
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(B

N —

Vji

FiG. 1.
wy; and

Diagrammatic representations of the transfer rates
—wyy (A) and vy and ~ vy (B).

G*(e) =€t + the sum of all distinct diagrams which
have a path of solid and dashed arrows begin-
ning and ending on circle 1. (18)

Two diagrams are distinct if, when labeled with the
same set of labels, there is no way of rearranging the
labels to make the diagrams identical. The sites on
which the path of arrows begins and ends are called root
sites and the rest of the sites in a diagram are referred
to as field sites. An nth order diagram is one with n
solid arrows. The value of an nth order G5(¢) diagram
with [ donor field sites and m trap field sites is

1 .m
BabE [ariy - f dry ouTllog Pz, JMI-1) , (19)

where we have taken the thermodynamic limit (N, M, Q
~, pp, pp constant). (w, )I(v; JII(- 1) indicates the ap-
propriate product of transfer rates in Eqs. (19), (21),
and (23). G™(k, €) is given by

G™(k, €) =the sum of all distinct diagrams with two
donor root sites labeled 1 and 2 and zero
or more field sites that have a path of solid
and dashed arrows starting on site 1 and
ending on site 2. (20)

The value of an xnth order diagram with [ donor field
circles and m trap field circles is

101 m
fdrxz fdl‘t mfd“l wet fdrl N 1000 o, )

XI(—1) exp(ik- ryp) . (21)

GT(k, €) can be expressed as the following series

GT(k, €) =the sum of all distinct diagrams with a
donor root site labeled 1 and a trap root
site labeled N +1 and zero or more field
sites that have a path of solid and dashed
arrows starting on site 1 and ending on
site N +1, (22)

In the thermodynamic limit, the value of an nth order

2017

diagram with [ donor field sites and m trap field sites
is given by

m +1
p(,% fd!'m fdl'i z+1fd1‘1 P fdl'x Nom

x T, Yo, M= 1) explik vy, v ) . (23)

fii. TOPOLOGICAL REDUCTION OF THE GREEN
FUNCTION

In their treatment of excited state transport in a one
component system, GAF are able to simplify their di-
agrammatic series for G™(k, €) by identifying two topo-
logical features of the diagrams: loops and nodes. A
loop is a sequence of arrows beginning and ending on
the same site. The sites visited on this path are not
visited in any other part of the diagram. GAF show that
the infinite set of diagrams that represent G™(k, €) can
be generated from the set of all G™(k, €) diagrams with-
out loops by assigning each vertex in the latter diagrams
a value GS(¢). This simplification still holds for the
system under consideration here, although the reduced
get of diagrams without loops for the trapping problem
consists of all of the diagrams discussed by GAF for
the one component system plus a set of diagrams con-
taining trap sites. Thus, Eq. (20) can be rewritten

G™(k, €) = the sum of all distinct diagrams with two
donor root circles labeled 1 and 2, zero
or more field circles, no loops, and that
have a path of solid and dashed arrows
starting on site 1 and ending on site 2.
Each vertex is now assigned a value of
G5(¢) rather than !, (24)

A node is a vertex in a donor field site which divides
the sites in the diagram into three distinct classes: the
set of sites visited before the node, the site containing
the node, and the set of sites visited after the node.
GAF show that a diagram with nodes can be formed by
joining diagrams without nodes. If we define the series
Alk, G(¢)] by

Alk, G*(¢)]=the sum of all diagrams in Eq. (24)

without nodes, (25)

then G™(k, ¢€) is given by
.A k, és(i)]} (26)

G™(k, €) = Ak, G 1- =2
k0=, 62/ o - X

{Note that GAF work with a quantity Z[k G*(€)], which
is our Alk, G*(¢)] divided by pp[G*(€)P2.} In this work, a
quantity with a tilde superscript represents a sum of
diagrams whose donor vertices are assigned a value
G’(i) Note that A[k G*(€)] depends on ¢ only through
G*(e) since each € ! vertex has been renormalized to a
value G%(¢). The first terms of Alk, G*(€)] are shown in
Fig. 2.

The topological reduction of the GT(k, €) series de-
fined in Eq. (22) is analogous to the mmphﬁcatmn of
G™(k, €) described above. The complete set of GT(k, ¢€)
diagrams can be generated from the subset of those dia-
grams with no loops by assigning to all of the donor site
vertices a value of G*(¢). The final trap site vertex re-
tains its original value of ¢! since no loops are possible
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FIG. 2. Diagrammatic expansion of Alk, G%(¢)]. Diagrams
A-E are examples of two~body diagrams. Diagrams F-I are
representative three-body diagrams.

which start on a trap, because transfer of excitation
from a trap is forbidden. Equation (22) can then be re-
written as

G7(k, €) = the sum of all diagrams in Eq. (22) with no
loops. . Each donor vertex is assigned a
value G*(¢) and the final trap vertex car-

ries a value €, @27

The diagrams in Eq. (27) can be constructed from the
subset of those diagrams containing no nodes with a pro-
cedure analogous to that used by GAF in their simplifi-
cation of G™(k, €). We define [k, ¢, G*(¢)] as

[k, €, G*(¢)]=the sum of all diagrams in Eq. (27)

with no nodes. (28)

The first terms of T[k, €, G*(¢)] are shown in Fig. 3. A
diagram in Eq. (27) with nodes can be broken into a
series of uncorrelated transfers from node to node. The
excitation visits a set of field sites, reaches a node,
visits a new set of field sites, reaches a node, and so
forth until it reaches the root trap site. Since transfer
away from a trap is not allowed, all nodes must be donor
vertices. Thus, a diagram in Eq. (27) with nodes can
be represented by a product of several factors of Alk,
G%(¢)], which represents paths from node to node, and
a single factor of I'[k, €, G*(¢)], which represents the
final path which the excitation follows from the last node
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to the trap. The complete set of diagrams in Eq. (27)
is given by

GT(k, €) =TTk, €, G*(€)]/[1 - A[k, C3()]/C%()] . (29)
We may now write the Laplace—Fourier transform of

the total Green function in terms of G*(¢), A[k, G*(e)],
and Tk, €, G%(¢))

Glk, €) = G%(€) + G™(k, €) + GT(k, <)
. - . It A8
{6%e+ Flk, €, e}/ {1 ekl ‘E”} .
G*(e)
Let us consider the k=0 limit of thg Laplace—Fourier
transform of the total Green function G(k, €):

(30)

Ikirg Gk, €) =1kin(r)1f e'“dtfdr exp(ik- r)G(r, 1)
- <07y

:f e"'dtfer(r, 5.
1]

Since G(r, #) is the solution to the master equation for
the case of one initial excitation and since lifetime de-
cay has been removed from the problem, the integral of
G(r, ) over the total volume must equal unity at all
times. Therefore,

lkmo1 Gk, €)=1/¢ .
In the £ =0 limit, Eq. (30) becomes

(31)

(32)

N+ N+
.
P(k,e,GS5%)) = + ;
{
(A) (B8)
N+ 1
o)
v ] + [ ] [ ] [ ]

f e
-*1N*I

FIG. 3. Diagrammatic expansion of T'lk, e,G%(€)]. Diagrams

A-C are representative two-body diagrams. Diagrams D and
E are three-body diagrams with a donor field circle and a trap
field circle, respectively.
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alo, G*(e)] 33)
Gley §°

This equation is the basis for the self-consistent ap-

proximation applied in the next section.

L_16%e) + {0, €, 8} {1 -

IV. THE SELF-CONSISTENT APPROXIMATION:
APPLICATION TO DIPOLE-DIPOLE TRANSFER

Equation (33) provides the basis for a self-consistent
approximation to the function é’(e), analogous to that de-
rived by GAF. We take G*(€) to be an unknown function.
We partially sum the diagrammatic series for Alk,
G*(€)] and Tk, €, G(¢)] to get approximations to these
functions in terms of the unknown G*(¢). If these ap-
proximations are substituted into Eq. (33), the resulting
equation involves only known quantities and és(e), and
hence can be solved for G*(¢). This self-consistent
value for G“(s) is then substituted into the partlally
summed series for Afk, G*(¢)] and T'[k, €, G*(¢)] to give
approximations to these quantities. These approxima-
tions to Afk, G*(€)] and T[k, €, G*(¢)] can be substituted
into Egs. (26) and (29) to give approximations to G™(k, €)
and GT(k €). Thus, following GAF, instead of approxi-
mating G (e) directly from its diagrammatic series, we
approximate Afk, G*(¢)] and [k, €, G*(¢)] and use the
conservation of probability [Eq. (33)] to approximate
G‘(e) self- -consistently. We now consider the approxi-
mations to Afk, G*(¢)] and T'[k, €, G*(¢)].

_ Thg first terms of the diagrammatic expansion of
Afk, G%(¢)] are shown in Fig, 2. The diagrams can be
classified according to thehnumber of sites in each dia-
gram., We can write Alk, G°(¢)] as

alk, G*(e)] =2, A [k, G(e)]

n=2

where A, [k, és(e)] is the sum of all Ak, G*(¢)] diagrams
with n sites. | A,lk, G5(€)] will be referred to as the n-
body term in afk, G%(¢)]. Similarly, we write

=Z t [k, ¢, G5(e)],

where T [k, €, G° (€)] is the sum of all diagrams in Eq.
(28) with n sites. T [k, e GS(E)] will be referred to as
the n~body term in r‘[k €,G%(¢)]. It contains the exact
summation of all unrenormalized diagrams with n sites
plus contributions from higher order diagrams generated
by the renormalization of the donor vertices.

(34)

Tk, €, G*(e)] (35)

The lowest order self-consistent approximation to the
Green function is the two-body approximation, in which
we retain only the two-body terms on the right sides of
Eqgs. (34) and (35)

Alk, G3(e)1=2,[k, G(e)] , (36)
Tk, €, G*(e)] =T,[k, €, G*(€)] . 37)

In this work we will also carry out the next order of ap-
proximation, the three-body approximation, in which we
retain only the two- and three-body terms on the right
sides of Eqs. (34) and (35)

alk, G*(e)) = A,
Tk, €, G¥€)| =T

[k, G*()) + A4fk, G(e)]
Tolk, €, G*(e)] + Ty[k, €, G3(e)] .

(38)
(39)

2019

It is important to vealize the difference between the
self-consistent n-body approximation to the Green func-
tion, and a truncated n-term density expansion. Be-
cause each vertex has the value G’(e), each renormal-
ized n-body diagram vepresents an infinite number of
unrenormalized diagrams of highey order.

The determination of &,(k, G*(¢)] is formally the same
as the calculation of this quantity by GAF for a one com-
ponent system, because both of the sites in all 4,k
é’(e)] diagrams must be donor sites. {Of course, the
functional form of G’(e) is different for the one compo-
nent system than for the two component system because
of the presence of trap sites in the latter case, but it is
clear from the diagrammatic representations that the
functional relationship between A,[k, G*(¢)] and G*(¢) is
the same for both problems.} GAF show that for the
Forster transfer rate A,{0, G*(¢)] is given by

2 172 As( V1372
3,00, G*(e)] = 242 —=C,T VG . (40)

The reduced concentration C,, is defined by
Cp = $n(REP)p, (41)

The calculation of Fz[k €, G*(¢)] follows along similar
lines as the determination of &,[k, G*(¢)] by GAF. We
define

[k, €, G3(e)] Z

n=1

sk, €, G, (42)
where I“z[k ¢, G3(€)] represents the sum of all diagrams
in T,[k, €, G%(¢)] with » solid arrows. Since no back-
transfer from traps is possible, T}k, €, G*(¢)] consists
of a single diagram with a sequence of a solid arrow to
the trap followed by a dashed arrow returning to the
donor repeated » ~1 times, followed by a single solid
arrow terminating in a trap vertex. The value of the
I3[k, €, G*(¢)] diagram is easily determined from Egs.
{23) and (27) to be

Ik, €, G*(e))

= %[é‘(e)]"fdr lo@) (- D™ texplik- r) . (43)

The summation in Eq. (42) is carried out exactly to give
Tylk, €, G5(€))
v(z)

For the Forster rate and the £ =0 limit, the integral
can be evaluated analytically

= EI—Gzﬁ)-fdr exp(ik: r) (44)

T As _r gl éﬁ}“z

I[0, ¢, Go(6)]= 5 = [ - . (45)
The reduced concentration C, is defined by

Cr= s1(RE™)py . (46)

The two body approximation to é’(e) is obtained by
substituting Eqs. (40) and (45) into the self-consistent
equation [Eq. (33)] to yield

[G2(e))

+ [%T'UZCT + E%T-i/ch] (G2 -1=0, (47)
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TABLE I. Numerically evaluated inte-

grals required in Eq. (49).

RET/RPD a(RPT/RDP)

0.1 7.8420x 107
0.2 6.2180x1¢073
0.5 7.9409% 1072
0.6 1.1768x 107
0.8 1.8779x 107!
1.0 2.3911x10™
2.0 3.3540%10™!
3.0 3.5525x 107!
5.0 3.6374 %107
10.0 3.6604x107!

a quadratic equation in [G*(¢)]"?. Only one of the two
solutions to Eq. (47) will result in a G*(f), which is a
decreasing function of time.

T-i/ZCD]

A 1
(G0 = 5 {_ [.12[7-1/20’ g
+ [(E,,-uzc + priiC )2 +4 ]m} (48)
3 LD D € .

The inverse Laplace transform of the square of this
function gives the probability that an excitation is still
on the initially excited molecule at some later time.

The calculation of T3k, €, G*(¢)] and A,[k, G*(¢)] is
considerably more involved than the calculation of the
two-body sums discussed above, and is outlined in the
Appendix, The results of that calculation are presented
here. A4[0,G%(¢)] is given by

) -
2,00, &(e)] = - 0.188 703 [ (:).].
_J
c? Cc? [ (Rnr DT
{s 0.33710=F - 0.18870=2 - |0.13716 - (5 )+B oy

Like Eq. (47), this is a quadratic equation in [G°(¢)]V/2.

tonically decreasing function of time.

. 2 0.33710
[G3(e)]V2 = [- [E—Tlfiﬁc,+§37;’;n7cb] +([§T%770T+2—37,’1T—mcp] +4{e —93'1—— -0. 188709”- [0 13716 ~ a(};" )
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TABLE II. Numerically evaluated inte-
grals required in Eq. (50).
RYT/REP BRET/REP)
0.1 1.5683x 107
0.2 1.2415% 1072
0.5 1.5703x10™
0.6 2,3534 %107
0.8 3.9408x 107!
1.0 5.2990x 107
2.0 8,7595% 107
3.0 9.9053x10™
5.0 1.0666
10.0 1.1117

RDD . {49)

A4[0, G¥(¢)] has a contribution which depends on the ratio
of the interaction strengths as well as the reduced con-
centrations. The function @(R27T/REP) is tabulated in
Table I, and will be discussed further below. T[0, ¢,

G*(¢€)] also has a contribution which depends on the ratio
RDD/RDT

- -~ 2 -~
I3]0, €, G5(¢)] = ~0.337 IO%G’(s)

[o 24604 - ﬁ(RDT>]91—CfT§i(i).

[ 0.383 zo+a(RDT)]CTcD@?(TflE

(50)

The function B(R}T/R??) is tabulated in Table II.

Our next level of approximation is to set Tk, G¥(¢)]
equal to T)[k, €, G5(€)] + 5[k, €, G(¢)], and Alk, G3(¢)]
equal to A,lk, G3(€)] + A4[k, G*(€)) in Eq. (33), which gives
a self-consistent equation for G*(¢) in the three-body
approximation.

)]ETLCQ}[GS(E)] + [E,ZT'ZCT + Eﬂin?ﬂfcn] [(}g(€)]“2 -1=0.

(51)

Again, only one solution will give a G5(f), which is a mono-

Q

DT 1/2 2 2 T or
L )]CITCD}) ]/(2{5_ 0.337110(:1 _ 0.189;70(:,, _ [0.13716—a(g,,ﬂ,,)w(li"—)]cﬁc“}).
; 0 !

V. CALCULATION OF EXPERIMENTAL
OBSERVABLES: DONOR AND TRAP DYNAMICS,
TRANSPORT PROPERTIES

Two quantities which can be measured directly in time
resolved studies of energy transport are the probabili-
ties that an excitation is either on a donor or a trap at
a given time after the system has been excited.' We
define G®(r, t) as the probability that an excitation is on
some donor site at position r and time £. Since the ex-
citation may be either on the initially excited donor site
or on another donor site, G?(r, f) must be the sum of the

(52)

By
o9
S

{
quantities G*(¢) and G™(r, ¢). In the k=0 limit, the La-
place-Fourier transform of G?(r, t) is

GP(0, €) = G*(e) + G™(0, €) . (53)
Substituting Eq. (26) into Eq. (53) gives
69(0, €)= [Gs(i)lz (54)

- 5[0’ 63(6)] )

The probability that an excitation is somewhere in the
donor ensemble as a function of time can be calculated
by squaring Eq. (52) to obtain G*(¢), substituting this

G*(e)
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function into Egs. (40), (49), and (}8) to obtain the
three-body approximation to A[0, G3(¢)], substituting
those functions into Eq. (54), and then inverting the
Laplace transform. In Fig, 4, we show representative
plots of G2(f) [the inverse transform of Eq. (54)] in the
two- and three-body approximations for R” =R2T. The
transform in Eq. (54) was inverted numerically, using
the Stehfest method.!® The fact that the two- and three-
body curves are not very different suggests that the
three body approximation is accurate. GP(#) depends
only on the reduced concentrations in the two-body ap-
proximation, whereas it depends on both the reduced
concentrations and the ratio R}7/R2? in the three-body
approximation. In Fig. 5, we show the effect on G°(¢)
of keeping the reduced concentrations fixed and varying
the relative interaction strengths.

The dependence on relative interaction strengths
manifested in Fig. 5 is in marked contrast to other elec-
tronic transport situations. In the problem of transport
in a one component system treated by GAF, the trans-
port properties are only dependent on C, the reduced
concentration. A reduction in interaction strength can
be offset by an increased number density that keeps C
constant. The system is insensitive to whether there
are weak interactions and high number density or
stronger interactions and fewer particles, as long as C
is the same. The same situation is found in the F6rster

limit of the trapping problem. When C,, is vanishingly
small, the trapping is determined strictly by C,. How-
ever, in the trapping problem treated in this work, trap-
ping depends on C,, C,, and RET/REP,

Examining Fig.

o 0,2 0,4

0
AL

FIG. 4. The probability of an excitation remaining in the donor
ensemble in the two-body and three-body approximations,
R(’,JD=R5”'. A is the three-body result and B is the two-body
result for Cr=0.5 and Cp=1.5. C is the three-body result

and D is the two-body result for Cp=1.5 and Cp=0.5. Note
that the decay is slower in the three-body approximation. Life-
time decay not included.
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= 1.0
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FIG. 5. The probability of an excitation remaining in the
donor ensemble in the three-body approximation for fixed re-
duced concentrations and varying ratio of trap~donor and
donor—donor interaction strengths. Lifetime decay is not in-
cluded. This dependence on the ratio of interaction strengths
for fixed reduced concentrations is not present in the two-body
approximation.

5 shows that for fixed reduced concentrations and a given
RPP, trapping occurs faster with more traps having a
weaker trapping interaction, i.e., more traps with
smaller “capture volumes” =$n(R37)*. However, for
fixed RET trapping occurs faster with fewer donors hav-
ing larger “transfer volumes” =§m(R2?)%,

In Eq. (3), we made the simplifying assumption that
an excitation on a trap has the same lifetime as an exci-
tation on a donor. This enabled us to eliminate lifetime
decay from the problem. The inverse Laplace trans~
form of Eq. (54) gives the probability that an excitation
is in the donor ensemble for a system in which the exci-
tation has an infinite lifetime on both species. If we
wish to recover this probability for the situation in which
the excitation has a finite lifetime 7, on the donor, then
the inverse transform of Eq. (54) must be multiplied by
exp(—~t/7,). This procedure is valid regardless of
whether the true trap lifetime equals the donor lifetime.
The donor dynamics are independent of the trap lifetime,
since back transfer from trap to donor does not occur.

The probability of finding an excitation somewhere in
the trap ensemble at a given time after the donor has
been excited can be calculated from Eq. (54), even if
the excitation has different lifetimes on the donor and
trap.

We define the following quantities:

GP(t) = the probability that the excitation is in the
donor ensemble, if both species have infinite

lifetimes. (55)
G7(#) =the probability that the excitation is in the

trap ensemble if both species have infinite

lifetimes. (56)

NP(#) =the probability that an excitation is on a donor
if the donor lifetime is 1/kp,. (57)
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NT(t) =the probability that the excitation is on a trap
if the donor lifetime is 1/k, and the trap life-
time is 1/k,. (58)

GP(t) is the inverse Laplace transform of G°(0, €), given
in Eq. (54). NT(#) satisfies the equation

NT()) = =k, NT(2) = e7*2t G2(1) , (59)
where the first term is the probability loss due to the
trap lifetime and the second term is the probability gain
from the donors. If the Laplace transform of both sides
of Eq. (59) is taken, using the initial conditions

NT(0) =
GP(0) =1, (60)

the result is
_J

bk, €)= 2 (G ¥A[0, 6*(9))

+ F(0, ¢, ()] - Flk, <, &)1}/ (1 + &?—-r [k, €, 85()] + €{F (K, €, G*(e)] ~ F[0, €, é’(e)]}) .

The mean squared displacement is related to the
Green function by

@)= f dr ’G(r, 1) . (64)
The Laplace transform of {(»*(#)) is given by

(r(e) = %ﬁ(o, €, (65)
where

Do, e):lki.x{)lﬁ(k, € . (66)

To calculate the mean squared displacement in the two
body approximation, we substitute Eq. (44) and the cor-
responding relation for A,[k, G*(¢)] given by GAF into
Eq. (63), and take the limit in Eq. (66). The mean
squared displacement is then determined by substituting
this expression into Eq. (65), and inverting the Laplace
transform.!® If transport becomes diffusive at long
times, then the €~ 0 limit of D(0, €) must exist and be
nonzero and the limiting value is the diffusion constant.
GAF showed that a nonzero limit exists for a one com-
ponent system in the two- and three-body approxima-
tions, and hence that transport is diffusive at long times
within these approximations. Examination of Eq. (63)
shows that

lim D(0, €) =0 (67)
for the trapping problem. Note that the €~ 0 limit of
G3(¢) as defined in Eq. (48) or Eq. (52) exists, that
a[k, G°(¢)] depends on ¢ only through G*(¢), and that
I'[k, €, G*(¢)] is a function of G*(€) multiplied by €.
Equation (67) is to be expected, since at long times, the
excitation will be trapped and will cease to move within
the system. The mean squared displacement of the ex-
citation will increase in a nondiffusive manner as a func-
tion of time until it reaches a value determined by donor

- alk, G(e)]} + €[Go(e) [0, €, G*(€))AlK
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NT(€) =[1 ~ (€ + kp)GP(0, € + kp) ]/ [€ + Ry . (61)

NT(¢) may be calculated by substituting Eq. (54) into Eq.
{61), and performing the inverse transform.

The generalized diffusion coefficient and mean squared
displacement of the excitation can be calculated from the
Green function, as described by GAF. The relationship
between the mean squared displacement of an excitation
and the transient grating observable is discussed by
GAF.

The Laplace~Fourier transform of the generalized
diffusion coefficient D(r, {) is defined by the generalized
diffusion equation'!*!’

~ 1
Gk, €)= W . (62)
For the present problem, it follows that D(k, €) is
’ és(i)] - f[ki €, (’js(e)]A[O, 65(6)]}
(63)
!
and trap concentrations and interaction strengths. The

mean squared displacement has a finite maximum value
which is approached as t- =, Transport is always non-
diffusive in nature. Representative plots of the mean
squared displacement and its derivative in the two-body
approximation are given in Figs. 6(a) and 6(b). The
three-body approximation to the mean squared displace-
ment can be calculated by substituting Eqs. (38) and
(39) into Eq. (63). The resulting three-body integrals
can be evaluated with the approach outlined in the Ap-
pendix.

VI. COMPARISON TO OTHER WORK

The problem of excited state trapping in a disordered
system where the trap concentration is much higher
than the donor concentration and donor—~donor transport
can be neglected was solved exactly by Firster.! His
result for the probability that the initially excited donor
molecule is still excited at some later time is given by

pp() =exp(—Cplnt/T]V?) (68)

where the lifetime decay of the donor has been sup-
pressed. This quantity corresponds to our G”(¢) in the
limit that the donor concentration approaches zero, We
can thus compare our two- and three-body approxima-
tions with the exact solution in this limit. Figure 7
shows a comparison of the two-body G”(#), the three-
body GP(¢), and Eq. (68). The three-body result is in-
distinguishable from the exact result for C;<5, and is
very close for much higher concentrations.

Thus, it is clear that in the Forster limit, the dia-
grammatic self-consistent approximation to the Green
function is extremely good. In the other limit, finite
donor concentration but zero trap concentration, the
current theory recovers analytically the results of GAF.
The GAF results have been shown to be excellent ap-
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FIG. 6. (A) Mean squared displacements in the two-body ap-
proximation for Cp=0.5, Cp=1.5 (1), and Cp=1,5, Cp=0.5
(2). RPP=RYPT. Lifetime decay not included. At long times,
the mean squared displacement reaches a finite limit, since
the excitation has been trapped. (B) Time derivatives of the
mean squared displacements shown in A. (3) is the derivative
of (1), and (4) is the derivative of (2). These curves empha-
size the nondiffusive nature of the transport. The presence of
traps causes these derivatives to go to zero at long times.

proximations, both by comparison to experiment!® and
by comparison to subsequent theoretical treatments us-
ing a continuous time random walk formalism, 18

Huber has recently addressed the problem of the trap-
ping of excitations in disordered systems. "’ Using an
average { matrix formalism and a coherent potential ap-
proximation, he has derived an expression for a quantity
corresponding to our G?(t), defined in Eq. (55). If the
trap concentration is much lower than the donor concen-
tration, this expression takes on a simple form

4D _ s 1 1/72)-1
é (0,()_{€+ZCT[————TG.S(€)] } ,

T i/2
G*(t) =exp [— (EF) th“z] ,

where we have rewritten the Huber results in the nota-
tion of this work. In Fig. 8 we compare the inverse
transform!® of Eq. (69) with our two- and three-body ap-

(69)

2023

b - -
C+=5.0 Cy=0
0.2 A)FORSTER
B)3 BODY
GP (1) | C)2 BODY
0.l 4
0
o}

t/7T

FI1G. 7. Comparison of the two-body and three-body approxi-
mations in the limit of zero donor concentration to Forater’s
exact solution of this limiting case. The scales on both axes
have been expanded so that the difference between the three-
body approximation calculated here and the Forster result can
be resolved. Att/T=0.1, the three-body result differs from
the Forster result by 0.007. The accuracy of the three-body
approximation in this limit supports the validity of the general
trapping theory presented here and suggests that the hierarchy
of self-consistent approximations converges rapidly.

proximations to GP(#), Eguation (69) lies between our
two- and three-body results, though closer to the three-
body curve,

Although Huber does not calculate the full Green func-
tion and has some restrictions on the conditions of ap-
plicability of the theory, the excellent agreement be-
tween the two theories when they are comparable strong-

I.OW CD= 2.0

Cv=0.05

GO(t) 3
_ H
2
0.5 -1
.
) 3
T H
s 2
0 - : .
0 1.0 20 30

t/T

FIG. 8. Comparison of the two-body (2) and three-body (3)
approximations to the results of Huber (H) in the limit of low
trap concentration [see Eq. (69)]. Lifetime decay not included.
RPP=RY" in (2) and (3). The Huber results, formulated for
the case RDDD = R'D’T , depends on the interaction strengths only
through the reduced concentrations, and does not display the
dependence shown in Fig. 5. Under conditions for which com-
parison is possible, the two theories show good agreement.

J. Chem. Phys., Vol. 76, No. 4, 15 February 1982



FIG. 9.
nential function GP(¢) to fall to 1/e as a function of reduced
donor concentration for fixed reduced trap concentration. The
plots are very close to linear over the entire range of Cp.

The reciprocal of the time required for the nonexpo-

ly supports their validity and the general validity and
applicability of the present work. It is important to
point out that Huber's theory does not reveal the depen-
dence on the ratio RP7/R%” found here. In Fig. 8, the
comparison was made with the ratio set equal to one.

In a recent experimental study, Lutz ef al. examined
the trapping of electronic excitations in Rhodamine 6G
(R6G)-glycerol solutions by R6G dimers. 12 A simple
model based on trapping of a random walker on a three
dimensional lattice was put forward. Comparison with
the present theory shows that the simple model predicts
the correct functional dependence on concentration,
Lutz et al. characterize the nonexponential decay of the
donor population by an effective trapping rate constant
defined by

Bogg =1/, ,

where {, is the time for the donor population to fall to
1/e of its initial value. It is interesting to examine the
concentration dependence of k., with the present theory.
Figure 9 shows plots of k., as a function of donor con-
centration for several trap concentrations, obtained us-
ing Eq. (54). The dependence on C, is very close to
linear for each C,;. Actually, the plots have a very
slight curvature which cannot be seen in the figure.
intercept is given by the Forster limit [Eq. (68)] ob-
tained when C, goes to zero.

(70)

The

The nearly linear dependence of k., on C, can be un-
derstood very qualitatively by using random walk, site
sampling arguments following Lutz et al.'® 1f we con-
sider each donor and trap molecule a site, then a walker
will trap when it samples one trap site. The time for
G*(¢) to fall to 1/e is identified as the random walk step
time. The decay of G*(#) scales approximately as C.
As the donor concentration increases, the rate of sam-
pling new sites increases approximately as Cﬁ,, but the
number of sites which are not traps increases as Cjp.
Therefore, the overall rate of sampling a trap site in-

Loring, Andersen, and Fayer: Electronic excited state transport

creases nearly linearly with C, as in Fig. 9. Figure 9
provides a simple method of visualizing and qualitatively
applying the results of the theory. For a given trap
concentration, the intercept can be calculated using Eq.
(68), and then the necessary additional point to define
the line is obtained from the inverse Laplace transform
of Eq. (54). This type of plot can be extremely useful
in designing and qualitatively interpreting experiments.
It must be emphasized that the approximately linear de-
pendence of &y, on C, does not give information on the
functional form of the donor population decay, which is
nonexponential and not descvibable in terms of a trap-
ping vate constant.
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APPENDIX: CALCULATION OF THE THREE-BODY
RESULTS

In this section, we outline the calculation of 53[k,
G(¢)] and Tyfk, €, G*(¢)] as defined in Egs. (34) and (35).
We need to sum the subsets of diagrams in ém(k, €) [Eq.
(20)] and G7(k, €) [Eq. (22)] that have three sites and no
loops or nodes. The sum of all é"‘(k, €) diagrams with
three donor sites and no loops or nodes has already been
evaluated by GAF. The result is included in Eq. (49).
In evaluating the other sums, we follow the approach of
GAF. To calculate each sum, we separately evaluate
the sum of all three site diagrams, the sum of all three
site diagrams with a loop, and the sum of all three site
diagrams with a node, and then subtract the latter two
quantities from the first.

First consider the evaluation of Aj'[k, G*(¢)], the sum
of those diagrams in G™(k, €) with one trap site and no
loops or nodes. Such a diagram may not have a node.
We define

1 ,(k, €) =the sum of all diagrams in Gk, €) with
two donor sites and one trap site. (A1)

111, (k, €) =the sum of the subset of diagrams in Eq.
(A1) with a loop. (A2)

Then

AV[k, G3(€)) =111 [k, G3(€)] -IT1 ]k, G%(e)],  (A3)

where 111, , is obtained from I, , by replacing all €
factors with G%(¢). As in Sec. III, a quantity with a tilde
indicates a sum of diagrams whose donor vertices have
been assigned a value G%(¢).

We now evaluate Eq. (Al). The first step is to write
G™k, €) as a density expansion for a system with a finite
volume &, N donors, and M traps.

~ - -1
Gk, €)= %—lA,‘n“(k, €,Q)+ (—Ld#}w%ff’(k, €Q)+--n.

(A4)
@m(k, €) can be evaluated exactly for a system of two
donors and a trap in a finite volume, Equating Eqs.
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(16) and (A4) for this system gives
APk, €, Q)

=0%explik* rp)[el-QhH -0AM (k, €, 9) . (A5)

]

Wiz

2028

Ak, €,Q) is calculated by GAF from the exact solu-

tion to the problem of two donors in a finite volume,.
For three particles, the matrix €I-Q in Eq. (A5) can
be easily inverted. Equation (A5) then becomes

(A6)

A;z’(k,s,n)zfdrizfdrm explik-. r""}[(€+w12+v31)(€+w12+v32)-w¥2

- Wiz ]
€(€ + an) ’

where the two donors are labeled 1 and 2, and the trap is labeled 3. IiT alk, G*(€)] is now calculated by taking the

limit as @~ = of Eq. (A6), multiplying by pypy, and replacing € 1 with Gs(e)
contain no trap vertices, so all vertices are renormalized to G‘(()

T11 4k, G(0)] =prrfdr12fdr13 explik* 1)

Wi

The diagrams composing III ,(k, €)
The result is

(A7)

({[Gs(e)] Y4 gy + vy HIGH ()T

To solve the self-consistent equation {Eq. (33)] for
G*(¢) in the three body limit, we need the k=0 limit of
Eq. (A7). We define the integrand in Eq. (A7) with k=0
as I(ryy, 743, 793). I(749, 713, ¥33) is the sum of three terms

1715, 713, 723) =F (113, 713)

+Fy(rya, ¥23) + R(vyy, 713, 723) (A8)

where F(ry,, 73) and Fy(rys, 793) result from setting vy
and vy4, respectively, equal to zero in I{ry,, 713, 723).
The remainder, R(7y,, 713, 72;) i defined by Eq. (A8).
The integrals of F(ry,, 7y;) and Fy(r,,, 7,3) can be done
analytically?® and the integral of the remainder must be
done numerically.

prdermfdrm Fy(riz, 713)

— 2_;7,7 92791[63(6)]215(% , 2-1/2) ,
where E(7/2, 2°1%) is the complete elliptic integral of the
second kind in the notation of Ref. 20. The integral of
Fy(ryy, 753) is also given by Eq. (A9). The integral of
R(71q, 713, 753) Was carried out by converting to bipolar
coordinates, ! and using an iterated Gaussian quadrature
procedure. The result depends on the ratio of the in-
teraction lengths as well as on the reduced concentra-
tions. Combining this result with Egs. (A7), (A8), and
(A9) gives

[7,[0, G(e))
- CxCGlCOF | 5 0002 + a(ryT/R2Y)]

- T

(A9)

(A10)

where the function a(RJT/RPP) is tabulated in Table I,

Now consider the function III,(k, €}, defined in Eq.
(A2). Each diagram in this series has one loop connect~
ing the initial donor site to the trap site. A diagram of
this sort can be generated from a two site diagram in
G”'(k €), by assigning to one of the vertices on the ini-
tial donor the value of a two site diagram from the G*(¢)
series [Eq. (18)], which contains a trap field site. The
density expansion of G*(€) in the thermodynamic limit is

G =€t +pp A€+ pp AN €) + - -+ . (A11)

)
+wyg + Vgt —wis

- Wiy )
{5 ()1 Quwyy + (&N}

A (e) is the sum of all G*(¢) diagrams, with a single
field site which is a trap. We can generate all of the
diagrams in I1I,(k, €) from the set of two site diagrams
in G"'(k €) by sequentially replacing each €! vertex on
the initial donor site of each diagram with the value
prA(e). A two site G™(k, €) diagram with two vertices
labeled a and b on the first donor site will produce two
diagrams in the /I, (k, €) series. On one of these, ver-
tex a will have the value p,A{!'(€) and vertex b will have
the value €, and on the other these assignments will be
reversed. A two site diagram with » vertices on the
initial donor will contribute » diagrams of equal value
to the I, (k, €) series. The result is

IIIL(k, €)

Am( )fd 12 wl 4(,12;%/(/)6) explik- ry] .
(A12)

A{P(€) can be calculated from the exact solution of one

donor and one trap in a finite volume. Substituting this
result into Eq. (A12) and replacing all €! factors with

G*(¢), we arrive at

1ppCr
[és(s)]SIZTuz
1+(33(E)w
12 p( 12) [1+2G’(€)w12]2

To determine 77 ,[0,G%(¢)], we set k=0 in Eq. (A13).
The resulting integral over 7y, can be done analytically”
to yield

TIT [k, G(e)] =

(A13)

[Gs(a) ] _

T (A14)

e ~ 37
1.[0,G%(e)]=~ 'é‘ﬂ'fc'rcv
The function A5 [0, G*(¢)] can now be calculated from

Egs. (A3), (A10), and (A14):

- Rs(e} 2 DT
A;'[0,GH(e)] = c,.c,,[i;—(Tsl [- 0.38312 + a(%)] .
P (a1s)

We divide Tk, €, G*(¢)] into two sums: the sum of all
diagrams with one trap site is labeled [k, €, G*(€)], and
the sum of those diagrams with two trap sites is labeled
I'y'[k, €,G%(€)]. The calculation of Tk, €, G*(¢)] is car-
ried out with the same approach as the calculation of
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A;'[k, G*(€)] above. The principal difference between
the twq procedures is that a three site diagram in
A;'[k, G*(€)] with one trap site cannot have a node,
whereas a three site diagram in T3k, €, G*(€)] with one
trap site can. In analogy to Eqs. (Al) and (A2), we de-
fine

1II,(k, €) =the sum of all diagrams in GT(k, €) with

two donor sites and one trap site, (Al6)
11I',(k, €) =the sum of all diagrams in Eq. (A18) with
a loop, (A1T)

II},(k, €) =the sum of all diagrams in Eq. (A16)
with a node, {A18)

Tilk, €, G()]=TTT [k, €, G(€)] ~ITT [k, €, G%(€)]
~ITT [k € G (e)] . (A19)

The right-hand side of Eq. (A16) is evaluated with the
same strategy used on Eq. (Al): by expanding G7(k, €)
in a density expansion, and solving the two and three
particle finite volume problems exactly. The result is

ik, €, é%(e)] = —Lp'/dru explik* r1z)fdl‘13

x(vszwjztvsx{[ G +wy +ug} _Ust )
{[& ()" +wiy + vy} TGO + o}

{A20)
[TT,]0, €, G°(€)] is evaluated using the approach de-
secribed in Eq. (A8), Again, the two integrals over func-
tions of two variables can be done analytically?® and the
remainder must be integrated numerically, with the re-
sult

IfT,00,¢, 6%

- 91:%”»@8(5)[1.118 39 + B(RDT/REP)] . (A21)

The function S(RJT/REP) is tabulated in Table II.

1I'(k, €) is evaluated using the same techniques that
were applied to Il {k,€). The set of diagrams compos-
ing I1I',(k, €) can be generated from the set of all two
site diagrams in G7(k, €) with ¢! vertices, and the func-
tion A{?(¢) defined in Eq. (Al1). The same procedure
that led to Eq. (A12) then gives

Ik, €, G*(e))

@
— Proph (E)fdrm explik- r,3)(——vﬂ—1 . (A22)
N Y31
1+ p: )

A{?(e) is calculated by GAF from the exact solution to
the two particle finite volume problem. Substltutmg this
result into Eq. (A22) and replacmg all but one e! factor

with G*(¢) gives an expression for IIT [k, €, G¥(e)].
[iT%[0, €, G*(¢)] may be evaluated amauytlcally2

(A23)

FiT30, €, &6 = - £282(Fom) (e

Following the approach of GAF, we find that the sum
of all GT(k, €) diagrams with one node and no loops is

GT(k, €) =er(k, €)alk, €) , (A24)

Loring, Andersen, and Fayer: Electronic excited state transport

where T'(k, €) and Alk, €) are defined as in Eqs. (28) and
(25), except that all vertices have the value €', The
subset of diagrams in Eq. (A24) with three sites can be
generated by replacing I'(k, €) with T',(k, €) and a(k, ¢)
with A,(kK,e). In the k=0 limit, we can use the results
given in Eqgs, (40) and (45). Replacing all but one et
factor with G%(¢) yields

IIiylo, e, 6%(e)) = _S’TJG (€)CpCop - (A25)
Substituting Egs. (A21), (A23), and {A25) into Eq. (A19)
gives

£1[0, €, 65(€)] = 9110_921[0.246 04 + B(RET/RE)] .

(A26)
The final quantity needed in the three body self-con-
sistent approximation of G*(e) is T4[0, €, G*(€)], the sum
of those GT(k, ¢€) diagrams with two trap sites and one
donor site, which have neither loops nor nodes. The
calculation of this term is straightforward, and follows
the procedure outlined above. Because transfer from a
trap is forbidden, these diagrams may have loops but
not nodes. Because of the simple nature of these dia-
grams, the integrals arising in this calculation can be
done analytically. 20 The final result is
7 =47 C7
5 o (A27)

5[0, €, G¥e)]= [cs(q]

Combining Eqs. (A26) and (A27) gives

2
0.33710C% g

f3[0) €, és(e)]:__ €T

RETN]CLCp As
+ 024604+ (=45 ) T2 G (o) . (A28)
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