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A theoretical study of electronic excited state transport among molecules randomly distributed in a finite
volume is carried out. Two special cases of the general transport and trapping problem are treated. A
truncated series expansion in powers in the chromophore density is used as an approximation for one
component systems (i.e., donor—donor transport only). In two component systems of donors and traps, the
Forster limit, in which transfer can occur only from donors to traps due to low donor concentrations, is
solved exactly for a finite spherical volume. In both cases, the results presented demonstrate that time-
dependent observables can be significantly altered in finite volume systems relative to infinite volume systems.
These calculations have implications for the interpretation of experiments performed on real finite volume
systems, e.g., energy transport among the chromophores of an isolated polymer chain.

l. INTRODUCTION

The problem of electronic excited state transport
and trapping in systems composed of molecules ran-
domly distributed in solution has been the subject of
extensive theoretical and experimental work. Only
relatively recently have the important features of the
problem become well understood., Very good approxi-
mate theoretical treatments of the transport and trap-
ping problem in infinite random systems have been de-
veloped. '~* Haan and Zwanzig''® used an expansion in
powers of density to show that transport in one com-
ponent systems (i.e,, no traps present) was nondif-
fusive for short times. Gochanour, Andersen, and
Fayer? (hereafter referred to as GAF) used a dia-
grammatic technique to obtain approximations which are
not restricted to short times because they include terms
to infinite order in density. They demonstrated that
transport in one component systems is diffusive at long
times within their approximation and that this is almost
certainly a property of the exact solution. Loring,
Andersen, and Fayer3 later extended this technique to
include trapping. These theories are able to accurately
predict experimental results, 4-®

There are many physical systems involving energy
transport which cannot be reasonably modeled by a
uniform chromophore density in an infinite volume,
Examples are mixtures of polymers under phase-sepa-
rated conditions, ® photosynthetic antenna complexes, ’
and energy transport in micellar systems, ¥ In this
paper, we address the problem of excited state energy
transport when the chromophores are constrained to a
volume of microscopic dimensions. Qualitatively, it
is not difficult to appreciate the effects of the finite
volume on the problem, Molecules near the edge of the
volume have a smaller number of nearby chromophores
than molecules near the center. Thus, the time required
for transport away from the originally excited molecule
averaged over all starting positions and chromophore
configurations in the finite volume will be slower than in
an infinite volume of the same chromophore density,
Additionally, transport cannot become diffusive in the
long time limit even in the absence of traps. The mean-
squared-displacement must approach a constant as ex-
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citation probability is equalized throughout the finite
volume. Clearly, the effects of the finite volume will be
most pronounced when the volume dimensions are com-
parable to the critical radius for energy transport R,.
The results presented in this paper indicate that finite
volumes significantly alter the behavior of time-depen-
dent observables in many cases.

Throughout this paper, we use as our model the sim-
plest possible finite volume in three dimensions, a
spherical volume of randomly distributed and oriented
chromophores, Here we will not treat the complete
problem of arbitrary numbers of donors and traps in
a finite spherical volume. Rather, we treat two special
cases. In Sec. II, we consider a one-component system,
This is analogous to the problem which GAF attacked in
an infinite volume, The diagrammatic technique they
employed is not directly applicable to the present prob-
lem because the finite volume destroys the translational
invariance of the Green function, This property is
essential in the topological reduction which allows the
inclusion of high order terms in powers of the chro-
mophore density. Nevertheless, their theory will pro-
vide a valuable comparison to the finite theory in the
limit of very large volumes, We have chosen to employ
an expansion in powers of density for the finite volume
problem. This technique was applied to the infinite
volume problem by Haan, % and Haan and Zwanzig, '®’

It provides results which are most accurate for short
times or low concentrations. For certain properties,
such as the probability of finding an excitation on the
originally excited molecule, the density expansion can
provide a reasonable approximation for all experimental-
ly accessible times.

In Sec. I, we consider the case where the number
of trap molecules is much greater than the number of
donor molecules. Donor-donor interactions can then be
ignored. Since back transfer from trap to donor is not
allowed the general problem is greatly simplified in this
limit (referred to as the F8rster limit), F3rster solved
this problem exactly for an infinite volume,!® Here we
present the exact solution for a finite spherical volume.
This solution provides insights into the nature of trapping
in finite systems and exact results which can be com-
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pared to those obtained from a density expansion of the
same problem, Such a comparison indicates that the
approximation used in the finite volume one-component
problem (Sec. II) is quite good.

Section IV contains a qualitative discussion of the
results. In Sec. V, we discuss the approximations of
Sec. II and indicate the conditions under which those
results are expected to be reasonably accurate, Al-
though there has been some work previously, !! to our
knowledge this is the first work on the general problem
of excitation transport among randomly distributed
chromophores in a finite volume, It is hoped that this
work will begin to provide a firmer footing for the inter-
pretation of experiments on finite volume systems.

1. ONE COMPONENT SYSTEM-DENSITY
EXPANSION APPROXIMATION

In this section, we consider a finite spherical volume
§ of radius R containing N donor molecules and no traps.
The quantity we wish to calculate is the probability that
an excitation is on the originally excited molecule at time
t, in the absence of decay due to the excited state life-
time. This probability, G*(N, @, #), is the only easily ac-
cessible experimental observable for the model under
consideration (using time resolved fluorescence depo-
larization experiments, for example!). The mean-
squared displacement, which is, in principle, observ-
able in infinite systems, *? is not an appropriate ob-
servable when the excitation is limited to a finite volume
with R ~R,.

In the following, we develop an expression for é’(N,
Q, €), the Laplace transform of G*(N, 2, ¢), and then
approximate it through an expansion in powers of density.
The inverse Laplace transform of the final result is easily
performed to yield G*(N, §,¢). Theformalismused here
[Eqs. (1)-(10)]follows thatof GAF. Itisbriefly sum-
marized for clarity.

The configuration of the system K is characterized
by the locations of the N donor molecules, (r,,r,,...,
ry). The probability that an excitation is found on the
jth molecule for the configuration K at time ¢, satisfies
the master equation

N
dp(K, 1) (K, ¢
LD . _ulD 2 w4060 -5, 0] . )
7 is the measured excited state lifetime and w;, is the
transfer rate between molecules j and i (w,; = 0}, For
dipole~dipole interactions, the orientation averaged
transfer rate is

Wy = - (53_1:)5 s (2

T r'”

where R, the critical transfer radius for donor-donor
transport, contains the strength of the interaction. (The
full angular dependence of the transfer rate needs to be
considered in calculating some observables.? Here we
consider the orientation averaged rate because it is the
simplest case which allows the effects of the finite
volume to be investigated. It is straightforward to con-
sider various angular distributions, !%)
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The substitution
24K, 1) = p'(K, 1) exp(t/7) (3

eliminates the lifetime decay term in Eq. (1) and al-
lows the transformed Eq. (1) to be written in matrix
form as

U - wpi, 0, (@
where
Wiy = wy; — 6y Z Wyg o (5)

Let P(N, Q,r, {) be the ensemble average density of
excitations. Then
P(N,Q,1,0) = f ar G(N, Q,1,7, DP(N, @, 7, 0) ,
(6)

where G(N, Q,r,r, #) is 2 Green function which can be
written as follows:

G(N,Q,r,r’,8)= G*(N,Q,r, v, ) + G™N,Q,r, 7,0, (1)
G'\N, 9,1, ', 1) = Q(5(r, - r)8(r, -’ )[exp(tW)],y) ,  (8)
G™(N,Q,r,r, )= (N=-1)Q({5(r, -r)s(r, - 1)

x [exp(tW)]) . (9)

The brackets indicate the ensemble average

(A(K))=ér Ldr,... fndr,,A(K).

In Egs. (8) and (9), the initially excited molecule has
been labeled molecule 1, while the molecule at r in Eq.
(9) is molecule 2. The integral of G*(N, ,r,r, #) over
the spatial coordinates

(10

G*(N,Q, 1) = 15 fn dr A ar’ G*(N,Q,r,1',t) (11)
is the probability that the excitation is on the originally
excited molecule at time {. Similarly integrating
G™(N,Q,r,r, ! over the spatial coordinates gives the
probability that the excitation is not on the originally
excited molecule, Information about the time dependent
location of the excitation can be obtained by integrating
G™(N, Q,r,r, ) over small volumes about r and ', This
gives the probability of finding the excitation at r at time
t given that it was initially at r’,

It is convenient to deal with the Laplace transform of

G":
G"(N, 2,1, 7, ¢)

= (N=1)Q(5(ry = 1)6(r, - ) (eI-W)!];5) . (12)
Following Haan and Zwanzig, we write this as an ex-
pansion in density [(N ~1)/8~p= number density].

Am N-1 __

G (N,Q,r,l",g)= Q_ Bz(ﬂ,r,l",()

N-1)(N-2
REEITE P
(13)

The functions By and Bj are readily obtained using

N=2, 3in the above equation.

J. Chem, Phys., Vol, 78, No. 5, 1 March 1983



2520

B’Z"(Q, r, r ,E) = QG'"(Z, Q,r, r ’ E) ’ (14)

2 4 4
Bg‘(ﬂ’ I‘,r',e) = E‘ [Gm(3, Q;r’r’,i) _ZGM(Z; 97 r,r';i)] .

(15)
The G™ terms in these two equations are just the exact
solutions of the two and three particle problems. The
quantity we desire to calculate is G*(N, £, ¢), the Laplace
transform of the probability of finding the excitation on

-1
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the originally excited molecule averaged over all possible
paths for the excitation, i.e.,

1 1

Gwea=s-g [ [arermarne.e.

(16)
Using the Laplace transforms of the two and three

particle solutions we obtain the following truncated ex-
pansion

~ 1
GS(N, 9;() = =--
€ o

Wiz - W=-1)(N-2)
7% f ary '/r; ary ele + 2wy,) 20°

dry f dr, f dr,
a a a

’ €Wy + Wiy + Wipllagg + Wigllpy W2
€L’ + 2wy + Wiy + wyg) + 3wipwys + wygthay + wy3055) | ele+2wp) ) 7

where the particles are now numbered 1, 2, 3. Neither
of these integrals can be performed analytically when
 is a sphere of radius R, The first integral reduces

to a two-dimensional numerical integral while the second
integral is six dimensional. These integrals can be
written as functions of one dimensionless parameter

R 3
Bg= (W) / 5-2: . (18)
Hence, the previous equation can be written as
- 1 -1 - -
G 0= 3 [1- Ui ng+ W=D 1]
(19)

All the information about the effects of the finite volume
are contained in f,(8) and f;(8). They are monotonically
increasing functions which asymptotically approach
1.11072 and 0, 805 55, respectively, as g8, Q—~«, In
this limit, Eq. (19) agrees with the result obtained by
Haan for the infinite volume problem.? Equation (19)

is the exact solution to the finite spherical volume
problem for three or less particles. It is a reasonable
but not very good approximation for larger numbers of
particles, Following Haan, we can rewrite this ex-
pansion as

As _ - C 1
G*'(N,8,€) = ¢! {1+(*€'1T)Dl7'z (l—ﬁ)fz(ﬁ)

« S (1-5)(0-§) vor- (- Fsol”

(20)
where

Cp = $7(R3P)*N/Q = N(RBP /R)® . (21)

Equation (20) is equal to Eq. (19) to order ¢ when the
B dependence of f, and f; is weak, and is a Padé ap-
proximant of Eq. (19) in this limit.

Padé approximants are frequently used in statistical
mechanics to approximate truncated power series ex-
pansions such as Eq. (19).!* No matter how many
terms were calculated in the expansion for G*(N,8, ¢),
the result would be ill behaved for large N or small ¢.

(17

—

Equation (20), in contrast, shows the proper asymptotic
behavior in these limits, and is a much better ap-
proximation to G*(N,8,¢). It will be demonstrated in
Sec. V that Eq. (20) is a very good approximation over
a wide range of parameters and in even a wider range
of cases illustrates correctly the differences between
infinite and finite volume systems,

f»(B) and f3(8) have been fit to analytical functions
which are presented in the Appendix. These analytical
functions aid in performing the numerical inverse La-
place transform of G®. Note that Eq. (20) does not in-
clude the excited state lifetime decay process, This is
included in the time domain by multiplying G*(N, 2,
by exp(~t/7).

lIl. EXACT SOLUTION IN FORSTER LIMIT

In this section we consider a finite spherical volume
of radius R containing M traps and few enough donors
that donor—donor interactions can be neglected (for
small R, only one donor can be present). In this case
the master equation contains only loss terms. Labeling
the donor “1,” and the traps “2” through M+ 1 we ob-
tain

el
dp’,gi, 9 _ -pi(f: D _ i;‘ WA (22)
_1/RRT\¢
=t (B), )

where RPT is the transfer radius for donor to trap trans-
fer. As in Sec. II, we use a variable transformation to
remove the lifetime from the problem. This result can
be immediately integrated to yield

Mel
pi(K, 1) = exp (" E Vi t) .

i=2

(29)

The configuration average over the position of the donor
in the sphere and the positions of all the acceptors yields
G*(N,Q, 1):
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1
G'(N,Q, ) = =3 dr dr, exp(= vy,
’ aﬂ 1 '/0 1[] 2 12

x f dryexp(—vygf) » -+
()

1 1 v
= = f dr, | = [ dryexp(-v,8)| .
« Q Q Q
(25)
The interior integral is more conveniently handled in

Laplace space (the inverse Laplace transform is indi-
cated by £1):

N, Q0= = f dr'[.e-i(l dr, —1 )]"
T Q8 Jy ! Q .[; 2ot e ’

(26)
Four of the remaining integrals can be evaluated ana-
lytically, yielding the final result

¢'W, @, t)=’/;ldy {1.—.{:-1 [.é:_a/-;‘atan(af(q,y))dq]}” ,

(27)
where
3
o= (%) e, (26)
and
flg, 9 =gy = V191 . (29)

Equation (27) can be readily evaluated numerically. It
is the exact solution in a finite spherical volume in the
absence of donor-donor interactions, It yields the re-
suit-obtained by Forster in an infinite volume analytical-
ly as a, §—~,

Note that the loss of excitation probability on the donor
due to the excited state lifetime is not included in this
result, It is included by multiplying G*(N, , #) by
exp(~¢/7). In contrast to Sec. II, G*(N, ©, {) obtained
here is directly observable in the unpolarized decay of
the donor fluorescence.

IV. RESULTS

In this section, we present calculations of G*(?) based
on the previous two sections to illustrate the nature of
the results, The accuracy of the approximations used in
the density expansion will be discussed in Sec, V where
we will show that the approximation is expected to be
quite good for most values of the parameters including
those used in the following discussion. Whenever a
comparison to the infinite volume one component theory
is desired, we will use the three-body calculation of
GAF, which we regard as essentially exact in the time
range of interest, The numerical inverse Laplace
transforms were performed with the Stehfest algorithm,!®

Figure 1 shows the effect of the finite volume for two
different reduced concentrations as a functionof R/R,.
The curves were obtained by taking the inverse Laplace
transform of Eq, (20). The results are approximate,
based on the density expansion for a one component sys-
tem, Curve 2B, e.g., corresponds to 128 molecules in
a sphere with R = 4 R, (for a molecule like Rhodamine
6G, Ry=50 A). Although these curves are not expo-
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Donor—Donor Transport
in
1.0 1 Finite and Infinite Volumes

R/R,
2
4
8
Qo

R/Ro
2
. 2B 4
2C 8
1 2D o

O T L T L 1
o] 0,2 0,4 06 0.8 1.0
VT
FIG. 1. The probability that the excitation is on the originally

excited molecule G*(¢) for one compounent finite volume systems
calculated with the density expansion Eq. (20). Each set of
four curves shows that for a given chromophore density, the
volume size can significantly affect G%(¢). All curves labeled
1 have Cp=0.5, while all curves labeled 2 have Cp=2.0. The
A, B, C, and D curves have R/R,=2, 4, 8, and =, respec-
tively. Curves 1A, 1B, and 1C correspond to 4, 32, and 256
molecules in the sphere, respectively, while curves 2A, 2B,
and 2C correspond to spheres of 16, 128, and 1024 molecules.
Time is in units of 7, the excited state lifetime. To better
illustrate the effects of transport on G*({), decay due to the ex-
cited state lifetime has been eliminated from the caleulations
for this and all subsequent figures.

nential, the 1/e points give some measure of the time
dependence of the decays. Curve 2B has a 1/e point

1. 6 times the 1/¢ point for the infinite volume solution
with the same reduced concentration (2D), Curve 2A
which has 16 molecules and R = 2 R, falls to its 1/e
point at a time 3.3 times that predicted by the infinite
volume theory, Clearly, the accurate investigation of
energy transport in finite volumes requires explicit
consideration of the conditions imposed by the volume’s
surface. Infinite volume theoretical treatments can be
in serious error if they are applied to the interpretation
of experimental data on finite systems.

Figure 2 shows curves obtained from Eq. (27). These
are exact results for the F8rster limit in a finite spheri-
cal volume, The effect of the finite volume is qualita-
tively the same as that shown for the one component
system in Fig. 1. Curve 2C in Fig. 2, e.g., corre-
sponding to 1024 molecules with R = 8 R, shows ~ 20%
difference in its 1/e point compared to the infinite case.
In a careful experiment, this difference is readily ob-
servable. Thus finite volume effects are important even
for a very large number of molecules in a relatively
large volume,

Curves A, B, and C in Fig. 3 illustrate the effect of
finite volume on donor-donor transport for a very small
number of molecules in the volume. They were cal-
culated from Eq. (19) for various values of R/R, with
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1.0 4 Donor to Trap Transfer
in
1 Finite and Infinite Volumes
R/R,
2
4
8
[+ 0]
4 C+20 R/R,
| 2A 2
28 4
2C 8
O T T T LN 1 2D ®
0 0,2 04 06 08 1,0
/7

FIG. 2. G*(t) for two component finite volume systems with
donor to trap transfer only (Fdrster limit). For a given
chromophore density, G*(t) is strongly affected by the volume
size. All curves labeled 1 have C7=0.5, while all curves
labeled 2 have Cr=2.0. [Cyr is defined in Eq. (32).] Curves
A~-D have R/R0=2, 4, 8, and =, respectively. Curves are
exact calculations using Eq. (27).

three particles in the sphere (N = 3). These results are
exact. In an infinite volume, G*(f) always goesto zero
for sufficiently long time. In a finite volume, G*(#) goes
to 1/N, indicating an equalization of excitation prob-
ability among all donors in the sphere. All of the top
three curves asymptotically approach 1/3, Curve C’

is the GAF result for an infinite volume with the same

1.0
=3 R/Rg
GS(T) A 2,0
0.5
8 1.0
c 5
C - Finite(C,7.1) o7
C’~ Infinite (C=7,1)
o N T T T 1 | 1
o} 1,0 2.0 3.0
t/7

FIG. 3. G*(¢) for a one component system, Curves A, B, and
C are the exact solution for the finite spherical volume with
three particles. The ratio of the sphere radius to the critical
radius for excited state transport R/R, is 2.0, 1.0, and 0.75,
respectively. All three curves asymptotically approach 1/3,
the long time limit for a three particle system. Curve C'is
the infinite volume result for Cp="7.1 and should be compared
to the finite volume curve C which has the same reduced con-
centration.

Electronic excited state transport

1,0 1

G(1)

FIG. 4. G*%() for a one component system in an infinite
volume. Curves 1 and 2 have Cp=0.5 and 2.0, respectively.
The limit of Eq. (20) for infinite volume is designated as A,
while B is the essentially exact result of GAF. The close
agreement between the curves demonstrates that the density
expansion employed in this paper is an excellent approximation
in this limit.

reduced concentration as curve C (CD =1.,1). The infinite
volume curve falls much faster than the finite volume
curve and goes to zero, This is due to transport to the
infinite number of molecules in the infinite system which
are not present in the finite system (curve C).

V. VALIDITY OF THE DENSITY EXPANSION
APPROXIMATION

In this section, we discuss the validity of the density
expansion approximation given by Eq. (20). We first
examine the limit of this equation as g8, §—~<. (In this
limit, the equation is identical to that obtained by Haan,)
Figure 4 shows the comparison of this result with the
self-consistent three-body calculation of GAF for two
different reduced concentrations. The agreement is
quite good and the differences are probably not experi-
mentally distinguishable. Since both Eq. (20) (in the
8~ limit) and the GAF result scale as C5¢/7, similar
agreement will occur for all values of C,.

If the transformation of Eq. (19) to Eq, (20) had been
rigorously justified for all values of 8, the accuracy of
Eq. (20) as demonstrated in Fig. 4 would have been ex-
pected for all values of N and 8. In order to ascertain
the accuracy of our approximation for small R/R,, we
will make two comparisons,

First, the exact results of Eq. (19) for three par-
ticles are compared with the approximation of Eq. (20)
in Fig. 5. The agreement is good for R/Ry=1.5.

When R/Ry =1, Eq. (20) is somewhat in error. Even
so, the approximation is much better than the infinite
volume solution (curve 3') for the same reduced concen-
tration (Cp = 3). Thus even when R/R, is quite small the
density expansion yields reasonable results.

The second approach to evaluating the accuracy of
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1.0 7
| N=3 R/Ro
G’ 1A 2.0
28 15
3A 1.0
3A.3B - Finite(C,=3) B
4
| \3'- Infinite(Cy=3)
o T T T 1 LB 1
0 1,0 2.0 3,0

FIG. 5. G*(t) for a one component system. This is a compar-
ison of the exact result for three particles with the approximate
form given by Eq. (20). The approximate curves are labeled

A while B designates the exact solution. R/Ry=2.0, 1.5, and
1.0 for curves 1, 2, and 3, respectively. Curve 3’ is the in-
finite volume result (R/Ry==) for the same reduced concentra-
tion as curves 3A and 3B. The approximate (3A) and exact re-
sult (3B) for the finite volume are in close agreement and both
differ significantly from the infinite curve (3'). (Note that 1A
and 1B are almost indistinguishable.)

Eq. (20) is less direct. We have taken the Forster
limit problem solved exactly in Sec. III, and performed|
an expansion in density analogous to that performed in
Sec. II. The resulting truncated series is

cong 0= L [1- Y8 MUY L))

(30)
Equation (30) can be rewritten as

cranp 0=t {1+ S 2)

2 -1
+ & (o) - (1= 3)es)] } RENCH
where

Cr =4$7(RPT’M/Q = M(RR®/R)® .

22(8) and g3(g8) are monotonically increasing functions
quite similar in shape to f, and f;.

(32)

Although the approximate solution here is for a dif-
ferent problem than that treated in Sec. I, the form of
the equations is very similar [Eq. (30) corresponds to
Eq. (19) and Eq. (31) to Eq. (20)]. In particular, the
transformation of Eq. (30) to Eq. (31) rests on exactly
the same assumption as was required in Sec. II, There-
fore, a comparison of Eq. (31) to the exact solution in
the finite Forster limit should be a strong indicator of
the accuracy of the density expansion approximation
for the one component problem for moderately small
R/R,.

A representative comparison of the inverse Laplace
transform of Eq. (31) and the exact solution [Eq. (27)]

2523

is shown in Fig. 6. In each pair of curves the approxi-
mate result is the upper of the two curves. The agree-
ment is quite reasonable. The following generalizations
can be made about our comparisons of Eq. (31) and

the exact solution: For R/Ry=2, no value of C, of the
many we investigated gave worse agreement than that
shown in Fig., 6. For 0.5<R/R,<2, the agreement was
typically the same as the worst case shown in Fig. 5
(R/Ry=1). And finally, except when the finite and in-
finite results are essentially the same because R/R,

is large (R/Ry>10), the exact finite result was always
significantly closer to the approximate finite result
than to the exact infinite result when R/R;>0.5. Since
the approximation discussed here is of the same nature
as that made in Sec. II, the errors indicated in Fig. 6
and the generalizations made above should apply to the
approximate results for the one component system,

VIi. SUMMARY

The problem of electronic excited state transport
among randomly distributed chromophores in a finite
spherical volume has been addressed. The exact solu-
tion in the limit of low donor concentration (no donor-
donor interactions) has been given. An expansion in
powers of chromophore density was used to treat the
one component problem of donor—donor transport. Com-
parison with infinite volume results and exact finite
volume results indicates that this approximation is good
for a wide range of conditions, Both the transport and
the trapping calculations predict significant deviations
in the behavior of finite volume systems compared to
that of infinite volume systems as the dimensions of the
finite volume become comparable to the distances as-

CF#0.5 R/R,
A
I8 2

2A 8

?
J 28
1

] Cr720 R/R,
pi 8
o T T T L Ll
0 0.2 0.4 0.6 0.8 1.0
/T
FIG. 6. Comparison of the three particle finite volume den-

sity expansion in the Fgrster limit to the exact solution. For
curves labeled 1 or 2, Cr=0.5, while Cy=2.0 for curves
labeled 3 or 4. The density expansion approximation is desig-
nated A and the exact solution B. R/R =2 for curves 1 and 3.
R/R,=8 for curves 2 and 4. For every pair of curves, the
agreement is quite good. Similar accuracy is expected for the
density expansion approximation in the one component prob-
lem. (Note that 2A and 2B are almost indistinguishable.)
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sociated with excitation transfer, Thus, interpreting
experimental data on a finite volume system requires
explicit consideration of the surface boundary if an ac-
curate physical description of the system is to emerge.

ACKNOWLEDGMENTS

We would like to thank Roger F, Loring and Glenn H,
Fredrickson for helpful discussions, and James E,
Hahn for his assistance with the polynomial fitting rou-
tines used to fit f, and f;. In addition, MDE thanks
the National Science Foundation for a Predoctoral
Fellowship, This work was supported by the Depart-
ment of Energy, Office of Basic Energy Sciences
(Grant DE-AT03-82ER12055).

APPENDIX

The functions listed below were fit to f,(8) and £;(8)
over the ranges indicated and have a relative error of
0.5% or better. When used with Eqs. (18) and (19) they
resulted in an absolute error in G*(#) of less than 0, 01
for all values of the parameters which we checked, and
were usually much better than this, The ranges in-
dicated overlap significantly because the algorithm
used for the inverse Laplace transform is extremely
sensitive to discontinuities. The overlapping ranges
allow each time point to be calculated from ¢ values ob-
tained from only one of the following equations:

£2(8) = 0,708 128 - 0, 043 73g% - 2, 91918% + 6, 65248*
-4,7938%(10%<g<0,4) , (a1)

f»(8) = 0,083 779 - 0,732 083"/3 + 2, 08378%/3 — 1, 39438
+0,311048%/%0,1<g<9) , (a2

£2(8) = 1.1107[0. 012 335 + 0, 987 67(1 — 0, 33445-0-344)2.907]
@>1), (A3)

f3(8) = 2,752x10°%g + 0,332 948% + 0,043 8683° - 4.38164*

+ 15, 6858° — 24, 3288° + 14, 44987(104 <5 <0.4) ,
(a4)

f3(8) = 0,01303 ~ 0,105 783'/2+ 0, 26 1878 — 0, 079 933g°/2
-0.0201283% + 0,0105838%/2(0.1<8<3.2) , (AH)

f5(8) = 104(~ 864, 02 + 1754, 23'/2 — 49,6323 ~ 47, 128%/*
+5,62533%)(0.8<8<22.4) , (A6)
f3(8) = 0.80555[0. 012335 + 0, 987 67(1 - 0, 6023-0-344)2-07}
(8>5.6) . (A7)
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