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ABSTRACT: A theoretical study of electronic excitation transport in polymer systems is presented. GYt), 
the time-dependent ensemble-averaged probability that the excitation is on the originally excited chromophore, 
is calculated by using an  approach involving a density expansion. It is shown that  this quantity is a direct 
observable in a time-resolved fluorescence depolarization experiment. The effects of the finite volume associated 
with a single polymer coil or a small aggregate in a polymer blend are considered explicitly. Calculations 
are presented for systems having a Gaussian ensemble-average segmental distribution. The influences of density, 
volume, and aggregation are illustrated. Gg(t) can yield reliable information about the local chromophore 
distribution of systems for which a lack of knowledge of the number of excimer traps prevents quantitative 
application of trapping experiments. The approach described here should be particularly valuable in obtaining 
structural information about very low concentration guest polymers in polymer blends and solutions. 

I. Introduction 
In recent years there has been considerable work devoted 

to understanding electronic excitation transport processes 
in polymer systems.' Because of their sensitivity to the 
spatial separation and orientation of chromophores in a 
polymer system, excitation transport observables contain 
detailed information about structural properties, e.g., coil 
configuration and the degree of coil extension. This in- 
formation is of key importance in understanding the mi- 
croscopic interaction of a polymer with its environment, 
and thus the macroscopic properties of polymers and 
polymer blends. 

Recent theoretical and experimental advances have 
provided a detailed picture of incoherent excited-state 
transport among molecules distributed randomly in solu- 
tions or molecular crystals. Accurate theoretical treat- 
ments have been developed that are able to quantitatively 
predict experimental observables for single-component 
systems (donor-donor transport only) and two-component 
systems (donor-donor transport with donor-to-trap 
t r a n ~ f e r ) . ~ - ~  Similar success in understanding energy- 
transport processes in polymer systems has not yet been 
achieved, due to the increased theoretical difficulty of 
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including polymer structure in the problem. 
Chromophores attached to an isolated polymer coil differ 

from independent chromophores in solution in at least two 
important respects. Chromophores in polymer systems are 
not in general randomly arranged but are correlated by the 
covalent bonds that join them. In addition, the finite 
extent of an isolated polymer coil effectively limits the 
number of possible sites that the excitation can sample. 
Therefore previous theoretical approaches that involve the 
thermodynamic i.e., the limit of an infinite number 
of sites distributed in an infinite volume, cannot be applied 
in many cases of interest. 

Excitation transport among coil chromophores depends 
both on local molecular structure and on thermodynamic 
interactions of the coil with its environment. If an indi- 
vidual coil with closely spaced chromophores is dissolved 
in a good solvent, it will assume an extended configuration. 
Then, on the average, the only chromophores near the 
originally excited chromophore will be those most closely 
linked to  it along the polymer backbone. The extended 
geometry makes the probability small that a chromophore 
from a polymer segment far removed along the backbone 
is in spatial proximity to the initial excitation. Thus ex- 
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citation transport is primarily one dimensional (along the 
chain) for a polymer with closely spaced chromophores in 
an extended configuration. In addition, the chromophore 
distribution will be highly nonrandom if the number of 
bonds between two adjacent chromophores is small. The 
net result will be basically one-dimensional transport 
among chromophores distributed neither randomly nor 
periodically. 

If the polymer-solvent interactions are less favorable, 
the isolated coil will contract and excitation transport to 
chromophores not connected by a small number of cova- 
lent bonds will become more probable. When polymer- 
solvent interactions become poor, polymer molecules will 
aggregate and precipitate from the solution. In a two- 
component polymer blend, the low-concentration guest 
polymer can phase separate into domains of macroscopic 
 dimension^,^ form small aggregates of a few polymer 
molecules,6 or contract far below the @dimensions as an 
isolated coil. For these situations the local chromophore 
distribution is approximately random in three dimensions. 
This is due to the close proximity of chromophores from 
other coils, or for a single coil, because of the contracted 
molecular dimensions that bring isolated segments of the 
coil together. The positions and orientations of chromo- 
phores from isolated parts of a chain or from other coils 
will not be significantly correlated with those of the ori- 
ginally excited chromophore. The three-dimensional 
random distribution is expected to be an accurate de- 
scription even for a polymer in a good solvent, if the sep- 
aration between chromophores along the chain is large 
enough, e.g., when a chromophore containing monomer is 
copolymerized with a nonchromophore-containing mono- 
mer.' 

In this paper, we present a theoretical treatment that  
provides a description of energy transport within a polymer 
coil or group of coils if the chromophore distribution is 
locally random in three dimensions. This model explicitly 
considers the coil to be finite in extent and is consistent 
with an ensemble-averaged segmental density distribution 
that is Gaussian. The observable calculated here is G3(t )  
(in the notation of ref 3), the ensemble-averaged proba- 
bility that  the excitation is still on the originally excited 
chromophore. G*(t) has contributions from excitations that 
have never left the initially excited chromophore and from 
those that have left and subsequently returned. Therefore 
an accurate theoretical treatment of G3(t )  must include 
back-transfer. Gs( t )  can be calculated and measured with 
or without traps in the system. It is the fundamental 
observable for energy-transport experiments if information 
about the local environment is primarily of interest. Ob- 
servables that depend on trapping (changes in the donor 
or trap excited-state populations) inherently contain less 
information about the local environment because many 
local environments are sampled before trapping occurs. In 
contrast, Gs((t) is directly related to the chromophore 
distributions around the ensemble of originally excited 
chromophores. 

The presence of excimers (which act as traps) in a wide 
variety of fluorescent polymers influences both Gs( t )  and 
trapping observables. Trapping observables are critically 
dependent on the precise number of traps present. 
Therefore, the quantitative interpretation of trapping 
experiments in order to obtain structural information is 
difficult since the number of excimer-forming sites is not 
readily calculated in the absence of detailed structural 
knowledge. As will be shown in section 111, Gs( t )  is quite 
insensitive to  the precise concentration of excimer traps 
and can provide useful information even when the number 
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of these traps is not precisely known. 
Questions about coil dimensions and aggregation are 

extremely difficult to address with current techniques 
when the polymer concentration is very small. This is 
particularly true of polymer blends when a low concen- 
tration of guest polymer is mixed with another polymer. 
Differential scanning calorimetry, light scattering, and 
neutron scattering all lose their sensitivity a t  low concen- 
trations. Gs( t ) ,  because it can be obtained from time-re- 
solved polarized fluorescence data, can be measured even 
a t  very low concentrations. Gs( t )  depends strongly on the 
degree of extension of a single polymer coil if a substantial 
probability for multidimensional transport exists. As the 
solvent-polymer interactions are made less favorable, the 
coil will contract, and G s ( t )  will decay faster due to the 
increased local concentration of chromophores attached 
to remote segments of the chain. G3(t) will also be sensitive 
to aggregation of polymer coils, either because of an in- 
creased chromophore density or, if the chromophore den- 
sity does not increase, because of the larger volume of sites 
that the excitation can visit (increasing the finite volume). 
Thus questions pertaining to the physical properties of 
isolated coils or small aggregates in various environments 
can be addressed. 

In the following section, we derive an expression for G3((t) 
that  is appropriate for a three-dimensional Gaussian 
chromophore distribution. Illustrations are presented that 
demonstrate how Gs( t )  can yield information about coil 
dimensions and the presence of aggregation. In section 
111, we discuss the relationship of G*(t )  to time-resolved 
fluorescence polarization data. While the connection is 
not always quantitatively satisfactory when excitation 
transport is primarily one dimensional, it  will be shown 
that in many cases of interest the connection is simple and 
accurate. This is true in all cases in which the model of 
section I1 is expected to be applicable. 

11. Theory 
In this section, we derive an expression for Gs( t )  which 

assumes a chromophore distribution that is random in 
three dimensions and has an approximately Gaussian en- 
semble-average segmental distribution. To obtain this 
result, we start with an expression for the Laplace trans- 
form of Gs( t )  derived in a previous papers (hereafter re- 
ferred to as I). This expression was derived for a random 
chromophore distribution within a sphere of finite radius. 
Considering this as a model for a single coil, we average 
these results over the distribution of the radius of gyration 
to obtain the ensemble-averaged Gs( t ) .  

In I, we considered a finite spherical volume of radius 
R, containing N donor chromophores and no traps. We 
assumed an orientation-averaged dipole-dipole interaction 
with the transfer rate between two chromophores given by 

6 

T is the excited-state lifetime in the absence of energy- 
transport processes, r is the interchromophore separation, 
and Ro is the critical transfer radius for energy transport 
between two donors. (In general, the orientation-de- 
pendent transfer rate needs to be considered. When 
chromophores in a random solution are fixed in space on 
the time scale of energy transfer, G3(t) for the full transfer 
rate can be readily obtained from Gs( t )  for the orienta- 
tionally averaged rate.4a,9 This simple procedure will be 
accurate for the model under discussion whenever there 
are more than two chromophores on the polymer chain.lO) 
Utilizing an expansion in powers of the chromophore 
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density, we obtained the following approximation for the 
Laplace transform of Gs((t): 
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In this equation, t is the Laplace transform variable 

and 

(4 )  

fz(/3) and f@) are positive monotonically increasing 
functions of /3 obtained in I. Analytical approximations 
for them are given in the Appendix of I. In I, we dem- 
onstrated that the inverse Laplace transform of eq 2 is 
expected to be a very good approximation to the true 
solution. 

We assume the model of chromophores randomly dis- 
tributed in a sphere of radius R, to be an approximate 
description of a single polymer coil in the subset of its 
possible configurations having radius of gyration R,. As- 
sociated with this distribution of chromophores is a second 
moment, i.e., the radius of gyration squared (R,2 = (31 
5)R:). By averaging Gs((t) over a distribution function for 
R,, we obtain the ensemble-averaged observable. We chose 
the distribution function of Flory and Fisk" to illustrate 
this calculation because it has a convenient analytical form 
and is a reasonable approximation12 to the exact function 
assuming Gaussian bond probabilities. It is given by 

where ( R g 2 )  denotes the expectation value of Rg2. 
Our final expression for the Laplace transform of the 

ensemble-averaged probability of finding the excitation on 
the originally excited chromophore is 

(Gs(N,(R,2) , t ) )  = Lmmg P(R,)oaW,P,4 (6) 

N now refers to .the number of chromophores on a single 
polymer chain. For the purpose of evaluating eq 6, /3 and 
CD can be rewritten as 

(7 )  

Gs((t) for particular values of N and (R;) is obtained by 
performing the inverse Laplace transform n~merically. '~ 
Gs( t )  calculated in this manner does not include loss of 
probability due to the excited-state lifetime. This is in- 
cluded by multiplying by 

The energy-transport calculations presented involve an 
average over a chromophore distribution with a sharp 
cutoff. The validity of this averaging procedure can be 
tested qualitatively, as illustrated below. 

Z 

0 I .0 2 .o 3.0 4 .O 
r2 /  ( R i )  

Figure 1. Comparison of the standard Gaussian ensemble-average 
segmental density distribution (solid line) to  the density distri- 
bution implicit in this calculation (dashed line). Note that these 
are radial distribution functions. 

Within our model, the chromophore density of a single 
coil in the subset of its configurations with a given R, is 

(9) 

p(r,RR,) is normalized to N .  The ensemble-averaged chro- 
mophore density is 

Figure 1 shows eq 10 plotted against the standard Gaussian 
approximation12 (normalized to N): 

The agreement is very reasonable and demonstrates that 
our model is consistent with a Gaussian ensemble-average 
density distribution. We anticipate that the averaging 
process also yields a reasonable description of energy 
transport. It will require further theoretical investigation 
employing a more accurate distribution function than that 
implied by eq 9 to test the quantitative validity of these 
calculations. However, the theory as presented is certainly 
useful in investigating the relative effects of various en- 
vironments on coil dimensions. 

In Figure 2 we illustrate the general features of Gs((t), 
the inverse Laplace transform of eq 6. These curves are 
intended to indicate how Gs( t )  is affected by changes in 
the various parameters. In Figure 3, we calculate Gs(t)  for 
a model based on a specific copolymer under various re- 
alistic conditions. The calculations plotted in these figures 
do not include decay due to the excited-state lifetime. 

Figure 2A shows calculated curves of Gs((t) when the 
density of chromophores a t  the center of the coil is held 
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Figure 2. Effects of density and coil dimensions on Gs(t ) ,  the 
time-dependent probability that the excitation is on the originally 
excited molecule. In part A, the average chromophore density 
is held constant while the ensemble-average radius of gyration 
is varied. N ,  the number of chromophores in the coil is 20, 160, 
and m, respectively, for (R2) ' / 2 /Ro  equal to 2 , 4 ,  and m. For a 
constant chromophore density, Gs((t) decays faster as the volume 
of accessible sites increases. In part B, the coil size is held constant 
while the number of chromophores is increased, thus increasing 
the density. (R,2!'/*/Ro is 3.0 for all four curves. As the chro- 
mophore density increases, Gs((t) decays faster. In part C, the 
coil dimensions, (R;) ' l2 ,  are changed while the number of 
chromophores is fixed. There are 50 chromophores in the cal- 
culation for each curve. Since the local chromophore density 
increases as the coil dimensions decrease, Gs( t )  decays significantly 
faster. 

constant while the number of chromophores and ( R z ) l l 2  
(the ensemble-average radius of gyration) are varied to- 
gether. This illustrates the influence of volume on exci- 
tation transport. As the volume increases, the number of 
accessible sites increases, and G8((t) decays faster as a result. 
In Figure 2B, (R,2)1/2 is held constant while the number 
of chromophores is increased, and hence the density in- 
creases. G3((t) decays significantly faster as the local 
chromophore density is increased in a fixed volume. Figure 
2C shows G*((t) when the number of chromophores is fixed, 
but (Rg2)I l2  is varied. As ( R  2 ) 1 / 2  decreases, for a fixed 
number of chromophores, G3((t7 decays much faster due to 
the increased local chromophore concentration. 

Figure 3 shows how G3((t) is affected by changes in coil 
dimensions and by coil aggregation for a specific copolymer 
in blends with various hosts. For the purpose of illustra- 

D 
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Figure 3. Calculated effects of density changes and aggregation 
on GYt) for a 20000 MW copolymer of methyl methacrylate and 
vinylnaphthalene (mole fraction of vinylnaphthalene = 0.17). 
Curve A shows a calculation for a single coil (N  = 31) under 
8-conditions ((R,2)'/* = 35 A). Curve B shows the same copolymer 
when the coil has contracted due to unfavorable interactions with 
the host polymer ( ( R  ')'/' = 28 A). Curve C shows an aggregate 
of 16 coils assuming tiat the average density is the same as under 
6-conditions and that the Flory-Fisk distribution of the radius 
of gyration can be applied to the aggregate. This is the minimum 
change that could be expected upon aggregation. For C, there 
are 496 chromophores with = 88 A. Curve D shows an 
infinite-volume calculation for a bulk sample of the pure co- 
polymer (1 g/cm3). 

tion, parameters appropriate for a 20000 MW copolymer 
of vinylnaphthalene and methyl methacrylate (mole 
fraction of vinylnaphthalene = 0.17) have been used. This 
is similar to a copolymer used by Reid and Soutar.' The 
low mole fraction of naphthalene chromophores should 
make the assumption of a random, three-dimensional 
chromophore distribution reasonable. Ro is taken to  be 
11.75 A, the same as for 2-meth~lnaphtha1ene.l~ Curve A 
shows G8((t) calculated for the copolymer under 0 condi- 
tions ((R,2)lI2 = 35 A). 

Curve B shows the same isolated polymer coil as it might 
appear a t  very low concentration in a polymer blend when 
the thermodynamic interactions between the host and 
guest polymers are unfavorable. The segmental density 
of the guest copolymer has been doubled a t  the center of 
the coil by decreasing (R,2)1/2 to  28 A. The Flory-Fisk 
distribution was again used to  describe the distribution 
of the radius of gyration. (The absolute density for curve 
B corresponds roughly to that observed by Kirste et a1.6 
in aggregates of poly(cY-methylstyrene) dispersed within 
D-poly(methy1 methacrylate).) Curve B could be readily 
distinguished from curve A by, for example, time-resolved 
fluorescence depolarization measurements. 

Curve C shows the change in G S ( t )  that  would be ex- 
pected upon aggregation of single coils if the average 
chromophore density of the coils is the same as in curve 
A (0 conditions). In this case only the volume accessible 
to the excitation (i.e., the number of sites) increases. This 
is clearly the minimum change that would be expected 
upon aggregation. If the chromophore density increased 
as well, the difference between curves A and C would be 
greater. The number of coils aggregating was taken to be 
16, consistent with the observations by Kirste e t  a1.6 for 
the system described above. The calculations for curve 
C assume for simplicity that the Flory-Fisk distribution 
is still appropriate although the neutron scattering data 
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traps. All such calculations are labeled B. 
Figure 4 shows the results of calculations for three 

different trap concentrations. Two types of observables 
are presented. G3((t), as discussed above, is the probability 
of finding the excitation on the originally excited chro- 
mophore. GD(t) is the probability that the excitation has 
not been trapped. (e+17GD(t) is the observable when the 
excited-state donor decay is monitored in an excitation 
transport experiment.) The curves labeled "1" are for a 
system with no traps, curves labeled "2" are for a system 
in which 10% of the chromophores are involved in excimer 
pairs, while "3" corresponds to 20% involved in excimers. 
When method A is used to account for the excimers, the 
three different Gs((t) curves are indistinguishable in the 
figure, while the GD(t) curves differ widely. Likewise when 
method B is used, the GD(t) curves vary much more than 
those for G3((t). Clearly, if the precise number of exci- 
mer-forming sites is unknown, Gs((t) provides more accurate 
information about the local chromophore density than does 
the decay of the donor fluorescence. (Decay due to the 
excited-state lifetime is not included in the calculations.) 

A strong connection between experimental observables, 
such as time-resolved fluorescence depolarization, and G3((t) 
has been assumed in the previous discussions. In a solution 
where the angular distribution of chromophores is random, 
the fluorescence intensity of emission parallel and per- 
pendicular to the exciting beam (Il, and I,, respectively) 
is related to G3((t) as  follow^:^" 

.A I 

Figure 4. Comparison of the effects of excimer traps on GB(t)  
and GD(t), a trapping observable. G8((t) is the probability that 
the excitation is on the originally excited chromophore while GD(t) 
is the probability that an excitation has not been trapped. Curves 
labeled A treat the two chromophores forming the excimer as a 
single trap, while curves labeled B treat them as independent traps 
(see text). Curves 1, 2, and 3 correspond to systems in which 0, 
10, and 20% of the chromophores are involved in excimer pairs, 
respectively. The GD(t) curves vary widely while the G8((t) curves 
are quite similar. This demonstrates that G8((t) contains more 
accessible information about the local chromophore density than 
trapping observables when the number of excimers is unknown. 

of Kirste et  al. indicate that the overall segmental dis- 
tribution is not strictly Gaussian. For comparison, curve 
D shows an infinite-volume calculation (using ref 3) for 
conditions corresponding to a macroscopic volume of the 
pure copolymer. 

111. Observables 
The calculations of the previous section did not include 

the influence of traps on Gs((t). In general, polymers can 
have two types of traps: chemical traps and excimers. 
Chemical traps have been copolymerized with the donor 
chromophore in order to utilize trapping as an energy- 
transport 0bservab1e.l~ The theory presented here and in 
I can be easily and accurately extended to calculate G3((t) 
in the presence of traps. 

Excimer traps have formed the basis for some excitation 
transport observables.16 In polymers where excimers are 
formed, the number of excimer traps is difficult to measure 
or calculate. Since trapping observables are very sensitive 
to the trap concentration, this results in considerable un- 
certainty in the interpretation of trapping experiments. 
In contrast, Gs((t) is relatively insensitive to the excimer 
trap concentration and therefore does not suffer from this 
uncertainty. 

To  demonstrate the relative insensitivity of Gs((t) to  
excimer traps, we will use the infinite-volume theory of 
Loring, Andersen, and F a ~ e r . ~ ~  The chromophore dis- 
tribution in this treatment is random in three dimensions. 
The fact that the calculations are for infinite volume will 
not significantly affect the sensitivity to excimer traps. We 
will use two alternate methods of accounting for these 
traps. First, following the procedure of Fredrickson and 
Frank,17 we consider the pair of chromophores comprising 
the excimer as one trap, with the donor-trap transfer rate 
being twice the donor-donor rate. All such calculations 
are labeled A in Figure 4. As a second method of ac- 
counting for excimer traps, we treat each chromophore of 
the excimer pair as an independent trap, with the do- 
nor-trap transfer rate equal to the donor-donor rate. This 
makes the excimer equivalent to two adjacent chemical 

Here, C is a time-independent constant dependent upon 
the degree of photoselection for the transitions involved. 
Two conditions need to be met for eq 12 to be applicable 
to polymer systems. 

First, there cannot be competing depolarization pro- 
cesses on the same time scale as energy transport. Mo- 
lecular rotation, segmental mobility, and rotation of the 
chromophores about single bonds must all be relatively 
slow. In most cases, polymer blends will satisfy this con- 
dition. 

The second requirement is that  emission from chro- 
mophores not originally excited must be substantially 
depolarized. It has been demonstrated that this is the case 
in a random distribution of distances and angles. Emission 
from chromophores not originally excited will have a 
fluorescence anisotropy of less than 2.5% of the anisotropy 
arising from the initially excited chromophores.ls For the 
copolymer discussed in Figure 3, the low chromophore 
density along the chain ensures that there will be no 
substantial correlation between the transition dipole di- 
rections of any two chromophores. Thus for this co- 
polymer, the relation between fluorescence data and Gs((t) 
will be given by eq 12. In general, we would expect eq 12 
to be accurate for all copolymers where the mole fraction 
of monomers that contain chromophores is low. (However, 
if the chromophore is part of the polymer backbone, even 
in low concentrations, special correlations between tran- 
sition dipoles may exist in a polymer configuration that 
is nonspherical.) 

Equation 12 will be least applicable when strong cor- 
relations exist between the dipole directions of the chro- 
mophores, such as in an aromatic vinyl homopolymer. 
Even for this case, however, the calculation described below 
suggests that  eq 1 2  will not be seriously in error. The 
simplest model for two segments of a poly(2-vinyl- 
naphthalene) (P2VN) chain is 1,3-di(2-naphthyl)propane. 
Ito et  al.I9 have calculated the most stable configurations 
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for this molecule and their relative weights. While these 
chromophore configurations will not correspond precisely 
to those found in a P2VN chain, they should be a rea- 
sonable approximation. 

We want to calculate the ensemble-averaged emission 
anisotropy of the nonoriginally excited chromophore, as- 
suming polarized excitation. In addition, we assume that 
for each internal configuration there is an ensemble of 
molecules whose external angular orientation is random 
with respect to the laboratory frame. Following the general 
procedure of Jablodski,l8 we calculate the emission an- 
isotropy of the acceptor chromophore for each configura- 
tion. This value is weighted by the probability of emission 
from that chromophore. Finally, the emission anisotropies 
for all the configurations are averaged, taking into account 
the statistical weight of each configuration. 

Using this procedure, one finds the ratio of the emission 
anisotropy of the nonoriginally excited chromophore to 
that of the originally excited chromophore to be -0.23 for 
1,3-di(2-naphthyl)propane. (If the two transition dipoles 
were always parallel, the ratio would be 1.0.) Even if 
transport on a P2VN chain is entirely one dimensional, 
this emission anisotropy should be substantially smaller 
in magnitude than 23 ?'a, since many more chromophores 
than a single nearest neighbor will be involved in transport 
and light emission. When transport is three dimensional, 
the residual anisotropy is further decreased by transport 
to chromophores off chain whose angular orientation will 
be essentially uncorrelated to the originally excited chro- 
mophore. Thus we expect eq 12 to accurately describe the 
relationship of GYt) to time-resolved polarized fluorescence 
data or other polarization-dependent observables20 when- 
ever the theory presented in section I1 can be applied and 
to be a good approximation for many other situations. 

IV. Concluding Remarks  
In an effort to obtain structural information about 

polymer coils from polarization-dependent experimental 
observables, we have presented a theory based on a density 
expansion. The theory explicitly considers a distribution 
of coil dimensions, as well as the local disorder implicit in 
polymer structure when the chromophores are not con- 
nected by a small number of bonds. The theory can be 
readily extended to include nonrandom spatial and angular 
correlations, thus allowing a description of excitation 
transport in aromatic vinyl homopolymers in extended 
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configurations. As presented, our theory should be useful 
in a wide variety of circumstances for the investigation of 
polymer-host interactions in solution and in polymer 
blends. 
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