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An exact diagrammatic analysis of transport of electronic excitations among chromo-
phores distributed randomly on a lattice is presented. An approximate solution is ob-
tained that allows calculation of transport properties for transfer rates of any range for
any lattice type and any concentration. Simple cubic lattice results are presented for
Forster transfer and nearest-neighbor transfer. The latter has a percolation threshold
that is described in a qualitatively correct fashion by our approximation.

PACS numbers: 82.20.Rp, 05.50.+q, 71.35.+z, 66.30.-h

The transport of electronic excitations in dis-
ordered materials has received considerable at-
tention in recent years.! Most investigators have
used continuum models which treat transport
among randomly distributed chromophores. The
continuum theory of Gochanour, Andersen, and
Fayer? (hereafter referred to as GAF) yields re-
sults which are in excellent agreement with time-
resolved experiments on transport® and trapping?*
of electronic excitations in dilute dye solutions.
Sakun® has discussed the problem of energy trans-
fer on a partially filled lattice, but his results
are stated to be valid only at low concentration.
Odagaki and Lax® have recently introduced a dy-
namical coherent medium approximation for hop-
ping transport on a disordered lattice, Their re-
sults are limited to a nearest-neighbor transfer
rate and to bond disorder rather than site dis-
order. In this Letter, we describe a theory of
energy transfer among chromophores distributed
randomly on a lattice that is analogous to the
GAF treatment of the continuum problem and
that is valid at all concentrations.

The probability that a particular chromophore
is excited at a given time in a given configura-
tion of chromophores is taken to satisfy a Pauli
master equation in which the transfer rate from
site 7 to site j, denoted w(r;;), depends only on
the vector distance from one chromophore to
another. As in the theory of GAF, the time de-
pendence of the ensemble-averaged excitation
density is described by a Green’s function, G
~ T’ t), which for the present problem is a sum
of 6y 7+ G*(¢) and G™(F -1, t), where &p p is
the Kronecker delta function. GS(¢) gives the
probability that a chromophore initially excited
at =0 remains excited at time ¢. G™f~71',1¢) is
the probability that an excitation undergoes a dis-
placement ¥ — 7/ in time £,

In the continuum problem, an ensemble average
is carried out by averaging over the uncorrelated
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positions of all the chromophores. The lattice
problem is complicated by the fact that a 1ottice
site can be occupied by at most one chromophore.
Therefore the chromophore positions are cor-
related, and ensemble averages must be taken
only over allowed configurations.

Following GAF, we expand the Fourier-Laplace
transforms of GS(¥ -, #) and G™¥ =1, £) in
perturbation expansions in 1/¢, the inverse of
the Laplace variable. Each term in these expan-
sions is associated with a diagram. Just as in
the GAF treatment, the diagrammatic formalism
leads to the conclusion that the Fourier-Laplace
transform of the Green’s function é(ﬁ, €) can be
expressed in terms of @s(e), which is the Laplace
transform of GS(¢), and a self-energy Z[E, GS(¢)],
which itself can be regarded as a functional of
és(e). Evaluation of these two functions would
permit calculation of the Green’s function and
hence of most measurable properties of interest,
including the generalized diffusion coefficient
D(E, €) and the time-dependent mean-squared dis-
placement. G(E, €) can be shown to obey a gen-
eralized diffusion equation of the form given in
Eq. (66) of GAF, with the generalized diffusion
coefficient given by

D(E, €)=c/k{E]0, G5(e)] - Z[E, G3(€)] }. (1)

If the 0, €—0 limit of D(E, €) exists, then the
mean-squared displacement of the excitation in-
creases linearly at long time with a slope Znﬁ(o,
0), where n is the dimensionality of the system.

Two exact relationships between G*(¢) and ZIE,
G*(€)] can be derived. The first,

Gs(e)e+cZ[0, Gs(e)]} -1=0, (2)

is a consequence of the conservation of probabil-~
ity. The fraction of occupied sites is denoted by
c. The second is an infinite diagrammatic series
for Z[E, Gs(¢)].

i[k', és(e)] is equal to the sum of the values of
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all topologically different graphs with the follow-
ing characteristics. Each graph has two root cir-
cles (labeled 1 and 2), which may be connected
by a wavy line, zero or more unlabeled field cir-
cles, vertices within the circles, solid arrows,
and dashed arrows. A solid arrow starts at a
vertex in the interior of one circle. It ends in the
interior of another circle either at a vertex or at
the start of a dashed arrow that leads back to a
vertex in the circle at which the solid arrow
started. Dashed arrows may only appear in this
latter situation. There is a continuous path of
solid and dashed arrows starting on a vertex in
circle 1 and ending on a vertex in circle 2. With
the exception of the vertices at the start and end
of the path, each vertex is at the start of only

one arrow and at the end of only one arrow. Each
diagram satisfies the restriction that the re-
moval of any one circle and its associated ar-
rows and wavy lines must not make the diagram
disconnected. If circles 1 and 2 are not con-
nected by a solid arrow, then they must be con-
nected by a wavy line.

With the exception of the possibility of a wavy
line between the root circles, the topological
specification of the diagrams for Z[E, G5(¢)] is
the same as in the theory of GAF. See Eq. (56)
of that paper, as well as Fig. 7, that has examples
of the diagrams.

The value of a graph is obtained by assigning
dummy labels to the field circles and performing
a sum in which each of these labels extends over
all possible positions in the lattice. The same
type of summation for circle 2 (but not for 1) is
also performed. The summand is a product of
(1) a factor of ¢ for each field circle; (2) w(r;;)
for each solid arrow, where the subscripts are
the labels on the circles at the start and end of
the arrow; (3) G*(e) for each vertex other than
those at the start and end of the path; (4) —1 for
each dashed arrow; (5) exp(iK-T,,); (6)a factor
of - 6;»1 T if there is a wavy line between the l

root circles; and (7) @,(c) for each circle, if
there is no wavy line. For circle 1, z is the num-
ber of solid arrows ending in the circle. For all
other circles, # is one less than the number of
solid arrows ending in the circle. If the two root
circles are connected by a wavy line, they should
be counted as a single circle and should be as-
signed one factor of @,(c), where » is determined
as for circle 2. The functions ,(c) are polynom-
ials related to the cumulant polynomials P ,(c)
discussed by Yonezawa and Matsubara,” Leath
and Goodman,® and Sakun® as follows:

Q.(c)=(1/c)P, ,(c); n=0. (3)

This prescription for the value of a diagram is
similar to that of GAF except for the sixth and
seventh types of factors and for the summation
(rather than integration),

The Z[E, G*(€)] diagrams can be divided into
two classes. The values of diagrams in the first
class contain only @ ,(c) factors and are finite at
c=1. These are the diagrams that would be pres-
ent in an expansion of Z[E, G*(¢)] for an ordered
lattice. The values of diagrams in the second
class include one or more factors of @,(c) with
n> 0 and vanish at ¢=1. These diagrams repre-
sent corrections that account for the correlated
hopping characteristic of a disordered system.

We can classify the diagrams by the number of
independent lattice positions that appear in the
summand. A diagram with z# circles and no wavy
line or a diagram with z+1 circles and a wavy
line is classified as an z» body diagram. We shall
approximate %[E, G¢(¢€)] by the infinite series of
all two-body diagrams. In the limit of small con-
centration this should be a good approximation
because the neglected diagrams have more powers
of ¢ than those retained. For c=1, it can be
shown that this approximation gives the exact re-
sult for D(0, 0). Thus we expect that it will be a
reasonable approximation at all concentrations.

The sum of all two-body diagrams in Z[EK,G*(e)]
can be evaluated exactly to yield

a'’= }[ a exp(ik + 1)

l-c+ca

T T
E”[k,G(E)]—ﬁe—);/o‘ da[l—c+ca

in which the sum is taken over all displacements
in the lattice. The only assumption made about
lattice type is that all sites in the lattice are sym-
metry equivalent. Equation (4) holds for the case
of more than one site per unit cell, provided that
the sites are related by symmetry operations.

The integral in Eq. (4) must be done numerically.

+51n(l—c+ cozz)] , z2=w(P)G*(€) (4)

The two-body G*(¢) is calculated by making the
approximation Z[K, G*(¢€)]=Z @ (K, G*(¢)] and sub-
stituting Eq. (4) into Eq. (2). This yields an equa-
tion with G¢(€) as the only unknown. This equa-
tion can be solved numerically for és(e). A
Laplace-transform inversion routine® can then
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be used to obtain G*(¢). The two~body D(0, 0) is
calculated by substituting Eq. (4) into Eq. (1) and
taking the € -0, k-0 limit:

. < ) 1 a(1+z0)/zo
D(O’O)_ZHGS(O)};’ 4 _/; da (l-c+ca) ’
2= w(r)G*(0). (5)

n is the dimensionality of the system, The sum
is again taken over all displacements in the lat-
tice. The two-body (35(0) for a given value of ¢
is substituted into Eq. (5) which can then be eval-
uated numerically.

First we apply these results to the case in
which the transfer rate is nonzero only between
chromophores that are nearest neighbors on the
lattice. This problem has a percolation thresh-
old. Below some critical concentration, the
chromophores exist only in clusters of finite
size. The mean-squared displacement cannot
grow linearly at long times and (0, 0) should be
zero. Curve N in Fig. 1 illustrates the behavior
of D(0, 0) in the two-body approximation for a
nearest-neighbor rate of magnitude w on a simple
cubic lattice of spacing a. D(0, 0) has the exactly
correct value at c=1, approaches zero as c ap-
proaches 0,346 from above, and is zero below

3.0 7
F
2.0 1 !
D /
a2 W(a) Y
1.0 7 N
@) T T T T T T T T
0 1.0

FIG. 1. The € —0 and 2—0 limit of the generalized
diffusion coefficient is plotted vs ¢, the fraction of
occupied sites for a simple cubic lattice; a is the lat-
tice spacing and w(a) is the nearest-neighbor transfer
rate. CurveF shows D(0,0) for a FSrster dipole-
dipole transfer rate. Curve N shows D(0,0) for a
nearest-neighbor transfer rate. The dashed curve
shows D (0, 0) in the two-body approximation of GAF
(Ref. 2) for a continuum with a chromophore number of
density of c¢/a3.
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this concentration. The critical concentration for
site percolation on a simple cubic lattice has been
calculated by Monte Carlo methods to be 0.312
+0.001.1° We have repeated this calculation for
face-centered-cubic and body-centered-cubic lat-
tices and find critical concentrations of 0.168 and
0.254, respectively. The best estimates of the
site percolation threshold for these lattices are
0.198 £0.003 for the fcc lattice and 0.245 +£0.004
for the bee lattice.' Thus the two-body D(0, 0)
has a physically reasonable concentration de-
pendence. We can test the two-body approxima-
tion further for a completely filled lattice by
comparing G*(¢) with the well-known exact result
for nearest-neighbor hopping on a filled cubic
lattice. The exact GS(f) is unity at £=0 and de-
creases monotonically to zero as f approaches
infinity. For times at which G*® > 0.1, the two-
body result differs by no more than 0.003; for
later times it differs by no more than 0.008. For
partially filled lattices, it can be shown that
G*(t) decays to a finite nonzero value as t ap-
proaches infinity, whereas our two-body results
decay to zero. This casts some doubt on the
validity of the two-body approximation for this
problem that has a percolation singularity, des-
pite the reasonable behavior of 1)(0, 0).

For any transfer rate of infinite range, how-
ever rapidly decaying with distance, such as that
resulting from multipolar or exchange interac-
tions, percolation effects will be absent. Curve
F in Fig, 1 illustrates the concentration depen-
dence of 15(0, 0) on a simple cubic lattice for the
orientationally averaged Forster dipole-dipole
transfer rate, w(r)=(1/7)(R,/7)°. As noted above,
the result for c=1 is the exact result for an or-
dered lattice given by Forster?: D=2,76(R,/
)%a?/7). At low concentrations, the result ap-
proaches D= 3.26(R06/T)p4/3, where p=c/a® is
the chromophore number density. The p*? de-
pendence is to be expected since in the limit of
low concentration the lattice will cease to be im-
portant and transport should resemble that in a
continuum, whose D must scale'? as p4/3° The
numerical coefficient is the same as that of the
two-body continuum GAF D(0, 0), which is be-
lieved to be a good approximation for a continu-
um. The only effect of the three-body correc-
tions calculated by GAF on D(0, 0) is to lower
the multiplicative constant by 11%. The three-
body results of GAF are in excellent agreement
with experiments on dilute dye solutions.® Thus
the two-body lattice D(0, 0) shown in Fig. 1 has
the exactly correct value at ¢=1, approaches an
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accurate continuum approximation at low concen-
tration, and hence is expected to be accurate for
intermediate concentrations.

The approximation presented here allows one to

calculate transport properties for any lattice type,

any dimensionality, and any transfer rate. The
results are expected to be good approximations
over the full range of concentration, at least for

transfer rates that will not give rise to a percola-

tion problem. However, we expect the two-body

approximation to be more accurate in three dimen-

sions than in two dimensions. The agreement
between our results at ¢=1 for G*(¢) in the near-
est-neighbor transfer problem becomes poorer
with decreasing dimensionality. A detailed de-
scription of the model and calculations of time-
dependent transport properties will be presented
elsewhere.'?
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