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A theoretical study of hopping transport of excitations or charge carriers among particles
randomly distributed on a lattice is presented. The method used is an extension of the
diagrammatic technique applied by Gochanour, Andersen, and Fayer to hopping transport in a
continuum. We present an exact diagrammatic analysis of the configuration averaged Green
function of the Pauli master equation. We obtain a self-consistent approximation to the Green
function from which transport properties such as the mean squared displacement may be
calculated for any transfer rate, any lattice type and any concentration. For a three dimensional
lattice, the results are shown to be accurate in the low concentration limit and for the filled lattice,
and are expected to be accurate at intermediate concentration. This is the first theory of hopping
transport on a randomly substituted lattice, which is not restricted to low concentration, that can
be applied in the case of a long range transfer rate. Results are presented for a Forster dipole—
dipole transfer rate and for a transfer rate limited to nearest neighbors for a simple cubic lattice.
The latter has a percolation threshold that is described in a qualitatively correct manner by our

approximation.

1. INTRODUCTION

The phenomenon of hopping transport in disordered
systems is of considerable interest in several areas of solid
state physics. The hopping of a carrier between localized
states has been demonstrated to be a valid model of electrical
transport at high temperature in disordered solids such as
amorphous semiconductors' and molecularly doped poly-
mers.” The radiationless hopping of an electronic excitation
among molecular sites has been studied in mixed crystals,’
solutions,* and biological systems,’® and has recently become
a tool for investigating polymer structure.®

The radiationless transport of electronic excitations
among randomly distributed chromophores has received
much theoretical attention. Most workers adopt a model of
randomly distributed point chromophores in a continuum.’
The continuum results of Gochanour, Andersen, and Fayer®
(hereafter referred to as GAF) show excellent agreement
with experiments on dilute dye solutions.* Sakun has ad-
dressed the problem of energy transport among chromo-
phores distributed randomly on the sites of a lattice, but his
results are stated to be valid only at low concentration.®

Odagaki and Lax'®® have recently introduced an effec-
tive medium approximation for hopping transport on a dis-
ordered lattice, but their work is limited to a nearest neigh-
bor transfer rate and to bond disorder rather than site
disorder. In the nearest neighbor bond disorder problem,
nearest neighbor sites have a given probability of being con-
nected with a bond. The probability that a particular bond
exists is uncorrelated with the existence of any other bond.
In a site disordered lattice, the system treated here, a lattice
site has a given probability of being occupied, and the prob-
ability that a site is occupied is uncorrelated with the occupa-
tion of any other site. In the site disorder problem with the
nearest neighbor transfer rate, a bond exists between adja-
cent occupied lattice sites. In this case, however, there is a
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correlation between the existence of a bond connecting a pair
of sites and the existence of nearby bonds. Korzeniewski,
Friesner, and Silbey'® have derived an effective medium
approximation for transport on a site disordered lattice.
They treat transport with a nearest neighbor transfer rate
and their method has not been applied to a long range trans-
fer rate.

The electronic excitation transfer rate between two
chromophores with a multipolar interaction was shown by
Forster''™ and by Dexter''™ to havea 1/7" dependence on
the intersite separation. The rate of excitation transfer by an
exchange mechanism was shown by Dexter to have ane ~”"
distance dependence.''®™ For transfer of charge carriers
between majority sites in doped semiconductors, Miller and
Abrahams have derived a transfer rate with an /2 ¢ ~ " dis-
tance dependence.''® Nonnearest neighbor transfer steps
can thus be physically important and should not be neglect-
ed in a realistic theory. Even in a case in which the tranfer
rate falls off very rapidly with distance and the overwhelm-
ing majority of hops are between nearest neighbors, trans-
port will be qualitatively different from the predictions of a
nearest neighbor hopping model at concentrations below the
percolation threshold for the nearest neighbor problem.

In this work we present a theory of hopping transport
that can be applied in a straightforward way to calculate
transport properties for any transfer rate. We generalize the
diagrammatic approach of GAF in the continuum limit to
treat transport on a randomly substituted lattice.!? In Secs.
II through IV, we carry out an exact diagrammatic analysis
of the ensemble averaged master equation Green function
for this problem. In Sec. VI we describe an approximation to
the Green function, expected to be valid for any transfer rate,
any lattice type, and any concentration. Section VII contains
sample calculations for a simple cubic lattice with a nearest
neighbor transfer rate and with a Forster dipole-dipole
transfer rate. The nearest neighbor results show a site perco-
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lation threshold. The results for the Forster rate are shown
to be accurate in the high and low concentration limits and
are expected to be accurate at intermediate concentration.

il. MASTER EQUATION AND GREEN FUNCTION

We treat a lattice of M sites randomly filled with ¥
particles capable of retaining and transferring an excitation
or charge carrier. In the ensuing discussion we adopt the
language of energy transfer and refer to these particles as
chromophores, but the methods and results apply equally
well to the electrical conduction problem. All configurations
of the particles are assumed to be equally likely. It follows
that a lattice site has a probability c = N /M of being occu-
pied by a chromophore and a probability 1 — ¢ of being un-
occupied by a chromophore. p; (R, ), the probability that the
Jjth chromophore is excited at time ¢ in a particular configu-
ration of chromophores R = (r,,r,,...ry) is taken to satisfy
the Pauli master equation:

DR — (R,
dt
where p;(R,¢)is the jth element of the N-dimensional vector
p(R,?). Wis an N X N matrix given by

Wi =wy — 85 3wy,
1

(IL1)

(IL.2)

where w;, = wy; is the transfer rate between chromophores j
and k, which depends only on the vector distance between
the two chromophores. w;; is defined to be zero. 6 is the
Kronecker delta. The decay of p;(R,t) from lifetime pro-
cesses has been factored from the problem, as discussed by
GAPF. The solution to Eq. (II.1) is

pR?) = (e")pRO) . (IL.3)

The quantity of interest is the ensemble average excitation
probability given by

Pirt)= (; S, . PRt )> .

P(r,t)can be used to define an ensemble average Green func-
tion:

Prt)= 2 G(rr't)P(r',0).

(IL4)

(IL5)

In the continuum problem treated by GAF, the ensem-
ble average of a configuration dependent function F (R) could
be carried out by averaging independently over the position
of each chromophore. Here we must average only over con-
figurations in which at most one chromophore occupies any
site. The ensemble average of F(R) for the lattice problem is
therefore given by

> FRI1-8,.)
(F(R)y =2t I :

2 H(l - 6":""1)

rWrni<j

(IL6)
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The sums over chromophore positions r; run over all posi-
tions in the lattice. Equations (II.4), (I1.5), and (I1.6) lead to
the following expression for G (r,r',¢):

Grr't)=Gr—rit)+G"r—r't), (IL7)
Ge-r't) =8, (")), (IL8)
G™r—r't)=(N—1)K6,,._r(e)) . (IL9)

Gr —r',t) =8, Gt) gives the probability that a chromo-
phore excited at ¢ = 0 retains its excitation at a later time.
G ™(r — r',t) gives the probability that an excitation located
on a chromophore at positionr’ at # = O resides on a chromo-
phore at position r at a later time. From the Green function,
all of the system’s transport properties such as the time and
distance dependent generalized diffusion coefficient can be
calculated. Unfortunately, Egs. (II.8) and (II.9) cannot be
evaluated exactly. The rest of this work will be devoted to the
development of an approximation to the Green function,
valid at all times and concentrations.

Ill. PERTURBATION EXPANSION OF THE GREEN
FUNCTION

Following GAF, we expand the Fourier—Laplace trans-
form of the Green function in a perturbation expansion. As
in their treatment, each term in the expansion will be repre-
sented by a diagram. However, because of the difference
between the ensemble averaging procedure appropriate to a
lattice [see Eq. (11.6)] and that appropriate to a continuum,
the diagrams in the lattice problem differ both in structure
and in value from those defined by GAF. The Fourier-La-
place transform of S (r,# ), a function of lattice vector and time,
is defined by

S(ke) = F dte 3 e'S(rt). (ITL.1)
(43 T
Applying Eq. (II1.1) to Egs. (I1.7) and (I1.8) yields
Go(e) = {lle — W)y, (IIL.2)
G (k€)= (N — 1)([(€ — W)~ 11 ,,%") . (IIL3)

Equations (II1.2) and (II1.3) are expanded using the identity
€—W) '=e'4e W e " Wee "Wee™ 4 ooe

(I11.4)
We first examine the expansion of Eq. (IIL.3):
Gl = (N —1) 3 € I(Wer) . (IILS)

n=1
If Eq. (I1.2) is substituted into the above, a sum of ensemble
averaged products of w; factors and — w; factors results.
We illustrate our identification of these terms g\vith diagrams
in the following example. The contribution to G "(k,e) that is
second order in the transfer rate is

<§,: W, WE:"'“”) = N; ! <€ﬂ"” Y (= wy)wp) + (— wi)w,)

(IIL.6)

w,y) + 2,: wljwﬂD .
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The first term on the right-hand side of Eq. (I11.6) is rewrit-
ten

Bt o )

1#2
_N— 12(:\( =2 (gaers

since each term in the sum over / on the left-hand side of Eq.
(ITI1.7) has the same value. Application of Eq. (I1.6) yields

LN-YW-2)
63 (M _ 1)(M _ 2) rgﬂ ( wl3)(w12)
‘Sr,,r, )(1 - 6r2,r,)

X e*ra(] — S 1 —
1 W-HN=2) & _
e (M — 1M —2) rgr.;( w3)(ws2)

Xe*ra(] — Ser,) (IT1.8)

The equality holds because w;; is defined to be zero. In the
thermodynamic limit (N— 0 , M— 0, N /M—c), the quanti-
ty premultiplying the sum becomes c?/¢€>. Expression (I1L.8)
is represented by a pair of diagrams denoted I and II, shown
in Fig. 1, where

c2 iker
I== % (—wp)wp)e™™

63,,,,,,
11_-— 3 (-

1'12 T3

(= wislwy,)) , (IIL.7)

wys)(w2)e™H — O r,)
The ith chromophore is represented by a circle labeled i. A
factor w; is represented by a solid arrow from circle i to
circle j. Each solid arrow begins in a solid dot denoted a
vertex which carries a value €™/, and ends in a point that
may or may not be a vertex depending upon whether it is the
beginning of another solid arrow. In the present terminol-
ogy, an arrow has one beginning and one end, and the arrow
head points from the beginning to the end. A factor — w; is
represented by a solid arrow from circle i to circle j followed
by a dashed arrow returning to circle i. The last arrow in the
diagram, solid or dashed, ends in a vertex. A factor — 6, x 18
represented by a wavy line connecting circles i and j.
G "(k,€) diagrams are characterized by a continuous path of
solid and dashed arrows beginning on an initial circle labeled
1 and ending on a final circle labeled 2. Circles 1 and 2 are
denoted root circles and other circles visited on the path are
denoted field circles. A dashed arrow can only begin at the
end of a solid arrow and must return to the circle in which
the solid arrow begins.

. We define a diagrammatic series ¥,, as the sum of all
G "(k,€) diagrams without wavy lines. The diagrams in the
series 7,, are the same as those in the series G (k,¢) in the

(IIL.9)

IT

FIG. 1. A pair of diagrams in the expansion of G "(k,e€) given in Eq. (I11.10).
See Eq. (II1.9) and the preceding discussion.

continuum problem of GAF, which is defined in Eq. (42) of
their paper.® Of course the value of a ¥,, diagram is different
from that of the corresponding GAF diagram. Equation
(II1.5) can now be expressed as a diagrammatic series.

G ™(k,€) = ¥,, + the infinite series of diagrams con-
structed by adding to ¥,, diagrams at most one wavy line
between each pair of circles. Two circles may be connected
by a wavy line only if there does not exist a solid arrow that
begins in one and ends in the other.

(IIL.10)

A G ™(k,€) diagram in the thermodynamic limit is eval-
uated as follows. The field circles are assigned dummy labels.
Each solid arrow is assigned a factor w;;. Each dashed arrow
is assigned a value — 1. Each vertex is assigned a factor e~ '.
Each wavy line is assigned a factor — &, , . This product is
multiplied by exp(ik-r,,) and the positions of chromophore 2
and of any field circles are summed over all lattice sites.
These sums are unrestricted, since the §, , factors will cor-
rect for configurations in which more than one chromophore
is allowed to occupy the same site. The result is then multi-
plied by ¢~ !, where m is the number of circles in the dia-
gram. Equation (III.10) is an exact result. It is a restatement
in diagrammatic language of Eq. (I11.3).

Equation (II1.2) can be expanded in an analogous fash-
ion to give an exact diagrammatic representation of G‘(e)
The diagrams in this series have one root circle labeled 1, one
or more field circles, and have a continuous path of solid and
dashed arrows that begins and ends on the single root circle.
The rules given above concerning allowed sequences of solid
arrows, dashed arrows, and vertices in G™ diagrams apply
here as well. The rules given above for evaluating G™ dia-
grams apply here with the exception of the exp(ik-r,,) factor
included in the evaluation of those diagrams. We define a
diagrammatic series ¥, that contains all diagrams with a
continuous path of arrows starting and ending on the same
circle with no wavy lines. 7, is the same series as the dia-
grammatic representation of G° (€) by GAF in the continuum
problem, given in Eq. (28) of their paper. Again, the value of
a given ¥, diagram is different from the value of the corre-
sponding GAF diagram. We can then write

G ‘(€) = €' + ¥, + the infinite sum of all diagrams derived
from ¥, by introducing wavy lines in the manner
described in Eq. (II1.10).

(ITL.11)

Like Eq. (IT1.10), Eq. (III.11) is an exact result. Itisa
restatement of Eq. (IIL.2).

IV. RENORMALIZATION OF THE é’"(k,e) SERIES

The diagrammatic expansion of G "(k,€) [Eq. (II1.10)]
can be simplified by using a topological reduction procedure,
similar to that described by GAF, to eliminate loops. A loop
is a part of a diagram that becomes disconnected'® from both
root circles by the removal of a single circle and of a pair of
vertices within that circle.'* The loop does not include this
circle. By a procedure analogous to that described by GAF,
we can exactly rewrite the diagrammatic series for G™ as a
new series without loops in which the vertices now carry a
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value a‘(e) rather than ¢~'. Equation (II1.10) can be re-
placed with the following:

G "(k,€) = the sum of all diagrams in Eq. (I11.10) without
loops. These diagrams are evaluated by the same
procedure as those in Eq. (I11.10) except that ver-
tices are assigned the value G “(¢) instead of e "

(IV.1)

A second topological feature identified by GAF is the
node. A node is a vertex in a field circle with the property
that removal of the field circle and of that one vertex con-
tained within its leaves the two roots disconnected. > The
diagrams in G "(k,€) that have no nodes play a special role.
We define X[k, G* (€)], the self-energy, by

~ 1
k,Ge)] =———
Y [k,Ge)] NtEPE
[sum of all diagrams in Eq. (IV.1) without nodes].

(IV.2)

E[R,Ev“ (€)] depends on € only through G *(€). As in the theory
of GAF, the sum of all diagrams in G "(k,€) can be expressed
in terms of 2[k,G’ (€)]. The result is

c[Ge)]? 3 [kG (el
1 —cGle)2]k, G‘(e)]
From Eq. (IV.3), we derlve an exact relation between

G G'*(€) and the & = 0 limit of 3[k, G’ {€)]. The Fourier-Laplace
transform of Eq. (I1.7) is

G (k€)= (IV.3)

G (ke) = G(e) + G"(k.e) . (IV.4)
Taking the k = 0 limit of Eq. (IV.4) gives

lim G (k,€) = f dte=Y Girt)=1/e. (IV.5)

k—0 0 T

Equation (IV.5) is a statement of the conservation of prob-
ability. At all times, the excitation must be somewhere in the
lattice. Substituting Egs. (IV.5) and (IV.3) into Eq. (IV.4),

and solving for G *(¢), gives

G = (IV.6)
€+ cZ[0,G(¢)]
Equation (IV.6) resembles tl}g Dyson equation of many body
quantum mechanics, with G (€) corresponding to a renor-
malized propagator, ¢! corresponding to a bare propaga-
tor, and = corresponding to a self-energy. If Eqgs. (IV.6) and
(IV.3) are substituted into Eq. (IV.4), the result is

Glke) = (e +e [Z 0G5 — S [k,a‘{e)]}) o
(IV.7)

Equation (IV.7) has the form of a generalized diffusion equa-
tion,'® with the generalized diffusion coefficient given by

£ [sl08te1 - 5 kGen} . ava

All of the results presented thus far are exact. E[R,a‘ 3}
can, in principle, be calculated by summing the diagrammat-
ic series in Eq. (IY.2). The valye of this sum will be a function
of the unknown G* (e). If Z[k, G (€)]is evaluated at k = O and
substituted into Eq. {IV.6), the result is an equation with

D(ke) =

G‘ (€) as the only unknown, This equation can then be solved
for G” (€). Substitution of G‘ {€) into X[k, G (€)] gives = as an
explicit function of €. Z[k, G {€}] can then be substituted into
Eqgs. (IV.3) and (IV.7) to calculate the Green function.

V. THE TWO BODY APPROXIMATION TO = [k,G%(€)]

The diagrammatic series in Eg, (IV.2) cannot in practice
be summed exactly to obtain 2[k,G’ (€)]. We will follow the
procedure of GAF to obtain a self-consistent approximation
to G’ (). First a partial summation of Eq. (IV.2} is carried out
that gives an approximation to 2{k,G"(¢)}, which depends
explicitly on G*(€). This approximation is substituted into
Eq. (IV.6) and the resulting equation is solved for an approxi-
mate, self-consistent G* (€). This approximate G* (€) can then
be substituted into the approximate X[k,G*(€]] to give an
approximate expression for X that depends explicitly on e.
This expression for = can be substituted into Eq. (IV.7) to
calculate an approximation to the Green function. Our ap-
proximation scheme is self-cons1stent8 in that our approxi-
mate G° {¢)and our approximate 3k, G {€)] satisfy Eq. (IV.6).
If an arbitrary approximation to G (¢) is substituted into an
arbitrary approximation to the functional Z[k, G (€)], eva-
luation of the right-hand side of Eq. (IV.6), in general, will
not give the original approximation to G*{€). Such an ap-
proximation is not self-consistent. In this section we propose
a hierarchy of approximations to X and evaluate the first
member of this hierarchy.

We classify = diagrams according to the number of in-
dependent particle positions that appear in the summand. A
diagram with # circles and no wavy lines has an associated
summand that depends on » independent particle positions.
The particle positions represented by a set of circles connect-
ed by wavy lines are not independent, since a wavy line con-
necting circles m and n represents a factor — &, , . A dia-
gram for which the associated summand depends on
independent particle positions is denoted an / body diagram.
3 [k,G*(€)] can be expressed as

3k = 3 S k&),

=2
where 2% is the sum of all / body diagrams. We propose a
hierarchy of approx1mat10ns to 2k, G S(€)] given by

SkG1I= S 3 kG

i=2

(V.I)

(V.2)

The first member of the hierarchy, the two body approxima-
tion, is carried out by setting » = 2 in Eq. (V.2). We will sum
the I series exactly as a functional of G-(€) and use this
result with Eq. (IV.6) to obtain an approximate G “(¢).

In their treatment of the continuum transport problem,
GAF classify the = diagrams according to the number of
circles in the diagram. 21 in their treatment is defined to be
the i — 1 term in a density expansion of 2. =" as defined
here for the lattice problem contains all of the diagrams in 2
of order ¢/~ !, as well as terms of higher order in ¢. Our
motivation for defining = as we have, rather than as the
i — 1 term of an expansion of = in powers of ¢, can be illus-
trated by examining diagram II in Fig. 2. Diagram II was
presented as a G" graph in Fig. 1, but since it has neither
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(O (%
IT II”

FIG. 2. A pair of diagrams in the expansion of =? [k,G ()], whose values
cancel at ¢ = 1. See discussion following Eq. (V.2).

loops nor nodes it is also a member of the X series. Another
diagram can be constructed from II as follows. Move the end
of the solid arrow in circle 3 to circle 2. Erase circle 3 and the
wavy line connecting circles 2 and 3. The resulting diagram
II', shown in Fig. 2, is a member of the 3 series. If the value of
IT" is v, then the value of Il is — cv. For very small ¢, diagram
II' makes a more important contribution to = than diagram
II. For ¢ near 1, the value of II is no longer negligible com-
pared to the value of II' and at ¢ = 1 the value of II exactly
cancels the value of IT'. If ¢ were defined simply as the sum
of all = graphs of order ¢'~ 1, the resulting approximation for
G *(€) would be expected to be accurate in the c—0 limit.
Consideration of diagrams such as II and II' shows that
there is no reason to expect such an approximation to be
accurate near ¢ = 1. 2@, as we define it here, contains both
IT and II'. By defining 3 in terms of independent particle
positions rather than number of circles, we include together
with all J circle diagrams, diagrams with more than i circles
whose values differ from the values of i circle diagrams by
factors of — c and which therefore will not be negligible near
¢ = 1. Cancellation at ¢ = 1 of the type displayed by dia-
grams II and II' is an important feature of the two body
approximation and will be discussed further below.

We now carry out the summation of all the diagrams in
Eq. (IV.2) with two independent particle positions. In Ap-
pendix A, this infinite sum of diagrams is reformulated in a
way that is both instructive and useful. We group together
sets of diagrams like IT and IT' whose values differ only by
factors of — ¢ and assign one symbol to their sum. We show
in Appendix A that Z?[k,G “(€)] is exactly equal to the sub-
set of diagrams in Eq. (IV.2) with either no field circles or one
field circle and a wavy line between the roots. In order to
evaluate this set of renormalized diagrams we must define a
new topological structure, the moveable part, which is asso-
ciated with a particular circle. For root circle 1, a moveable
part is any end of a solid arrow in the circle. For root circle 2
or 2 field circle, a moveable part is any end of a solid arrow in
the circle except the end of the last solid arrow to visit the
circle. The diagrams in this new expansion of 2 are evalu-
ated using the same rules that apply to the diagrams in Eq.
(IV.2) with one exception. Each circle contributes a factor
Q. (¢} to the value of a diagram, where 7 is the number of
moveable parts in the circle. Q, (c) is an nth degree polyno-
mial in ¢ whose form is given in Eq. (A3) of Appendix A.
Oole) =1.Forn>0,Q,(0)=1,and Q,(1) = 0. The @, (c) are
related to the cumulant polynomials P, (c) discussed by Yon-
ezawa and Matsubara,'” Leath and Goodman,'® and Sakun®
by P, ;(c) = cQ,(c)-
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Ry

A B

FIG. 3. The two diagrams in the renormalized = series with nonzero value
at ¢ = 1. See discussion preceding Eq. (V.3).

These renormalized = diagrams can be divided into
two groups. The values of diagrams in the first group contain
only Qy(c) factors and are finite at ¢ = 1. Values of diagrams
in the second group contain one or more factors of @, {c) with
n >0 and vanish at ¢ = 1. These diagrams represent correc-
tions to 2% that account for the correlated hopping charac-
teristic of a disordered system. Although the second group of
diagrams contains an infinite number of members, the first
group contains just two diagrams, shown in Fig. 3. It is in-
structive to calculate the generalized diffusion coefficient
D(k,e) at c =1 in the two body approximation, from Eq.
(IV.8). Since diagram B in Fig. 3 is not k  dependent, it does
not contribute to [0, G %€)] — =[k,G *(€)]. Therefore,
D (k,€) in the two body approximation at ¢ = 1 is calculated
just from diagram A in Fig. 3. The value of diagram A is
¢2, exp{fker)wir). Equation (IV.8) gives

L (V.3)

D (k,e) = [1 — expliker)]uw(r)
atc=1.It can be shown19 that Eq. (V.3) is exactly the cor-
rect result at ¢ = 1. Equation (IV.7) shows that if the two
body D (k,e) is exactly correct at ¢ = 1, then the two body
approximation to the full Green function G (k,e) at ¢ =1
must be exactly correct as well. By defining £ as the sum of
all 2 graphs with two independent particle positions rather
than as the sum of all Z graphs of order ¢, we obtain an
approximation to D {k,¢) that is not only accurate in the limit
¢—{0 (since it contains all 3 diagrams with at most one factor
of ¢) but that is exact at ¢ = 1. We do not prove that recover-
ing the exact D (k,€) at ¢ = 1 is a feature of the #n body approx-
imation for arbitrary n. The two body results suggest that
this may be the case. Ifit is, then the hierarchy of approxima-
tions in Eq. (V.2) represents a well defined way to improve
upon the two body approximation.’

The reformulation of the 2 series carried out in Ap-
pendix A is instructive in that the new series is composed of a
group of terms with finite values at ¢ = 1 and a group of
terms with zero value at ¢ = 1. It is also useful because the
new series is in a form that can conveniently be summed.
This summation is carried out in Appendix B. The result is

zm[k,& l€)] = Zw(r) J:o dae “ (__e_“‘_’_-_m)

1—c+ce
X[iln(l —c+ce™ ™
c

—zZa

e
l—c+ce *

where z = w(r)a *(€). The summation runs over all displace-

(™ — 1) + 1] (v.4)
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ments r in the lattice. The integral over a must be done nu-
merically. For a given lattice type and transfer rate, Eq. (V.4)
1s substituted into Eq. (IV.6) and a numencal solution for

’(6) can be obtained. This self-consistent G *(€) can be sub-
stituted into Eq. (V.4) and the result substituted into Eq.
(IV.8) to obtain an approximation to the generalized diffu-
sion coefficient D (k,¢). In the next section we present some
numerical calculations based on Eq. (V.4).

VI. RESULTS

In the previous sectlon it was shown that if the two body
approximation to 2[k, G “(€)] is substituted into Eq. (IV.8)
for D {k,€), the result is exactly correct at ¢ = 1. From Eqgs.
(V.3)and (IV.7), the two body approximation must therefore
recover the exactly correct Green function G (k,e)ate=1.
However, it is true that ?[k, G*(e)] at ¢ = 1 is an approxi-
mation to 2[k,G*(€)], which neglects an infinite series of
diagrams that have a wavy line connection between the root
circles. The values of th&e diagrams are independent of k,
and therefore they would not contribute to D (k,€) in Eq.
(IV.8). It can be shown that the two body self-consistent
G ‘(¢), calculated from Eq. (IV.6), is not exactly correct at
¢ = 1. Since the two body approximation to the full Green
function at ¢ = 1is exactly correct, the two body approxima-
tion to the diagonal part of the Green function must also be
exactly correct. The fact that our self-consistent G ‘(Q is not
exactly correct at ¢ = 1 implies that the two body G ™(k,€)
has a spurious dxagogal (k independent) contnbutlon that
cangels the error in G*(€) so that the sum G(k €) = Gs(e)

+ G ™(k,e€) is correct at ¢ = 1. The exactly correct G "(k,e€)
has no diagonal contribution.

We can test the accuracy of our two body G* (¢ ) calcula-
tion at ¢ = 1 by examining the case of nearest neighbor hop-
ping on a filled simple cubic lattice. G* (¢ ) cannot be calculat-
ed exactly in closed form for a filled lattice of arbitrary type
and a transfer rate of arbitrary distance dependence. How-
ever, for the case of a transfer rate that is nonzero only
between nearest neighbors on a filled simple cubic lattice,

1.0
) NEAREST NEIGHBOR
. TRANSFER
GS(wt) A
1 SC LATTICE
o T T T T 1 T T T T 1
0 wt 1.O

FIG. 4. G*(t), the probability that an initially excited chromophore retains
its excitation after a time ¢ for a simple cubic lattice and a nearest neighbor
transfer rate. Curve A is the exact result [Eq. (VI.1}], and curve B is the two
body result. The two body approximation is highly accurate for this case.

G* (t) may be calculated exactly®':

Git) = [e 2y 2wt)}?, (VL.1)
where w is the magnitude of the step rate and 7, is a modified
Bessel function. Figure 4 shows plots of the exact G*{z) (A)
and the two body approximate G*(t) (B) for this case. The
approximate curve was calculated by substituting Eq. (V.4)
into Eq. (IV.6), evaluating G %(€) numerically and then invert-
ing the Laplace transform numerically using the Stehfest
algorithm.?” Figure 4 shows that the approximate G (¢} is
practically indistigguishable from the exact answer in this
case. The error in G “(¢) at ¢ = 1and hence the spurious diag-
onal contribution to G ™(k,€) must be small for the case of a
nearest neighbor transfer rate on a cubic lattice. We have
also compared the two body G° (¢ ) for nearest neighbor hop-
ping on a filled square lattice with the exact result. The
agreement is less good than the agreement between the ap-
proximate and exact G* (¢ ) for a cubic lattice, indicating that
the two body results may be less accurate in two dimensions
than in three.

Another transport property that can be calculated in a
straightforward way from our formalism in the two body
approximation is the time dependent mean squared displace-
ment of an excitation. The Laplace transform of the mean
squared displacement along the k direction is given by

([v{e)rk 12 = (2/€) lim Dike), (VI.2)

provided that the symmetry of the problem is such that
(r(e)}*k ) = 0. The overall mean squared displacement on a d-
dimensional lattice is given by

) =2/ Y D (6.

i=1

(VL3)

{%;] is a set of d mutually orthogonal unit vectors and ﬁxl (€)
is the limit as |k| approaches 0 of D (k,e), where k is taken to
point in the X; direction. In many situations of interest, the
limit as |k|—0 of D (k,€) does not depend on k. For these
situations we have

(r(e)) = (2d /€D (0) . (VL4)

If the limit e—0 of 13,,‘ (€) exists for all i, then (r %(¢)) will
grow linearly with time in the long time limit with slope

221) ().

i=1
For the situation described by Eq. (VL4), ( %(€)) will have
slope 2dD (0,0} in the long time limit.
From Egs. {IV.8), (V.4), and (V1.2}, we can calculate a
general expression for (r *(€)) in the two body approxima-

tion
(r?e)) =c/€ Z rw(r) f da [1——_0—;_2:—63—7“] e =,
(VL5)

z= w(r)G e).
If ¢ is set to unity in Eq. (VI.5) we obtain the exact result for a

filled lattice:
(Ple) =1/ 3 ruwlr). (VL6)

In Fig. 5 we show the time derivative of the mean squared
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FIG. 5. The concentration dependence of the diffusion constant D (0,0) in
the two body approximation for a nearest neighbor transfer rate (V) and for
a Forster dipole—dipole transfer rate (F) on a simple cubic lattice of spacing
a. wia) is the nearest neighbor step rate. The dashed curve shows D (0,0) for
the Forster rate in a continuum with a chromophore number density ¢/a® in
the two body approximation of GAF.

displacement as a function of time for the orientationally
averaged Forster dipole-dipole tranfer rate w(r) = 1/7(Ry/
r)® on a simple cubic lattice. These plots were calculated in
the two body approximation from Egs. (V.4), (IV.6), and
(VL.5). We find for this lattice and transfer rate that within
the two bodx approximation, the limit as 7 approaches o of
(r¥t)) is 6D (0,0)t. D (0,0) is a function of c. Figure 5 illus-
trates that transport becomes diffusive at shorter time for
higher concentration. The short time behavior shown in Fig.
5 is quite different from the short time behavior for a contin-
uum discussed in Refs. 7(a) and 8. These authors show that
the mean squared displacement for a Forster transfer rate in
a continuum goes as ¢ >/ as t—0. Hence, its derivative di-
verges as —0. It can be demonstrated that the 7—0 limit of
(r?)) for the lattice two body approximation is {7 *(t))
=c[Z, 7 *w(r)]t and that this is also exactly the correct re-
sult.” Therefore the +—0 limit of d {(r %(t))/dt for a lattice
exists and equals c=, 7 Zw(r).

_. Curve F in Fig. 6 shows the concentration dependence
of D (0,0) on a simple cubic lattice of spacing a for the orienta-
tional}y averaged Forster transfer rate. At ¢ = 1, the two
body D (0,0} takes on the exact value for an ordered lattice
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FIG. 6. The time dependence of the time derivative of (/*(t)), the mean
squared displacement, in the two body approximation for a Forster transfer
rate on a simple cubic lattice is shown at three concentrations. The dashed
line in each plot is 6D (0,0), the long time limit of this derivative. Transport
approaches the diffusive limit more rapidly for higher concentration.

calculated by Forster. 1@ In the limit of low concentration,
D (0,0) approaches 3.26 (R &/7) p*/2, where p = c/a® is the
chromophore number density. This p*/> dependence is to be
expected since in the limit of low concentration and long
time, the lattice will cease to be important and transport
should resemble that in a continuum, whose D (0,0) must
scale”™ as p*/°, The numerical coefficient is identical to that
of the two body GAF D (0,0), which is believed to be a good
approximation for a continuum. The only effect of the three
body corrections calculated by GAF on D (0,0) is to lower the
multiplicative constant by 11%. The three body results of
GAF are in excellent agreement with experiments on dilute
dye solutions.* Thus the two body lattice D (0,0} shown in
curve F of Fig. 6 has the exactly correct value at ¢ = 1, ap-
proaches an accurate continuum approximation at low con-
centration and hence is expected to be accurate at intermedi-
ate concentration.

We next consider the concentration dependence of
D (0,0) for a nearest neighbor transfer rate. This problem has
a percolation threshold. Below the critical concentration for
site percolation, the chromophores exist only in clusters of
finite size. The mean squared displacement cannot grow lin-
early with time and D (0,0) should be zero. Above the critical
concentration, transport on the infinite cluster should be-
come diffusive at long time and D {0,0) should be finite. Curve
N in Fig. 6 shows the concentration dependence of D {0,0)in
the two body approximation for a nearest neighbor transfer
rate of magnitude w on a simple cubic lattice of spacing a.
D (0,0) has the exactly correct valueat ¢ = 1, approaches zero
as ¢ approaches 0.353 from above, and is zero below this
concentration. The critical concentration for site percola-
tion on a simple cubic lattice has been calculated by Monte
Carlo techniques to be 0.312.2%® Thus the two body D 0,0)
has a physically reasonable concentration dependence. We
have also calculated the critical concentration for body cen-
tered and face centered cubic lattices. The results are 0.256
and 0.168, respectively. The site percolation thresholds on
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these lattices have been estimated by a series expansion tech-
nique to be 0.245 4 0.004 and 0.198 + 0.003, respective-
ly.z““”

It can be shown that the D {0,0} shown in curve N in Fig.
6 vanishes as (c — ¢,) as c—¢, +, where ¢, is the critical
concentration. Moreover, the concentration dependence of
D (0,0)is very close to, though not exactly, linear for all ¢ > .
This behavior is very similar to the concentration depen-
dence of the diffusion constant in the nearest neighbor trans-
fer problem predicted by the effective medium approxima-
tions (EMA) of Odagaki and Lax'®® and Korzeniewski,
Friesner, and Silbey.'™ The effective medium approxima-
tion predicts an exactly linear concentration dependence of
the diffusion constant and a critical concentration ¢, = 2/z,
where z is the number of nearest neighbors.?® Our predicted
values of ¢, for the cubic lattices are close to but not exactly
equal to 2/z. In fact, it can be shown that the ¢, predicted
from our approximation approaches 2/z in the z— oo limit.
The two body approximation presented here has several im-
portant differences from the EMA of Refs. 10(a) and 10(b). In
order to carry out an EMA calculation for a partially filled
lattice, one must first solve exactly the corresponding filled
lattice problem. This is not a feature of our approximation.
The EMA results of Refs. 10(a) and 10(b) are not readily
applicable to a transfer rate of arbitrary distance depen-
dence, whereas the results presented here may be used in a
straightforward way to calculate transport properties for
any transfer rate.

For the nearest neighbor transfer problem, it can be
shown that the #— o limit of the exact G*(t)is zeroatc = 1,
and is finite at all concentrations below ¢ = 1:

lim Gt)= [(N.)/N],

where & is the number of chromophores and ¥, is the num-
ber of clusters in a given configuration. The brackets denote
a configuration average. The right-hand side of Eq. (VI.7) is
finite for all ¢ <1 and approaches unity as ¢ approaches
zero.?? Our two body G* (¢ ) for this problem decays to zero as
t— oo for ¢ > 0.353, which casts some doubt on the validity of
the two body approximation for a transport problem with
critical behavior. Below ¢ = 0.353, the two body G*(¢) be-
haves in qualitatively correct fashion, decaying to a finite
value as t— 0. This limiting value approaches unity as ¢
approaches zero.

(VL)

VIi. SUMMARY

We have presented an exact diagrammatic analysis
(Secs. III and IV) of the ensemble averaged Green function
for hopping transport of excitations or charge carriers
among particles distributed randomly on a lattice. We have
proposed a hierarchy of self-consistent approximations to
the Green function from which transport properties such as
G® (1), the probability that a particle excited at = 0 retains
the excitation at time ¢, and (r %(¢)), the mean squared dis-
placement, can be calculated. The procedure presented here
can be applied to any lattice type in which the sites are relat-
ed by symmetry operations (including lattices with more
than one site per unit cell), and any transfer rate. The first

member of the hierarchy, the two body approximation, is
demonstrated to be accurate for a three-dimensional lattice
at unit concentration and in the low concentration contin-
uum limit. This is the first theory of incoherent transport on
a randomly filled lattice that can be readily applied to the
physically important case of a long range transfer rate.
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APPENDIX A: RENORMALIZATION OF THE = [k,G%(¢) ]
SERIES

In this Appendix, we derive the renormalized expan-
sion of 2 [k,G*(€)] presented in Sec. V. The simplification
of the 3 series presented in Sec. V is based on two different
types of cancellation among the diagrams. We first simplify
the series by removing a subset of the diagrams whose values
sum to zero for all values of ¢. We then group together sets of
diagrams whose values sum to zero at ¢ = 1.

In examining a =? diagram, it is useful to group the
circlesinto sets such that all circles in a given set are connect-
ed to each other by wavy lines and circles in one set are not
connected to circles in another set by wavy lines. Each £?
diagram contains two such sets of circles. If a circle has no
wavy line connections, it is considered to be a set. We group
together diagrams that are topologically similar. Two dia-
grams are topologically similar if they differ only in the
placement of wavy lines among circles in a set. Figure 7
shows two groups of topologically similar diagrams. Dia-
grams I-IV are topologically similar as are diagrams V-
VIIL The values of two topologically similar diagrams are
either identical or differ by a factor of — 1. When the values
of a group of topologically similar diagrams are summed,
there will be considerable cancellation. We make use of this
cancellation to simplify the = series by rewriting it as a new
series with restrictions on allowable wavy line connections.

A set of circles in a = diagram either contains no root,
one root, or both roots. In diagrams I-IV in Fig. 7, each set
contains one root, and in diagrams V-VIII, one set contains
both roots and one set contains a field circle. For reasons that
will be discussed below we treat a set containing zero or one
root differently from a set containing both roots. Consider
diagrams I-IV. If the value of I is u, then the value of the sum
of I through IV is 2u. This result could have been predicted
from the topological theorem given in Appendix C. If we
designate circle 2 as the trunk circle and circles 3 and 4 as
branch circles and recall that the circles are distinguishable
by the order in which they are visited by solid arrows, then
the theorem tells us that we need only retain the diagram in
which the circles are linked by a singly connected path of
wavy lines that is constructed by drawing a wavy line from
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FIG. 7. Two groups of topologically similar 2 diagrams. Diagrams I-IV
are topologically equivalent, as are diagrams V-VIII.

each circle in the set to the next circle to be visited by solid
arrows. The value of this diagram will have an additional
factor of (n — 1)!, where n is the number of circles in the set.
Applying the theorem to the sum of I through IV, we see that
the sum can be represented by diagram I with an extra factor
of (3 — 1) and hence that the value of the sum is 2u. We can
thus simplify the =? series by only retaining diagrams in
which sets of circles containing zero or one root are connect-
ed by a singly connected path of the type just described. Each
such set of n circles contributes a factor of (n — 1)! to the
value of the diagram. This procedure is valid because the
topological theorem of Appendix C can be applied indepen-
dently to each of the two sets of circles in a £? djagram.
We now turn to sets of circles containing both roots as
in diagrams V through VIII. For this case we designate the
roots as trunk circles and field circle 4 as a branch circle. The
topological theorem tells us that we need only retain dia-
grams in which a wavy line connects the roots and circle 4 is
attached by a wavy line either to root 1 or to root 2, but not to
both. This connection carries a value 1!. Thus the theorem

predicts that the value of the sum of diagrams V-VIII equals
the value of the sum of diagrams V and VI. This can be
verified by noting that the values of diagrams VII and VIII
sum to zero. In general, the theorem in Appendix C tells us
that we need only retain diagrams with the following sort of
wavy line connections among circles in a set that contains
both roots. The roots are connected by a wavy line. The other
circles are grouped into two subsets, one of which may be
empty. Each subset is linked by a singly connected path of
wavy lines constructed by drawing a wavy line from each
circle to the next circle in the subset to be visited by solid
arrows. The first circle in one subset is connected by a wavy
line to one of the roots and the first circle in the other subset
is connected to the other root. If one subset has m, circles
and the other has m, circles, then the value of the diagram
contains a factor m,!m,!.

We have simplified the diagrammatic expansion of =?
by grouping together diagrams whose values differ only by
factors of — 1 for all concentrations. We now group togeth-
er diagrams whose values differ only by factors of —c. A
necessary concept is that of the reduced diagram. Consider a
3@ diagram with wavy lines. The corresponding reduced
diagram is constructed by collapsing all wavy lines except
for a wavy line that connects the roots. Consider two circles
A and B linked by a wavy line, where A is visited by solid
arrows before B. The wavy line is collapsed by moving all
ends of solid arrows in circle A to circle B and then removing
circle A and the wavy line. Diagrams without wavy lines and
diagrams in which the only wavy line connection is between
the roots are their own reduced diagrams. The reduced dia-
gram constructed in this way is always itself a member of the
3? diagrammatic series. If a wavy line connecting the roots
is collapsed, the result is not a member of the  series. It is
for this reason that we treated sets of circles containing both
roots differently from sets of circles containing zero or one
root. If a set of circles in a diagram contains zero or one root,
then collapsing all wavy lines in that set yields another mem-
ber of the @ series. In Fig. 8, diagrams I-V have V as a
reduced diagram and diagrams VI and VII have VII as a
reduced diagram.

Two diagrams that have the same reduced diagram
have values that differ only by factors of — c¢. The =® series
is renormalized by grouping together all diagrams corre-
sponding to a given reduced diagram and by representing
this group with the reduced diagram, which now has a value
equal to the sum of the values of the diagrams in the group.
The value of this diagram in the renormalized = series
equals the value of the diagram in the original =@ series
multiplied by a polynomial in — c. For example, if the value
of diagram V in Fig. 8 is u, then the value of the sum of
diagrams I~V is #(1 — 3¢ + 2¢?). Diagrams I-V in the old
3@ series are represented in the new 3 series by diagram V,
where the value of diagram V now includes a factor
1 — 3¢ + 2¢2. Similarly diagrams VI and VII in the original
series are represented by diagram VII in the renormalized
series, where the value of diagram VII now includes a factor
of 1 —c.

Each circle in a renormalized 3 diagram has an asso-
ciated polynomial. This is a reflection of the fact that the
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vI VIT

FIG. 8. Diagrams I-V form the complete set of 2 diagrams that have V as
areduced diagram. Diagrams VI and VII form the complete set of diagrams
that have VII as a reduced diagram.

collapsing of wavy lines in one set of circles is carried out
independently of the collapsing of wavy lines in another set.
At this point the reader is urged to recall the definition of
moveable part in Sec. V. A circle with #» moveable parts in a
renormalized X diagram has an associated polynomial in
— cof degree n, denoted Q,, (c). The coefficient of ¢™ in Q,, (c)
is related to the number of ways #» moveable parts can be
distributed among m + 1 circles. The combinatorial prob-
lem to solve is as follows. We seek the number of ways to put
n unlabeled objects {moveable parts) into m + 1 labeled
boxes (circles) such that (i) box 1 may be empty; (ii) each other
box has at least one object; (iii) a configuration derived from
another by switching the contents of boxes 7 and j (ij#1)
should not be counted as a new configuration. Let P,,,, be the
number of ways of accomplishing the above. Then the coeffi-
cientofc™ in @, {c}is{ — }"m!P,,,. The factor m! comes from
the singly connected sequence of wavy lines linking the
m + 1 circles. Each wavy line carries a factor — 1. P,,,, is
given by

> ! RNVNY

(i j,-<n)

i=1

Equation (A1) can be rewritten in a simpler form. We note
that if the { j; } in Eq. (A1) were allowed to take on the value

zero, P,,,, would simply be (m + 1)" /m!. We can rewrite Eq.
(A1) as a series of sums in which the { j; | start at zero, and
then use the multinomial theorem to evaluate each sum in
the series. The result is

mP, =3 (—)m+1 —i)"('"). (A2)

i=0 i

Q. (c) is given by

0.0= 3 (" § (—pm+1-(7). (a3

The proof that @, (1) = O for n > 0 from Eq. (A3} is straight-
forward. It can also be shown that the Q, (c) are related to the
cumulant polynomials P, (c) introduced by Yonezawa et
al.,"” Leath et al.,® and Sakun® by

¢@,(c) =P, (e} n>0. (A4)

APPENDIX B: SUMMATION OF THE 2(2)[k,és(5)]
SERIES

In this Appendix, we evaluate the infinite diagrammat-
ic series 2® [k,G “(¢)], defined in Eq. (V.1), to arrive at Eq.
(V.4). It is convenient to divide the 3@ series into two parts
321G %e)] and Z?[k,G(€)], and sum each part separately.
3@ is the sum of all diagrams in = with one field circle and a
wavy line between the roots. 2 is independent of the Four-
ier vector k. =%, which is k dependent, is the sum of all
diagrams in 3 with no field circles. We first sum the X
series.

The 3 series is most easily summed by examining a
fictitious series E ?. The diagrammatic expansion of E ¥ is
identical to that of 2. The value of an E ¥ diagram differs
from the value of the corresponding = diagram in that in-
stead of associating a polynomial Q, (c) with each circle, we
give a moveable part on root 1 a value m,, a moveable part on
root 2 a value m, and a moveable part on the field circle a
value m;. We define a renormalized transfer rate from circle
1 to circle 3 by

T3 =w;;— wf3a’(e)m3 +wl, [&S(E)]2m§ + o

SR . & B (B1)
1+ w3G(e)ms,

Similarly, we define T3, by

Wz ) (B2)

Tyy=——————
T + w3, G ‘(€)m;

Renormalized return rates R;; and R, are given by

Rii— — ws;,G *(e)m,
31 = p s
1+ w;,G(€)m;
- 6‘ €
Ry, = w;,G *(€)m, (B3)

—_—
1 + ws,G (€)m;

Inspection of the diagrams shows that
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EP=cGle) 3 (—8,.) > Tis TulRs + Rf
Fy2fs i=0
2A 54
=—cY ,\ [w(r)] G’if) ) (B4)
r [1+ wir)G (e)m;][1 + wr)G “(€)m, + m, + m;)]
If Eq. (B4) is expanded in powers of w(r), the result is
« k(K R/ | o
Ef=cYuwr) ¥ (=23 ( ) mi~' Y (l ; )’"f my= 1, (BS)
T K=1 i=1 M i=o N J

where z=w(r)G “(¢), a dimensionless quantity. An E ) diagram with an associated factor m{m5 =7/~ 'm’ ~‘ corresponds toa T
diagram with an associated factor Q;(c)Q; _; _ ;(c)Qx _;(c). We can therefore write

A o k k i—1
EA[Ge)] =¢ Y wir) kZl(—z)" 'Zl (1) Qi ZO( )QQ 1o
=cSulr) 3 (—zfd,fc)-

(B6)
k=1
The relationship between the cumulant polynomials of Ref. 9 and the Q, (c) is given in Appendix A. From this result and
Eq. (6) of Ref. 9, we have

d" e
0,0=1e 2 () .
1+ €/ lx=tnes1 -0
The sum over jin the first line of Eq. (B6) is, therefore,

(B7)
i—1 i—1—j j i—1 X 2
5 E=5)E5) - () , (B8)
2 &N J dx'" ' 14+ e/\dx! 14+ lxcmerni—g A ' \14+€) lxcmen—o
where Leibnitz’ rule has been applied. The quantity A4, (c) defined in Eq. (B6) is given by
k k d‘ k—i¢ & d i—1 & 2
wia=1e 3 () (B ) (B ) .
(e ,-;1 i/\dx*— " 14+e&/ \dx' '\ 1+¢& x = In(e/1 — c) (B9)
Application of Leibnitz’ rule to this expression gives

d* e &
A e)=1/c*— ][lnl &) — +c+ln1-c] .
k(c) ol g (14 €Y - ( ) r e

(B10)
The sum over k in Eq. (B6) can be evaluated using the generating function technique of Yonezawa and Matsubara.'* We seek a
function g( y,c) such that

gye)= 3 Aile)y*/k!,
k=1

(B11)
which implies
d k
A )= =gy, B12
el =Zzetnel| (B12)
Equation (B10) can be rewritten as
k +y +y
40=22(3) ["’x—] [ln(l tet) - £ 4 cqm(l— c)]
dy 1+e9‘+y l+ex+” x= ln(c/l-d
d"(l)[ e ][1 (1 —cj(l —e”)
=—|—])[————||[—In(l —c+ce’) + —" —1 . B13
dy¥\e/l1—c+ce’llec ( ) l—c+ce” ly=0 (P13)
From Eqgs. (B12) and (B13), we can make the identification
—_ —_p¥
glyc)= [—e———] [——— In{l — ¢ +ce’) + Ll______c)g—e)] -+ const . (B14)
1—c+ce’ 1—c+ece’ y=0
The constant is determined to be zero from the initial condition g(0,c) =
through by e ~ “ and integrating both sides from @ = 0 to @ = oo gives

0. Substituting ya for y in Eq. (B11), multiplying
J‘; dae™glyac)= 3 Ailc)y*.
k=1

(B15)
The right-hand side of Eq. (B15) is the sum we seek in Eq. (B6). Substituting Eqs. {B14) and (B15) into Eq. (B6) yields
@ A w

Z; [Ge)] =2r‘,w(r)£ dae*a(_ljc%;_) [——ln(l——c+ce—m) 4 (l_cl(:-_c:—za)]

(B16)
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where z=w(r)G “(e).

The procedure just used to sum the = series can be
applied to the summation of =, Diagrams in this series have
2 root circles and no field circles. We first treat a fictitious
series E 7, that bears the same relation to =% as E ' does to
3@, The value of an E ? diagram with #n moveable parts on
circle 1 and p moveable parts on circle 2 has a factor mimy.
Renormalized transfer and return rates are defined by

Tp=— "0,
1+ wlzg (€)m,
R, = —2uGlEm; (B17)

1 + w,,G (e)m,

Inspection of the diagrammatic series E ) shows that it can
be expressed as

E(z'_ze’krlzT Z R7, (B18)
Substitution of expressions (B17) into Eq. (B18) gives
ED =3 e ) . (B19)
g 1+ wlr)G*e)im, + m;)

Expanding the summand in powers of w(r) gives

E‘”—Ze““w(r) Z (=2 Z ( )’"lm;", (B20)

n=0 i=0
where z = w(r)G “(e)-
An E '? diagram whose value contains a factor m} m;
corresponds to a =7’ diagram whose value contains a factor
Q:(c)Q,, _ ;(c). The series 2! therefore has the value

3 (kG e)]
d

=S et 3 (—ar 3 (7) 000,

n—i

=) e* w(r) Y (—2)"S,(c}- (B21)
r n=0
Applying Eq. (B7) and Leibnitz’ rule yields
n 2
S () =1/ 2 ( a ) (B22)
dx"\1+¢e"/ Ix=mfes1 -0

The sum over n in Eq. {(B21) can be carried out using the
generating function technique described above. We seek a
function 4 (c,p) such that

hiey)= Y S,lc)y/n!, (B23)
n=0
which implies
S, le)= (B24)
Equation (B22) can be rewritten as
d | ety 12
=L L[]
+ex x=In(c/1 ~¢)
n 2
dy"ll—c+ce’) ly=0

Comparison of Egs. (B24) and (B25) yields

hley) = [T—_cefc?]z . (B26)

Replacing yby yain Eq. (B23), multiplying through by
e~ % and integrating both sides from a =0 to @ = « gives

f dae=hicya)= S S,(c)y". (B27)
(1] n=20
Substituting Eqs. (B26) and (B27) into Eq. (B21) gives

@ A
3 (kG

d

© e~ za 2
= Z e* w(r) f dae™° (—————) , {B2§)
T o l—c+ce

where z = w(r)a e).
The integrals in Egs. (B28) and (B16) must be done nu-
merically. Substituting Eqs. (B16) and (B28) into the relation

> k&6 = z‘:’ K611+ 3 (6%

results in the expression presented in Eq. (V.4).

APPENDIX C: A TOPOLOGICAL THEOREM

In this Appendix, we prove a theorem that is used in the
renormalization of the ?[k,G “(€)] series described in Ap-
pendix A. The theorem is most easily stated in terms of a new
type of diagram composed only of circles and wavy lines.
Such a diagram is constructed by linking # distinguishable
circles with wavy lines in such a way that each pair of circles
is connected in the sense of Ref. 13, and that no pair of circles
is directly connected by more than one wavy line. A direct
connection between two circles is a wavy line whose ends are
attached to the circles. We denote the sum of all such dia-
grams A, . Each diagram in A, has a value ( — 1)?, where p
is the number of wavy lines in the diagram. Since each dia-
gram has value 1 or — 1, there will be considerable cancella-
tion among the diagrams in A,,.

Consider an arbitrary division of the circles into two
groups. j circles are designated branch circles and n — j cir-
cles are designated trunk circles, where j>1. Since the cir-
cles are distinguishable, we can label the trunk circles 1
through n — j and the branch circles n—j + 1 through n. A
subset of the diagrams in A,, have the following features. The
trunk circles are linked by a singly connected path of wavy
lines constructed by drawing a wavy line from each of circles
1through n — j — 1 to the circle with the next highest valued
numerical label. The branch circles are divided into sets.
Each set is linked by a singly connected path of wavy lines
constructed by drawing a wavy line from each circle (except
for the circle with the highest valued numerical label) to the
circle whose numerical label has the next highest value. The
branch circle with the lowest valued numerical label in each
set is also connected to one of the trunk circles. Each trunk
circle can have at most one such connection. Let the sum of
this subset of A, diagrams be denoted A,. Our theorem
states that if we evaluate each A,, diagram with the following
rules, then the value of the original A, series equals the value
of this new A, series. Each wavy line contributes a factor of

— 1. The set of n —j trunk circles contributes a factor
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(n — j — 1)l. Each set of s branch circles contributes a factor
sl

We now prove this result. We have defined the notions
of “connection” and “direct connection”. We now define an
indirect connection as any connection that is not direct.
Consider diagrams in A, in which circle 1 is indirectly con-
nected to another trunk circle by a sequence of wavy lines
and circles that contains one or more branch circles. If there
is more than one such connection consider the connection
linking circle 1 to the trunk circle whose numerical label has
the lowest value. Let this lowest number be k. Either there
exists a direct connection between circles 1 and k or there
does not. Consider a diagram in which this connection ex-
ists. There exists a second diagram in A, that differs from
the first only in that this direct connection is absent. The
value of the sum of this pair of diagrams is zero. Therefore, in
summing A, , we need not consider any diagram in which
circle 1 is connected to any of the other trunk circles by a
sequence of wavy lines and circles that includes one or more

branch circles. Similarly, we can eliminate all diagrams in"

which circle 2 is connected to any of the trunk circles labeled
3 through » — j by a sequence of lines and circles that in-
cludes one or more branch circles. This procedure can be
applied to the circles labeled 3 through n —j — 1. The only
diagrams remaining in A, are onesin which the trunk circles
are completely connected and the branch circles are divided
into sets with the following characteristics. Circles in one set
are not connected to circles in another. At least one circle in
each set is connected directly to a trunk circle. Other circles
in the set may be connected directly to that same trunk circle
but may not be directly connected to any other trunk circle.
Each set of brauch circles and the single trunk circle to
which circles in the set may be directly connected forms a
completely connected set of circles. A set of circles is com-
pletely connected if each pair of circles in the set is connect-
ed.

Consider a completely connected group of m circles in
such a diagram. Let this group be either the entire group of
trunk circles or a set of branch circles and the trunk circle to
which it is directly connected. In the former case, let us refer
to trunk circle 1 as circle ¢. In the latter case let circle g be the
single trunk circle to which the branch circles may be direct-
ly connected. Let circle g be directly connected to the set of
circles (i,/,...z), where i is the label with the lowest numerical
value and z is the label with the highest numerical value. Let
circles / and z be directly connected. For each diagram con-
taining this structure, there exists another diagram that
differs from it only in that the direct connection from i to z is
absent. The value of the sum of this pair is zero. Therefore we
need only retain diagrams in which circle ¢ has a single wavy
line attached to it. Let the circle to which it is attached be
labeled k. The same arguments allow us to retain only dia-
grams in which circle k is connected to one other circle. By
repeating this argument we reduce the set of diagrams in A ,
to those in which the m circles are linked by a singly connect-
ed path of wavy lines that starts on circle g. There are
(m — 1)l such paths. We can represent these (m — 1)! possibi-
lities with a single path constructed by drawing wavy lines
from each circle (except for the circle whose label has the

highest numerical value) to the circle whose label has the
next highest numerical value. When the diagram is evaluat-
ed this path contributes a factor (m — 1)\

Consider the remaining A, diagrams. The procedure
just described can be applied independently to the trunk cir-
cles and to each set of branch circles. The resulting diagram-
matic series is exactly 4, , in which each diagram is evaluated
by the rules given in the statement of the theorem.
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