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Our recent !h_+ry-of hppping transioit of excitations or charge carriers +mong particles raedomly distributed on the sites of. 

a lattice is extended here to includk: the presence of a -low_ concentraiion trap sp+es. We present an exac! diagrammatic 
analysis of the configuration-averaged Green functioti-bf the Pa& master equzidon for this piobleni ‘we obtijn a ion-per; 
titrbative ~ppr&imhti& to the Gee-6 function thzit‘is expe&ed t& bk accurate at both high and low donor concentration fdr 

low trap concentration; The-appkoximakon can be carried alit foi-any Mice type in which an3 two.sit&‘can be transformed 

into one another by a symmetry operation, and a transfer rate.of-any distance dependence; We present calculations of the 
observable in a steady-state excitation transfer and trapping experiment that illustrate the effecl of dimensionality and of the 
distance dependence of the transfer rate on this observable. 

. -.. 

1. Introduction 

In a recent paper [l], hereafter referred to as I, we presented a-theory df hopping transport df electrons 
or optical excitations among particles randomly distributed on the sites-of a lattice. Thk results in I can be 
used to calculatk transport properties for a- transfer rate of -any distance dependence on any lattice -in which 
any two sites can be transformed into one another by a symmetry operation. The theory provides excellent 
approximations for both high and low concentrations. In’the-present work tie extend the treatment of I to 
include a deep trap species that is. present in lo&- concentration_ This modificatiori makes. the previous 
theory applicable ‘to a larger group of experiments_ -.Tratispr%t in ‘the ,presence ,of traps is intrinsically 
interesting, and-dust be understood for the practical ‘reason that low concentr&ion traps are necessarily 
present in crystals of all types. For-example, chemical [2-51 and defect [6] traps- have been studied in 
molecular djstals, and chromium.dtier traps have been studied in ruby [7]. 

The theoretical problem of incoherent transport among randomly distributed particles in the presence of 
traps has been addressed by several ‘investigators. Most workers have used a continuum -model in which 
donor atid trap points are randomly distributed in a volume (8-131. As discussed in section 4, it can be 
inappropriate to apply a contiripum model io experimental glata on crystals. Sakun [14] has develop&d a 
theory. of- transport and trappirig on:n rando&ly sub+itui<;l’lattice, but unlike the rtsults presented he& 
his work. iS only valid foi 10~ doribti ‘co&fi&tio~. &:Lre and Par& [15] have presented a theory -of 
trapping by interstitial traps randomly placed in a ftilly occupied lattice of donors. Since-their-method takes 
advantage of the- translational invariance of the donor array, it does not appear to be extendable to the 

situation treated here, in which ‘the _donors_.and trabs are _randon$ distributed yn the. @‘es qf a pa+ally 
filled lattice; 

Section.2 contains a sutiary of an exact analysis of the configuration-averdged-Pauli master equation 
Green function for the. trapping-problem. The exacl diagrammatic ‘expansion of the Greeq function is given 
in -append% -& Section- -3 contaiq_a description of oi~r lattice.two-bocly approximation :f?r. dilute .tiaps,~ 
which should~.beir&d~dver:t.l& f@L range-of donor &%elitratio& Some of..the details.of. the-calculation are 
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given in appendices B and C. In section 4, we present calculations of the observable in steady-state 
excitation transfer and trapping experiments and discuss the effect of the dimensionahty and of. the 1 

distance dependence of the transfer rate on this observable_ We also show that the results of- suck 
experiments on isotopically mixed naphthalene crystals [5] can be described by our model with an 

octupole-octupole transfer rate. The theory presented here is expected. to provide an accurate description 
of hopping transport of excited states or charge carriers in the presence of dilute deep traps for any lattice 
type, any transfer rate and any donor concentration. 

2. The configuration-averaged Green function 

The system consists of No donors labeled 1 through No and N-,- deep traps labeled No + 1 through 
No + N-r distributed randomly among the M sites of a lattice. All configurations of the donors and traps 
are assumed to be equally likely, so a given site has a probability co = No/M of being occupied by a donor 
and a probability cr = Nr/M of being occupied by a trap. In the following discussion we will refer to the 
entity being transferred as an excitation, but the methods and results apply equally well to. the charge 
carrier transfer problem. Pj(R, f), the probability that the jth particle is excited at time t in a particular 

configuration R = (r,, rr - - - I;~,+,~,, ) is taken to satisfy the Pauli master equation 

dP(R, t)/dr = Q*P( R, r). (1) 

where P,(R, I) is the jth element of the (No + N-,)-dimensional vector P( R, t)_ Q is an (No + NT)- 
dimensional square matrix given by 

Qjk = w_,~ - S,, j, k < N,; 

Qjk = ujk 9 N,<j<No+NT, k<N,: 

Qj, = 0. k> N,,. (2) 

In this model, an excitation may be transferred from a donor to a donor or from a donor- to a trap, but 
transfer from a trap either to another trap or to a donor is forbidden_ \wx-i = 15k is the transfer rate between 
donors j and k and u,,, is the transfer rate between donor I and trap II. ip,. is defined to be zero. Sik is the 
Kronecker delta. 1~;~ and u,,, are assumed to depend only on the vector dtstance between the two particles. 
We assume initially that the lifetimes of the excitation on the donor and the trap are infinite, as is the case 
if the “excitation” is a charge carrier. Transport properties for the case in which the excitation has finite 
lifetimes on donor and trap may be easily obtained from transport properties for the infinite lifetimes case, 
as shown in refs. [12,13]. This matter will be discussed further in section 4. 

We wish to calculate the configuration-averaged Green function, from which the system’s transport 
properties can be obtained. The Green function G(r, r’. ;) gives the probability that an excitation has 
migrated from position r’ to position r in time t. G( r, r’, t) can be written as the sum of three terms: 

G(r,r’,r)=S,.,.Gs(t)+Gm(r-r’,r)+GT(r-r’,t), 

GS(t) = ((e’%>+ G”‘(r-- r’, f) = (,yo - l)<(e’Q),ls,~,_r-,,>, 

(3) 

GT(r- r’r t> = NT((efQ),v,+,.,S,,,~-l,l,_,.) (4) 

GS(r) is the probability that a donor excited at t = 0 retains its excitation after a time t. Gm(k - r’, t) is 
the probability that an excitation has migrated from a donor at position r’ to a donor at a distinct position 



r in t&et. GT(r - r’, t)-is the p&bability-ihaj an ex&tatic$,bas m_igiaterd. &@I :a_&nor_$t. pqsifi&‘r” to a’ -. 
trap &p&t& -r in mtime-mtt. Thk angular ljrack& in eq&- (It), &&o&8 $&ice. tionfigurati&j ,aver&[i] ’ 
defin~d-by,,::_,‘.__~_-r~.-~ I’_ C.‘:,_-: 1 -:‘- :.- : -: -___.!-?,. I~‘-r: ---_ _. ._.-:._-, ._. .._ ,-:;. 

The sitis ‘over’donor And t&p positioiis 3 rule %ver all’&& in &e Jattide. ’ 

We now folibti the a&y&’ of. th< Greeti fund&n~driginally presented. for the continuum transport 
problem by G&hahour et al. [16], which is adapted in refs:[12,13] to thecon&nuuq transport and trapping 
problem and in I to the lattice transport problem. The Fourier-Laplace transform of the Green function is 
given by 

(6) 

We expand &(k, C) in a perturbation series in powers of Q. The Fourier-Laplace transforms of eqs. (4) are 
written as infinite series of lattice sums over products of ‘vii and uii transfer rates. Each such lattice sum is 
represenied by a~diagram. Diagrammatic expansions in the thermodynamic limit [l] of &“‘(k, c), eTjk, C) 
and G’(C) are given in appendix A. &;“(k, C) can be written in terms of a quantity X&k, G’(C))*, which is 
equal to the sum of a subset of em(k, l ) diagrams. Similarly, GT(k; E) can be- expressed in terms of 
XT(k, e’(c)), which is equal to then sum of a subset of GT(k, E) diagrams *: Both Z&k, &‘(E)) and 
Z:,(k, e’(c)) are functionals of C?“(C). Their diagrammatic expansions are given in appendh A. em and &:’ 
are related to 2, and 8, by 

From the Fourier-Laplace transform of eq; (3), the fact that lim _ 1 ,_,,G(k, E) = l/r (conservation of 
probability), and eqs. (7), we can derive an exact relation between C?:“(C) and the k + 0 limits of Z&k, $1 
and Z,(k+ es). : 

G-s(c) = 1 

c + c&Z,(O, h’(c)) +cTXT(O, G’(C)) 
(8) 

An exact expression for the Lap&e transform of the probability that an excitation remains somewhere in 
the donor ensemble after a time t can also be derived in terms of X, and 2,. We define GD(r, t) as the 
sum of G”(r, t) and Gm(r, r). GD(r, t) gives the probability that an excitation has undergone a displace- 
ment r-within the donor ensemble in time t. ‘The Fourier-Laplace transform of this quantity is given by 

(9) 

The k --, 0 limit of eq. (9) gives the Laplace transform of the probability that an excitation has not been 
trapped during a time t. 

All of the results presented thus far are exact. If ZD and 8, could be evaluated exactly, then &:‘(c) could . 
be obtailied exactly From eq. (8). Substitution of the exact G’(E), 8,, and- ET into eqs. (7) -would yield 
e:“(k, l ) _and eT(k, c) and hence the entire Green function, 

* [@(c)l2 cd z&k. (%~$and [~(r)/~l c,&(k, &(c)) correspond.to-the quantities A(k, C?(E)) z&d T(k, C, C’(P)) defined f6r 
the continuum t@sport and trapping problem in refS. [12,13]. 

.- 
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3. Two-body approximation to Z, and X, for-c, =SC 1 

Since the diagrammatic series for 3, and Z, (eqs. (A6) and (A7)) cannot be summed exactly,.we’resort 
to the approximation procedure of refs. [1,12,16]. We carry out a partial summation of_ the Z, and X, 
series to obtain approximations of these quantities as functionals of e:‘(r). -When these approximations are 
substituted into eq. (8) the result is an equation with I? as the only unknown. This equation,can be solved’ 
for a non-perturbative approximation to 6’ as a function of the Laplace variable E and the donor and trap 
concentrations c,, and c-r. The rest of the Green function can then be approximated from eqs. (7). 

In I, a hierarchy of approximations was proposed to the P, series for the lattice transport problem in 
the absence of traps: 

where 2s) is the sum of .a11 diagrams that can be evaluated by performing a lattice sum over i independent 
particle positions. The approximation in eq. (10) is denoted the rz-body approximation. As discussed in I, 
the lattice n-body approximation to 8, is not simply an expansion in powers of c,,_ It contains terms of all 
order in c,, as well as all diagrams of order cb-’ or lower. It was shown in I that the two-body 
approximation to S, as defined in eq. (10) with n = 2 gives transport properties that are accurate in the 
cr, - 0 limit and gives the exact generalized diffusion coefficient at ct, = 1. We therefore expect that 
two-body approximations to Et, and Z, for the transport and trapping problem will also be accurate for 
both high and low donor and trap concentrations. 

The evaluation of the two-body approximations to Z‘, and & in the transport and trapping problem is 
considerably more complicated than the evaluation of the two-body Zt, carried out in I. In this work we 
will restrict ourselves to the experimentally important situation in which the donors may be present in any 
concentration, but the trap concentration is much smaller than unity. We approximate X, and T:7. by rg) 
and ry);-‘. the subset of Zg) and ST. (‘) diagrams that are of order COT or cr_ If c-r -=x 1, it is valid to neglect 
terms of order c?i and higher, and the resulting approximations to 3, and Xr should yield transport 
properties that are accurate for any value of ct,_ 

The contribution to _‘g’ that is of order c$ was evaluated in I. The evaluation of the remaining terms 
that compose FE) and @ is discussed in appendices B and C. The resulting formulae for Fg) and ry) are 
as follows: 

Pg( k, @( l )) = 1 w( r)/omda e-” 1 _ .,‘IT 
r D 

,-,.. 

X (l/C,) ln(1 - cn + cD e-‘“) + I _ c ‘iy 
D D 

e_-_p (e’““- 1) + 1 

- 2c,C eikmr l%?(r) 
r 

/o’Ddn ewU 1 _ c ‘iz 
D D 
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ee-:d e -:L1 

x ( l-~Di-cDe-“‘B)z (l-cD+cDe-‘LK)Z 

-c,c w( r)iwda e-a (l/c,) ln(1 - c,, + cu e-=1) + 
(1 - c,)(l - e-‘“) 

r l-cD+cDe-=o 



P!)(k, es(c)) = -c,,~zo(r)(l -0 eikS’)/mdu e-- 1 _ =oeizo e_rn 
t 0 

'k'cv(r)B. (12) 

In the above equations, z = @(c)w(r) and 8 = l/[l + 6;‘(e)u(r)]. 

4. Application to steady-state energy transport and 
trapping experiments 

Transport and trapping of excited states have 
been studied in a variety of mixed molecular 
crystals using steady-state optical experiments 
[2-51. It is generally found that for low trap con- 
centration the fraction of luminescence from the 
traps is strongly dependent on donor concentra- 
tion. For low donor concentrations, the relative 
trap luminescence increases slowly with increasing 
donor concentration until a critical concentration 
is reached at which trapping becomes very effi- 

cient -and a substantial fraction of the total 
luminescence comes_ from the traps..This effect is 
easy to interpret qualitatively for a system in which 
the trap concentration is-low and interactions are 
of- short. range, so that most trapping events are 
preceded by a series-of donor-donor hops. At low 
donor concentrations, most excitations will be re- 
stricted to small clusters of donors and little trap- 
ping will occur. Ai the donor concernration is 
raised, a concentration will be reached. at which 
the donor system is sufficiently connected that 
paths of interacting donors -will lead to most traps, 
and most of the excitations will-be trapped. Thus, 
measurementsof the relative--trap Iuminescence at 
fixed low trap concentration as a function of donor 
concentration- will yield ,informitio.n about the ex- : 

tent of donor to donor transport in the system. . 
It is shown in ref. [13] that the fraction of trap 

luminescence in an energy transfer experiment in 
which the excitation has finite lifetimes on donor 
and trap can be calculated in a straightforward 
way from the Green function for the transport 
problem in which the excitation is taken to have 

I1 

I 

3 
Fig._ 1. I( co. c,) from cq.. (I$ fqr a square lattice with qD/qf 
=1 and c,plO-‘. (A) w(r)=u(r)=k&R/r)$ o/R= 
0.304. (B) w(r) = o(r) = k&R/t)“; a/R = 0.489. (C) w(r) 

= u(r) &I kD(R/r)14; u/R y 0.600. The rat& of lattice spac- 
ing-o to i_nteia&on length R has been chosen so that w(a) is 
the same for the ihrke c&&These three curyes illustrate the 
influence of long-range_tr+sfer steps on I(c,, cT). 
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infinite lifetimes on donor and trap: 

I(c,,c,) = 
1 - kDGD(O, k,) 

1 + k,GD(O, k,)(q,/q, - l) - 
(13) 

/lc’,. c,-) is the integrated trap luminescence nor- 
malized by the sum of the integrated luminescence 

from donors and traps. k, is the inverse of the 

donor lifetime_ qD and qT are ihe donor and trap 
quantum yields (ratio of measured lifetime to 
radiative lifetime) in the absence of energy transfer. 
eD(k, E) is defined in eq. (9). The experimental 
observable I( cD, c~) can be calculated for small 
c,- within the two-body approximation from eqs. 

(II), (12), (8) and (9). S ince Z(c,, cT) is a steady- 
state observable, it can be calculated directly from 
the Laplace transform of the Green function. 

The two-body results presented here allow the 
calculation of the Green function for arbitrary 
lattice type (provided that any two sites can be 
transformed into one another by a symmetry oper- 
ation) and for transfer rates ofi arbitrary distance 
dependence. In fig. 1. we illustrate the importance 
of long-range interactions in determining the ob- 
servable Z( co, cT). These calculations were carried 
out for a square lattice, a trap mole fraction of 
10m3 and equal donor and trap quantum yields. In 
curve A. the donor-donor and donor-trap transfer 
rates are taken to be W(T) = u(r) = kD(R/r)6 
(orientation-averaged dipole-dipole rate). In curve 
B, the rates are iv(r) = u(r) = k,( R/r)” (orienta- 
tion-averaged quadrupole-quadrupole rate). In 
curve C, the rates are W(T)= u(r)= k,(R/r)” 

(orientation-averaged octupole-octupole rate)_ In 
each case the ratio of the lattice spacing a to the 
interaction length R has been chosen so that the 
step rate evaluated at the nearest-neighbor dis- 
tance is the same in all three cases (= 1300 
hops/lifetime). Thus the three plots differ only in 
the extent to which there are interactions outside 
the first shell of neighbors. Although each of the 
transfer rates is a sharply decreasing function of 
distance. this difference is sufficient to dramati- 
cally change the dependence of I(c,, c-r) on co 
for fixed small cT_ In the limit of a transfer rate 
that is non-zero only to nearest neighbors, the 
observable 1( cD, cT) for small cD should be near 
zero below the critical concentration for site perco- 

0 

Fig. 2. I(cr,.c7) from eq. (13) for c,=IO-~. qo/qT= 0.5. 
a/R = 0.60 and H.(T) = o(r) = k,( R/r)14. (A) Simple cubic 

lattice of spacing a. (B) Orthorhombic lattice with spacing a in 
the sy plane and spacing a= in the z direction. w(uz)=O.l 

w(a). (C) Orthorhombic lattice with spacing a in the xy plane 
and spacing (I= in the ; direction. w(a,)=O.Ol w(a). (D) 

Square lattice of spacing a. This figure illustrates the influence 

of diniensionality on this observable. 

lation, and then rise steeply at that coticentration, 
which for the square lattice is 0.59 [17]. It can be 
easily shown that for a nearest-neighbor transfer 
rate on a square lattice there is a range of donor 
concentrations around the critical concentration 
for which there exist no physically reasonable 
solutions of eq. (8) in the two-body approxima- 
tion, i.e. solutions that are real continuous func- 
tions of E for E 2 0. For the corresponding problem 
on a cubic lattice, physically reasonable solutions 
exist for all donor concentrations_ 

Fig. 2 illustrates the influence of dimensionality 
on the trapping observable. Curve A shows 

r(c,, cT) for cT = 10m3, q,-,/q-,- = 0.5, ,u( ,-) = u( ,-) 
= k,(R/r)‘” and a/R = 0.60, for a simple cubic 
lattice and curve D shows &co, cT) for the same 
parameters with a square lattice. The other two 
plots show I(c,, c-r) for orthorhombic lattices in 
which the transfer rate evaluated at the nearest- 
neighbor distance in the L direction is 1% of that 
rate in the _Y_Y plane (curve C) and 10% of that rate 
(curve B). Most molecular crystal energy transport 
systems are verjl anisotropic and are often mod- 
eled with isotropic lattices of lower dimensionality 
[4,5]. Fig. 2 shows that adding a’ small amount’ df 
transfer in a third dimension changes&cd, cT) 
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Fig. 3. Comparison of .f(c,, c-r) from eq. (13) (L) to the 

predictions of the continuum theory of ref. [13] (C) for a square 

lattice of spacing o. (A) cT = 10S3; k(c) = u(r) = k,( R/r)*‘; 
a/R = 0.6; qD/qT = 1. (B) c7 =‘10-3, w(r) = u(r) = 
kD(R/r)14; a/R = 0.4; q&q-,. =l; (C) Curves CJ and Ll 
have the same parameters. as (B) but with w(r)= u(r)= 
k D( R /r)6_ Curves C2 and L2 have the same parameters as (A) 
but with w(r) = o(r) = kD(R/r)6. The continuum and lattice 

theories agree only for very low cD and small a/R. 

considerably from the two-dimensional case. 
Most of the theories. that have been developed 

for excitation qr charge .catier-,transfer -and trap- 
ping have .-been b$sed oti a lcontinuum :model 
[S-13],_ :in which --the particles, qe taken to ,.be. 
randomly -distributed _ t+ughout -Some -volume. 
+ch the&es are applicable. to raidoF_ solutions 

3 shows~ a -. @&pl$r$oni beiwelen::ihe:_continuurn 
:trappirig theq-of. ref. [l3] ,and Ithe. 1attice:theor-y 
-of the -pieseti!. work.. Cuive--L :in’ iig. -3A). shdws 

I(c D;q-)- for -a sc@are:lattide; &~.10-~; w(r) =. 
u(i) = &o(R/r)‘$, b/R T 0.6, and curve. L-. in fig.- 

3B shows -I(&; -cT-) __ for. the, same system -with 
a/R = 0.4. The cuive labeled C.in each figure is a 
calculatitin from the-continuum -theory of ref. 1131 
for a-continuum with the same number densities of 
donors and trapsand the same W(T) and u(r). The 
two -theories agree-at small values -of: c,,, and’ this 
agreement improves as the interaction length R 
becomes large relative to the lattice. spacing. Fig. 
3C shows the same calculations as 3A and 3B with 
transfer rates I = U(T) = k,( R/I-)~. (Note that 
for a given value of a/R, w(a) will be much larger 
for the transfer rate of-figs. 3A and‘3B than for the 
transfer rate of .fig. 3C.) The discrepancies between 
the lattice and continuum results cati be large even 
for this longer-ranged transfer rate. These figures 
illustrate that the application of a continuum the- 
ory to experiments on mixed crystals may be inap- 
propriate unless the interaction length is very large 

. 
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Fig. 4. The filed circles are measurements on singlet excitation 

transport in mixed naphthalene crystals af:4.2 K by Gentry and 
Kopelman [.5]: The squares are calculakdYfrom eq. (l?) for a 
square lattice :and wiih ‘the c-r ~valuekgiveti~ by Gentry and 

Kopelman.. a/:R = 0.60.‘ &/qT”= 0.5 and w(r) = ti( r) = 
k,( R/r)14. The calculated pointi do‘not lie on a smooth cutie 

because of the variation in cT; which rang& from 3 X 1Qm4 
1x10-3: : .’ _- __ 
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relative to lattice parameters. 
Singlet and triplet energy transport and trap- 

ping in an effectively two-dimensional system 
(perdeuteronaphthalene/naphthalene/betamethyl- 
naphthalene mixed crystals) has been extensively 
studied by Kopelman and co-workers [4,5]. In our 
designation. naphthalene is the donor and be- 
tamethylnaphthalene is the trap. Measurements on 
singlet excitation transport on this system by Gen- 
try and Kopelman [5] are depicted in fig. 4 (circles). 
cr could not be kept exactly constant for these 
measurements, but varies from 3 x 10eJ to 1 X 
10m3. The squares in fig. 4 are the result of a 
two-body calculation of Z(c,. c-r) for a square 
lattice with qD/qT = 0.5 (the value given by Gen- 
try and Kopelman), MY = u(r) = k,( R/r)‘“. and 
a/R = 0.6. We have chosen an orientationally 
averaged octupole-octupole transfer rate because 
the transition dipole of naphthalene is known to 
be small and cannot account for the pure naph- 
thalene crystal exciton band structure [19]. The 
octupole-octupole term is the next symmetry al- 
lowed term in a multipolar expansion of the inter- 
molecular interaction [19]. We have assumed that 
transport is two dimensional, but it is unclear the 
extent to which this is true [4.5]. As discussed 
above. a small amount of transport between planes 
can have a large effect on this observable. The 
calculated points do not lie on a smooth curve as 
in figs. 1-3 because of the variation in trap con- 
centration. The error bars on the data increase 
with increasing Z( cn. c.,-) because of difficulties in 
extracting the naphthalene fluorescence from the 
betamethylnaphthalene phonon sideband. which 
overlaps it [5]. The error bars on the three points 
at highest concentration are larger than the error 

bar on the point at c,, = 0.72 [20]. Within the 
experimental uncertainty, the calculated results and 
the data are in good agreement. 

The agreement between the calculation_ and the 
data should not be interpreted as a proof that an 
incoherent hopping model is a valid description of 
energy transfer in naphthalene at 4.2 K. It is 
conceivable that such a model might apply for low 
donor concentration (strong spatial disorder) but 
that transfer is partially coherent at high donor 
concentration_ The fact that a master equation 
approach may be least applicable at high ct, for 
low-temperature experiments may account for the 
discrepancy between data and calculation for the 
two points with highest co in fig. 4. The resolution 
of questions concerning the nature of energy trans- 
fer in mixed molecular crystals at low temperature 
must await theories that take into account incoher- 
ent phonon-assisted hopping among molecules with 
different site energies. and the possibility of par- 
tially coherent transfer. The results presented in 
this work will be applicable without arnbiguity to 
energy and charge carrier transfer in mixed crystals 
at higher temperatures where an incoherent hop- 
ping model is known to be valid. 
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Appendix A. Diagrannnatic espansion of the Green function 

The expansion of G’(E), &“‘(li, e) and GT(k, c) (the Fourier-Laplace transforms of eqs. (4) in powers of 
the transfer matrix Q can be carried out with the procedure described in detail in section 3 of I, and will 
not be discussed further here. The representation of the terms in these expansions by diagrams is 
completely analogous to the corresponding procedure in section 3 of I. The ith donor is represented by a 
circle labeled i, and jth trap is represented by a square labeledj. A factor luij( oij) is represented by a solid 
arrow from circlej to circle (square) i. Each solid arrow begins in a solid dot denoted a vertex, which has a 
value c-t. and ends in a point that may or may not be a vertex depending upon whether it is the beginning 
of another solid arrow. A factor - 1~:~ ( - uij) is represented by a solid arrow from circlej to circle (square) i 
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followed byi; dashed arrow’returning tosirclej.-Thus a dashed arrowcan only_begin.at the-end of- a solid 
arrow and must return -to the circle in which the solid arrow beg&-The la+ arrow-in,the diagram; solid or 
dashed;ends in a vertex. A-.factor-!_&,_ is represented,by a wa~~.line-copneciing_ the circles or- squares 
labeled i and j_ &?(k, c) diagrams are characterized by a continuous path of -solid and dashed arrows 
beginning-on an initial’circle~labeled I‘and ending on-a- final circle labeled 2; Circles l- and.2 are denoted 
root circles and.other circles (squares) visited on the path are denoted field circles (Squares): Since transfer 
out of a trap is forbidden, a trap -square ‘in a~ &‘(kj 6) diagram may not contain a vertex. @(k, 6) 
diagrams are-characterized by a continuous@ath of solid And dashed arrows beginning onan initial circle 
labeled 1 and ending on a final square labeled No + 1. Circle 1 and square No f 1 are.denoted roots and 
other circles (squares) are denoted field~circles (squares). The last arrow in each eT(k, c) diagram ends on a 
vertex in square ND + I. This must’be‘ the only trap vertex in the diagram. c”(e) diagrams have a single 
root circle labeled 1, one or more field circles (squares), and a continuous path of solid-and dashed arrows 
that begins and ends on the root. As in &;“(k, c), there may be no trap vertices. 

We will base &disc&ion of these diagrams on the diagrammatic expansion of the Green function for 
the continuum transport and trapping problem presented in’ ref. (121. We denote by g’, gm and .gT the 
diagrammatic expansions of G’(E), &“(k, c)an+ er(k, c) for the continuum problem given in eq. (18), eq. 
(20) and eq. (22) of ref. [12]. It should be emphasized that the symbols g’, gm and gT represent sets of 
diagrams and not the values assigned to these diagrams in ref. [12]. In analogy with eqs. (III.10) and (111.11) 
of I, we can write 

6;“(c)= q-’ -I- gs + the infinite series of diagrams constructed by adding to g” diagrams at 
most one wavy line-between each pair of donor circles, each pair of trap squares, and 
each donor-trap pair. Two circles or two squares or a circle and a square may be 
connected by a wavy line only if there does not exist a solid arrow that begins in one 
and ends in the‘other. (AI) 

em( k, c) = g” + the sum of all diagrams derived from g” by introducing wavy lines in the 
manner described in eq. (Al). (A2) 

cT(k, E) = gT + the sum of all diagrams derived from gT by introducing wavy lines in the 
manner described in eq. (Al). (A31 

In the thermodynamic limit, these diagrams are evaluated as follows. The field circles (squares) are assigned 
dummy labels. A solid arrow from circlej to circle i is assigned a factor ~9~. A solid arrow from circlej to 
square i is assigned a factor vii_ Each vertex is assigned a factor t -’ -Each wavy line is assigned a factor . 

- K,.Q. Each dashed arrow is assigned a factor - 1. This product is multiplied by exp(ik- rz,) for a 
&;"(k, c) diagram or by exp(ik-+,+,.,) for a eT(k, .c) diagram. The positions of the second root (for 
em(k, c) and cT(k, c)) and of any field circles (squares) are summed over all lattice sites. These sums are 
unrestricted, since the Sr,., factors correct for configurations in which more than one donor or trap is 
allowed to occupy the sam’e site. The result is then multiplied by c:-‘c;, where m is the number of donor 
circles and n is the number of trap squares. 

The diagrammatic expansions of _Gm(k, c) and eT(k, c) can be simplified by using a topological 
reduction procedure as described in section 4 of I to eliminate loops. A loop is a part of a diagram that 
becomes disconnected from both root circles by the removal of a single circle and of a pair of vertices 
within that circle. A more; detailed definition is given in footnote 13 of I. We can exactly rewrite -the 
diagrammatic expansions of em(k, c) and GT(k, 6) as new series without 1.09~~ in which the vertices now 
carry a value P(E) rather than c-‘_ Eqs. (A2) and (A3) canbe replaced by 

em(k, E) = the sum of all diagrams in eq. (A2) without loops. These diagrams are evaluated 
by the same procedure as those in eq. (A2) except that all vertices are assigned the 

value es(i) instead of c-i_ (A41 
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eT(k, l ) = the sum of all diagrams in eq. (A3) without loops_ These diagrams are evaluated 
by the same procedure as those in eq. (A3) except that all vertices bttr the rrup 

A 
uertex are assigned the value GS(c). The trap vertex retains the‘ value Q- ‘_ b-1 

An important topological feature in the diagrams of eqs. (A4) and (A5) is the node. A node is a vertex in 
a field circle with the property that removal of the field circle and of that one vertex within it leaves the two 
roots disconnected. A more detailed definition is given in footnote 15 of I. All of the diagrams in eqs. (A4) 
and (A5) can be generated from the subset of diagrams in each equation that have no nodes. We define 
X&k. c’(r)) and Z,(k. G’(E)) by 

: 

Z&,+(c)) = l/c&‘“(r)12 [ sum of all diagrams in eq. (A4) without nodes], (A61 

&.(k. ~yE))=~/crCs(r) [ sum of all diagrams in eq. (A5) without nodes] _ (A7) 

Both X,(li. G’(E)) and Z,(k, e’(c)) depend on l only through I’“. Expressions relating 6;“‘(k. c) and 
eT(k, c) to ED( k. G;“(E)) and ZT( k, G’(c)) are given in eqs. (7). 

Appendix B. Evaluation of 2:’ and p!’ 

In appendices B and C we discuss the evaluation of those contributions to the two-body approximations 
of -ro and 2, that are of order cT_ In summing these diagrams we will use many of the results and 
techniques introduced in appendices A, B, and C of I. 

We begin by renormalizing the gg’ and s7,” diagrams using the topological theorem presented in 
appendix C of I. Although traps are represented by squares and donors by circles in our diagrammatic 
notation, we will use the term “circle” for convenience in the following discussion to mean either a donor 
or a trap. In examining a Zg’ or SF) diagram it is useful to group the circles into sets such that all circles in 
a given set are connected to each other by wavy lines and circles in one set are not connected to circles in 
another set by wavy lines. In appendix A of I, we rewrote the Zg) series in the absence of traps as a new 
series with restrictions on allowed wavy line connections among the circles in a set. We will follow an 
analogous procedure here with the more complicated trapping diagrams_ 

A set of circles in a %g’ or F-’ $’ diagram either contains no traps or one trap. If it contains no traps, we 
treat it as we did in appendix A of I. If it contains a trap, it must fall into one of two categories: (i) the set 
contains zero or one donor root circles (p$ or EF)), (ii) the set contains two donor root circles (zg’ only). 
A consequence of the topological theorem of appendix C in I is that we need only retain diagrams in which 
each set of circles is connected by some arbitrarily specified singly connected path of wavy lines. (The 
remaining diagrams have a total value of zero for any choice of the singly connected path.) When the 
diagram is evaluated. such a path linking a set of n circles contributes a factor (n - l)!. This singly 
connected path may be specified for a set of II circles by assigning numerical labels 1 through n to the 
circles according to some rule. The only allowable wavy line path is one constructed by linking circle i to 
circle i + 1 with a wavy line for i = 1, 2, . e . )I - 1. It is most convenient to adopt two different procedures 
for specifying the allowed wavy line connections among a set of n circles containing a trap, depending on 
whether the set belongs to category (i) or (ii). 

Consider the 3:’ diagrams A through D in fig. 5 *. They differ from each other in the placement of 
wavy lines within a set of circles. Such diagrams are denoted topologically similar [l]. Since a wavy line 
carries a value -8, r ,. 1’ two topologically similar diagrams have values that differ only by a factor of f 1. 

* Since Ey’ and 2’6’ diagrams contain at most one trap. the dummy label A’, + 1 will be omitted from the trap in figs. 5-9. 
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Fig. 5. Four topologically similar 9:’ diagrams. See text for 
discussion. 

Fig. 6. Four topologicdly similar zg’ diagrams in which two 
donor root circles and a trap are linked together by wavy lines. 
See text for discussion. 

There is thus considerable cancellation in a sum of a group of topologically similar diagrams. The set of 
circles containing the trap in A-D falls into category (i). In this case we choose the-singly connected path 
of wavy lines to be the one constructed by drawing a wavy line from the trap to the first donor in the set to 
be visited by solid arrows, from that donor to the next donor to be visited by solid arrows, and so on. When 
the diagram is evaluated, that path contributes a factor (n - l)! where n is the number of circles in the set. 
This means that we will represent the sum of A-D with the symbol of diagram C, whose value now has an 
additional factor of 2!. This procedure can be verified for this example by noting that diagrams A, B and C 
have the same value and diagram D has a value that differs by a factor of - 1. . 

Now consider.22’ diagrams A-D in fig. 6. The set of circles containing the trap in diagrams A-D falls 
into category (ii). In this case we choose to represent the sum of a group of topologically similar diagrams 
by a diagram in which the wavy line path is constructed by connecting the trap to the first root, the first 
root to the second root, the second root to the first donor field circle to be visited by solid arrows, that 
circle to the next donor field circle to be visited by solid arrows, and so on. We represent the sum of 
diagrams A-D with the symbol of diagram A, whose value now contains a factor 2!. This result can be 
verified by noting that diagrams A, B and C have identical values and that the value of diagram D differs 
by a factor of - 1. 

We have simplified the diagrammatic expansion of 22) and 2:’ by grouping together diagrams whose 
values differ only by factors of - 1. We now ‘group together diagrams whose values differ only by a factor 
made up of an integer and a power of --co. We define the notion of the reduced diagram; introduced in 
appendix A of I. A reduced diagram is derived from a %!t$ or 32) diagram bjj collapsing all wavy lines 
except wavy lines connecting a donor to a trap or a donor root circle to a second donor root circle. A wavy 
line connecting circles A and B is collapsed [l] by moving all ends of solid arrows in circle A to circle B and 
then removing circle A and the wavy line. This reduced diagram is always itself a member of pg’ or p!). A 
diagram with no wavy lines or whose only wavy lines connect two donor roots or a donor and a trap is its 
own reduced diagram. Two diagrams with the same reduced diagram have values that differ only by a 
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factor made up of an integer and a power of -co. We will represent the set of all diagrams with the same 
reduced diagram by that reduced diagram in the renormalized 9,?’ and pz’ series. The value of the reduced 
diagram now contains a factor of a polynomial in -co. In fig. 7, diagrams A and B both have diagram B 
as a reduced diagram, If diagram B has value V. then diagram A has value -2cJ. We represent their sum 
by the symbol of diagram B, whose value now includes a factor of 1 - 2co. In fig. 8. diagrams A and B 
both have B as a reduced diagram. The value of diagram A differs from the value of diagram B by a factor 
of -3c,. We represent their sum by diagram B whose value now includes a factor of 1 - 3co. The value of 
B also includes a factor of 2! for the wavy line path and it will be useful later to combine these factors into 
a polynomial 2 - 6co. 

Each circle in a renormalized 92’ or 9:’ diagram has an associated polynomial. because the collapsing 
of wavy lines in one set of circles is carried out independently of the collapsing of wavy lines in another set. 
We modify the definition of the moveable part in I to apply to the trapping diagrams. For root circle 1. a 
moveable part is any end of a solid arrow to visit the circle. unless root 1 is connected by wavy lines to root 
2 and to the trap. In this case, root 1 has no moveable parts. For any other donor circle, a moveable part is 
any end of a solid arrow in the circle except for the end of the last solid arrow to visit the circle. We use 
“end” here in the sense of I. Each arrow has one beginning and one end, with the arrow head pointing 
from the beginning to the end. In 1 for the lattice transport problem, we showed that a circle with II 
moveable parts in the renormalized series has an associated n th degree polynomial Qn(cD), whose form is 
derived in appendix A of that work. In a renormalized -o 3;(2) or 2:’ diagram in the present problem. a donor 
circle with tz moveable parts also has an associated n th degree polynomial in -co, but this polynomial 
may be of three different forms. 

A donor circle with no wavy line connection and with ta moveable parts carries a factor Q,,(c,). Two 

donor roots, connected to each other but not to a trap by a wavy line. each carry factors of Q,(c,). A 
donor circle with II moveable parts connected only to a trap by a wavy line carries a factor R,(c,)= 

d[c,Q,c,)l/dc,- This result can be verified for the example of fig. 7. The sum of A and B in the original 
yy) series is represented by diagram B in the renormalized -T f12) series. The renormalized diagram now has a 
factor of 1 - 2c, associated with circle 2. Since Q,(c,) = 1 - co, R,(c,) = 1 - 2co. The last possibility is 
illustrated by diagram B in fig. 8. A wavy line path connects a trap to one donor root and that circle to the 
other donor root. For such diagrams, the first donor has no moveable parts, as stated above. If the second 
donor has II moveable parts, it has an associated factor of S,,(c,) = d2[C&Q,(cr,)]/dc&. This result can be 
verified for the example of diagram B in fig. 8, for which circle 2 was demonstrated to have an associated 
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Fig. 9. Rcprcsmtativ~ cxumpks of the thrw sroups of Ax’ diagrcuno (I), ,D2. 9\) thnt compose ths AT) scrics and of the thwc groups 
of AT) dingrmus (T,. T2. 7’,) that compose the AT) scrics. \ 

polynomial of 2 - 6co. Since Q,(co) = I - co, S,(c,,) = 2 - 6c,. 
We can now present the diagrams in the renormalized 2:) nnd 2:’ series that arc of order cT. It is most 

convenient to divide the diagrams in the following groups and then to sum each group separately. 
Representative members of each of the groups are shown in fig. 9. D,: These pi) diagrams have two donor 
root circles, and one trap, with a wavy line connecting one of the roots to the trap. D,: These 22) diagrnms 
have two donor root circles, n trap ‘and a donor field circle. The two roots are connected by a wavy line as 
are the trap and circle 3. Q: These X 7i’ diagrams have two donor roots, a trap und n donor field circle. The 
trap is connected to the first root by u wavy line. and the first root is connected to the second root by n 
wavy line. T,: These 2:’ diagrams have one donor field circle and n wavy line between the roots, T,: These 
3’) diagrams have one donor field circle and a wavy line between the trap and the field circle. TI;: These 
3) diagrams have no field circles nnd hence no wavy lines. 

These sums of di,?gmms can be evaluated using the techniques of appendix B of I. As an example we 
carry out the summation of the LIZ series in detail in appendix C of this work. The final results are 
presented below. 
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i and 6 are defied in section 3. 

Appendix C. Evaluation of the D, series of appendix B 

In appendix B. Dz is defined to be the sum of all diagrams in -o 3’) with two donor root circles (labeled 1 
and 2) connected by a wavy line and a trap field circle and a donor field circle (labeled 3) that are also 
connected by a wavy line. An example of a D, diagram is shown in fig. 9. This series of diagrams is easiest 
to sum by first examining a fictitious diagrammatic series F,. The diagrams in F, are identical to- the 
diagrams in D,. The value of an F, diagram differs from the value of the corresponding D, diagram in that 
instead of associating a polynomial in -co with each donor circle, we assign a moveable part on root 1 a 
value of m,, a moveable part on root 2 a value ~rz and a moveable part on circle 3 a value m,. We define 
renormalized transfer rates from circle 1 to circle 3 and from circle 2 to circle 3 by 

1Y,3(r)=)()23(r)~)V’(r)3,1’(T)/[l+i;~(E)”(r)]. (Cl) 

These renormalized transfer rates include all possible excursions to the trap from a given vertex on circle 1 
or circle 3. Since there are no solid arrow connections between circle 3 and the trap, transfer rates IVY, and 
~5~ are not renormalized in this way: 

WJ~) = “‘J’) = IV(r). (C2) 

By utilizing the renormalization in eq. (Cl), we include a set of diagrams that are of order [u(r)]“, which do 
not belong in D2_ WC will sum series & and & that include this spurious contribution and then subtract it 
off as a final step to recover D2. Since the presence of the trap has been entirely accounted for by the 
renormalization of eq. (Cl), the problem of summing the FZ series is very similar to the problem of 
summing the E!” series in appendix A of I, except that the transfer rates are now asymmetric: )u,~ # I+,_ 
We define gene;alized transfer rates 

and generalized return rates 

The series F’. can be written as 

&=c,cr&(~)~7’,&8~ (R,,+R,,)’ 
r i-0 

(C3) 

tw 



From eq. (B7) of I, we have 

Q,(c,) =$Y ( 1 _ cDe; cD e_” )I y-o 

and therefore 

A&) = - o$ (l- 
i 

eJ 

cD + cD ey)’ )I p=o’ 
From eq. (C8) and Leibnitz’ rule, 

j-1 

c (~-~)e,(~,,Qj-,-,cc,)=~ ( ey * 
I-O )I 

l-co+c,e’ ,._o’ 

Substituting eqs. (C9) and (ClO) into_ the sum over i in eq. (C7) gives 

D _,* = 0 

= E (-45; (;“I d;;::, 
i-o i 

(1 _ c 
D 
Tc 

D 
eey)2 

i 
y-0 

d j 1 e’ 
X- -- 

dy’ CD 1 - c,.+ cg e’ 
+L h(l-cc,+cDe’) 

c’o 

(C8) 

c-1 

(cm 

Wl) 

Applying Leibnitz’ rule to the right-hand side of eq. (Cll) gives 

1 eY -- ++ In(l-cD+cDeY)+-$ 
(1 - CD + CD e”‘)’ cD l-cD+cDeY eD 

(CW 
We can perform the summation over i using the identity 

(Cl3) 



164 RF. bring et al. / Hopping rransport on a randomly subsiixuted lattice 

where L(x) is analytic at x = 0. The final result is _’ 

& = --c7.GB2w(r) 
/ 

Omdrr e-O 
e -0e: 

r t 1 - cD + cD ema@’ )’ 

(1 - cD)(l - eSa’) 
(l/~,)In(l-c~+c~e-~~)+ l_-c +c e-“= . 

D D 
(Cl41 

As discussed above, to obtain the Dz sum from &, we must subtract off the spurious contribution of order 

[dr)l”: 

D2 = -c,c w( r)imdn emu 
eZe--otk 

e-"' 

r 
(1 -CD-t-cDe 

--aB;)' - (1 -CD +CDe-(Iz)2 

X (l/c,) ln(1 - cD -I- cD emu’) + 
(1 - cD)(l - eSa’) 

l-cDtcDe-“’ (Cl9 
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