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Our recent theory of hopping transport of excitations or charge carriers among particles randomly distributed on the sites of
a lattice is extended here to include the presence of a low concentration trap species. We present an exact diagrammatic
analysis of the confi gurauon-averaged Green function of the Pauh master equation for this problem. We obtain a non-per-
turbative approximation to the Gieen l’uncuon that is expected to be accurate at both high and low donor concentration for
low trap concentration. The’ approxlmanon can be carried ouit for-any lattice type in which any two sites can be transformed
. into one another by a symmetry operation, and a transfer rate.of-any distance dependence. We present calculations of the
observable in a steady-staie excitation transfer and trapping experiment that illustrate the effect of dlmensmnallty and of the
distance dependence of the transfer rate on this observable. -

1. Introduction

In a recent paper [1], hereafter referred to as I, we presented a-theory of hopping transport of electrons
or optical excitations among particles randomly distributed on the sites.of a lattice. The results in I can be
used to calculate transport properties for a transfer rate of-any distance dependence on any lattice in which
any two sites can be transformed into one another by a symmetry operation. The theory provides excellent
approximations for both hlgh and low concentrations. In the present work we extend the treatment of I to
include a deep trap species that is. present in low- concentration. This-modification makes - the previous
theory applicable 'to a larger group of experiments. Transport in ‘the -presence of traps is intrinsically
interesting, and-must be understood for the practical reason that low concentration traps are necessarily
present in crystals of all types. For-example, chemical [2—-5] and defect [6] traps have been studied in
molecular crystals, and chromium dimer traps have been studied in ruby [7].

The theoretical problem of incoherent transport among randomly distributed particles in the presence of
traps has been addressed by several investigators.-Most workers have used a continuum -model in which
donor and trap points are randomly distributed in a volume [8—13]. As discussed in section 4, it can be
inappropriate to apply a continuum model to experimental data on crystals. Sakun [14] has developed a
theory of- transport and trapping on'a randomly substitufe . lattice, but unlike the results presented here.’
his work: is only valid for low donor ‘concentration. Keénre and Parris [15] have presented a theory of
trapping by interstitial traps randomly placed in a filly occupied lattice of donors. Since their method takes

- advantage of the translational 'm\'rariance of the donor array, it does not appear to be extendable to the -
situation treated here, in Wthh the donors and traps are randomly distributed on the sites of a partially
filled lattice: -

* Section 2 contains a summary of an exact analysis of the configuration-averaged Pauh master equatxon
Green function for the trapping problem. The exact diagrammatic expansion of the Green function is given
in -appendix A Section- 3 contains.a description of our lattice two-body approximation for. dilute traps,
which should be vahd oven the full range of donor concentranon. Some of the details.of .the calculatlon are
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given in appendices B and C. In section 4, we present calculations of the observable in steady-state .
excitation transfer and trapping experiments and discuss the effect of the dimensionality and of. the .
distance dependence of the transfer rate on this observable. We also show that the results of sucl: -
experiments on isotopically mixed naphthalene crystals [5] can be described by our model with an -
octupole—octupole transfer rate. The theory presented here is expected.to providé an accurate description
of hopping transport of excited states or charge carriers in the presence of dilute deep traps for any lattice
type, any transfer rate and any donor concentration.

2. The configuration-averaged Green function

The system consists of N, donors labeled 1 through N and Ny deep traps labeled N, + 1 through
Ny + Ny distributed randomly among the M sites of a lattice. All configurations of the donors and traps
are assumed to be equally likely, so a given site has a probability ¢, = Np /M of being occupied by a donor
and a probability ¢ = N;/M of being occupied by a trap. In the following discussion we will refer to the
entity being transferred as an excitation, but the methods and results apply equally well to the charge
carrier transfer problem. P;(R, r), the probability that the jth particle is excited at time 7 in a particular
configuration R = (r, i, - - ry_, n,) is taken to satisfy the Pauli master equation

dP(R,t)/di=Q-P(R,1). _ ¢}

where P (R, 1) is the jth element of the (Np + N)-dimensional vector P(R, t). Q is an (Np + Ny)-
dimensional square matrix given by

N+ Ny
QJA E“ + Z Uik |~ j,kSND;
I1=1 i=Np+1
Qi = Uiy Np<js<Np+ Ny, k<Np:
ij =0, k> Np. @

In this model, an excitation may be transferred from a donor to a donor or from a donor- to a trap, but
transfer from a trap either to another trap or to a donor is forbidden. w, ;= = Wi is the transfer rate between
donors j and & and v,, is the transfer rate between donor / and trap n. wy; is defined to be zero. §; is the
Kronecker delta. w;, and v,, are assumed to depend only on the vector distance between the two particles.
We assume mmally that the lifetimes of the excitation on the donor and the trap are infinite, as is the case
if the “excitation™ is a charge carrier. Transport properties for the case in which the excitation has finite
lifetimes on donor and trap may be easily obtained from transport properties for the infinite lifetimes case,
as shown in refs. [12,13]. This matter will be discussed further in section 4.

We wish to calculate the configuration-averaged Green function, from which the systems transport
properties can be obtained. The Green function G(r, r’, ¢) gives the probability that an excitation has
migrated from position »’ to position r in time ¢. G(r, #’, t) can be written as the sum of three terms:

G(r.r 1)=8_.G(t) +G™(r—r". 1)+ G (r—», 1), (3)
GS(:)=<(elQ)“>‘ Gn](r~r \ {) (V - 1)<(e10)" (N r—r)‘
GT(r— 1, £) = Np¢(®) o108y yre) » @

G3(t) is the probability that a donor excited at 7 = 0 retains its excitation after a time 2. G™(r—r', t) is
the probability that an excitation has migrated from a donor at position r’ to a donor at a distinct position
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_rin tlme 1. GT(r —r, t) is the probablhty thaL an excntauon has mxgrated from a donor at. posmon r to a:'f
“ trap at posmon rin tlme 1. The angular brackets m eqs (4) denote a lattlce conflguratlon average [1]f
defmed by Tt e > - C e - L

REO ( §+v,€(R)H(1- ))( §+vg(l— )) ff':f(s)

The sums over “donor and trap posmons r. ran ‘over all'sités in the lattice. - s
We now follow the analysis' of the Green functron originally presented- for the continuum transport

problem by Gochanour et al. [16], which is adapted in refs.[12,13] to the continuum transport and trapping
problem and in I to the lattice transport problem The Fourier—Laplace transform of the Green function is

given by .
G(k, €) =f°°dt ey ek "G (r, t). . (6)
Y ~ r

We expand f}(k, €) in a perturbation series in powers of Q. The Fourier-Laplace transforms of eqgs. (4) are
written as infinite series of lattice sums over products of w;; and v, ; transfer rates. Each such lattice sum is
represented by a diagram. Diagrammatic expansions in the thermodynamig limit [1] of G'“(k ), GT(k, €)
and G*(¢) are given in appendix A. G™(k, €) can be written in terms of a quantity 35k, G5(€))*, which is
equal to the sum of a subset of G™(k, €) diagrams. Similarly, GT(k, €) can be-expressed in terms of

Sk, Gs(e)) which is equal to the sum of a subset of GT(k, €) diagrams *.- Both 2ok, Gs(e)) and
2r(k, G* (€)) are functionals of G* (¢€). Their dlagrammatlc expansions are given in appendix A. G™and GT

are related to 2, and 21 by

cD[G’(e)] Zo(k, G*(¢€)) G (k. €)= cr[G*(€) /€] 2+ (k, G3(¢€)) )
1—cpG*(e)Zp(k, G°(e))’ ’ 1—cpGi(e)Zp(k; Go(€))

From the Fourier—Laplace transform of eq. (3), the fact that lim A_,oé(k e)=1/¢ (conservanon of
probability), and egs. (7), we can derive an exact relation between G*(¢) and the k& — 0 limits of = ok, G5
and Z(k, G*).

) » }
G*(e)= 8

() e+ cpZp(0, G3(€)) + =1 (0, G3(€)) (8)

An exact expression for the Laplace transform of the probability that an excitation remains somewhere in

the donor ensemble after a time ¢ can also be derived in terms of = and =,. We define GP(r, t) as the -

sum of G*(r, t) and G™(r, ). GP(r, 1) gives the probability that an excitation has undergone a displace-
ment r within the donor ensemble in time ¢. The Fourier—Laplace transform of this quantity is given by

G*(e) '
1—cpG3()Zp(k, G3(e)) (9)

The k& — O limit of eq. (9) gives the Laplace transform of the probabxllty that an excitation has not been

trapped during a time .
All of the results presented thus far are exact. If X', and 1 could be evaluated exactly, then G*(¢) could

be obtained exactly from eq. (8). Substitution of the exact Gs(e), 2p, and 2 into eqs (7) -would yield
G™(k, €) and G(k, €) and hence the entire Green function.

Gm(k, ()>=

GP(k, €)=

[G‘(c)]2 cD Zp(k, G’(c)) and [G’(c)/c] crZ1(k, G5(e)) correspond .to'the quantmes A(k, G’(c)) and I'(k, e, G‘(e)) defined for
the continuum transport and trapping problem in refs. [12,13].
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3. Two-body approximation to 2, and 3 forc <« 1

Since the diagrammatic series for 3, and 2, (egs. (A6) and (A7)) cannot be summed exactly, we resort
to the approximation procedure of refs. [1,12,16]. We carry out a partial summation of the 2p and 2,
series to obtain approximations of these quantities as functionals of G*(¢).- When thése approximations are
substituted into eq. (8) the result is an equation with G* as the only unknown. This equation.can be solved
for a non-perturbative approximation to G* as a function of the Laplace variable € and the donor and trap
concentrations ¢, and c. The rest of the Green function can then be approximated from egs. (7).

In I, a hierarchy of approximations was proposed to the X, series for the lattice transport problem in
the absence of traps:

Sp(k, 63 (e)) = X 2"’(k G*(¢)). (10)

fm D)

where Y is the sum of all diagrams that can be evaluated by performing a lattice sum over i independent
particle positions. The approximation in eq. (10) is denoted the n-body approximation. As discussed in I,
the lattice n-body approximation to X, is not simply an expansion in powers of ¢p,. It contains terms of all
order in cp as well as all diagrams of order ¢! or lower. It was shown in I that the two-body
approximation to X as defined in eq. (10) with n =2 gives transport properties that are accurate in the
¢cp — 0 limit and gives the exact generalized diffusion coefficient at ¢, = 1. We therefore expect that
two-body approximations to 2, and & for the transport and trapping problem will also be accurate for
both high and low donor and trap concentrations.

The evaluation of the two-body approximations to £ and 2+ in the transport and trapping problem is
considerably more complicated than the evaluation of the two-body 2, carried out in I. In this work we
will restrict ourselves to the experimentally important situation in which the donors may be present in any
concentration, but the trap concentration is much smaller than umty We approximate X, and X by DY
and Z%. the subset of 2B and =P diagrams that are of order c5 or CT- If cp < 1, it is valid to neglect
terms of order ¢ and higher, and the resulting approximations to $ and X, should yield transport
properties that are accurate for any value of c¢.

The contribution to £ that is of order ¢} was evaluated in I. The evaluation of the remaining terms
that compose 22 and = S‘"’ is discussed in appendices B and C. The resulting formulae for £2" and %2 are
as follows:

e—.'(!

1—cp+cpe™

SB(k, G¥(e)) =X w(r) [ dae

—-Za e‘:“ ik-r
X((l/cD) In(l1—cp+cpe™= )+1_CD+CDe_m(e" —1)+1)

—-2a

—2cr ) e* () fmda e " < =
- 0

l—cp+cpe”

96—:(:8 —-ca
X 2 - - 2
(1 -—cD+cDe':"0)' (1—cptcpe™™)

(1 —cp)d —e™7) )

1—cpt+cepe™™”

_CTZw(r)fooda e_a((l/cD) ln(l —cpt+cp e—:n) +
r 0 B
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92e "

—-Za - - Toa

e

x — :
" \(1—cptep e~ =20

(1 _CD'*‘CD 'u)

—ca

_ZcTzr:w(r)j(; dae —entege =

e+ (11— CD)ych

e—ab 1 (1- cD)/2C|-) - 7, ) (11')

(1—cp+ep _e":")2

Z(k, G(€)) = —cpyzo(r)(1 -0 e"‘")./;wda e ™

/] e—:ne

(1 —cp+ cD “"9)

—ca

e”*

-2

+3 e* v(r)é. : (12)

(1—cp+cp e':"”)2 r

In the above equations, z = Gs(c)w(r) andd=1/[1+ G (v}

4. Application to steady-state energy transport and
trapping sxperiments

Transport and trapping of excited states have
been studied in a variety of mixed molecular
crystals using steady-state optical experiments
[2-5]. It is generally found that for low trap con-
centration the fraction of luminescence from the
traps is strongly dependent on donor concentra-
tion. For low donor concentrations, the relative
trap luminescence increases slowly with increasing
donor concentration until a critical concentration
is reached at which trapping becomes very effi-
cient ‘and a substantial fraction of the total

luminescence comes from the traps.. This effect is

easy to interpret qualitatively for a system in which
the trap concentration is low and interactions are
of short range, so that most trapping events are
preceded by a series of donor—donor hops. At low
donor concentrations, most excitations will be re-
stricted to small clusters of donors and little trap-
ping will occur. As the donor concentration is
raised, a concentration will be reached at which
the donor system is sufficiently connected that
“paths of interacting donors will lead to most traps,
and most of the excitations will be trapped. Thus,
measurements of the relative trap luminescence at
fixed low trap concentration as a function of donor

concentration will yield information about the ex-

tent of donor to donor transport in the system.
It is shown in ref. [13] that the fraction of trap
luminescence in an energy transfer experiment in
which the excitation has finite lifetimes on donor
and trap can be calculated in a straightforward
way from the Green function for the transport
problem in which the excitation is taken to have

Fig. 1. I(cp, cy) from eq. (13) for a square lattice with g5 /91
=1 and cy=1073. (A) w(r)=v(r)=kp(R/r)% a/R=
0.304. (B) w(r)=o(r)= kp(R /)% a/R=0489. (C) w(r)
=v(r)= kD(R/r)“‘, a/R = 0.600. The ratio of lattice spac-
ing a to interaction length R has been chosen so that w(a) is
the same for the three cases. These three curves illustrate the
influence of long-range transfer steps on I(cp, cr)-
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infinite lifetimes on donor and trap:
1—kpGP(0, kp)
1+ kDGD(O, ko)(gp/q+—1)

I(CDaCT) =

I{cp. c7) is the integrated trap luminescence nor-
malized by the sum of the integrated luminescence
from donors and traps. kp is the inverse of the
donor lifetime. g and g are the donor and trap
quantum yields (ratio of measured lifetime to
radiative lifetime) in the absence of energy transfer.
GP(k, ¢) is defined in eq. (9). The experimental
observable I(cp, ¢t) can be calculated for small
¢+ within the two-body approximation from egs.
(11), (12), (8) and (9). Since I(cp, c1) is a steady-
state observable, it can be calculated directly from
the Laplace transform of the Green function.

The two-body results presented here allow the
calculation of the Green function for arbitrary
lattice type (provided that any two sites can be
transformed into one another by a symmetry oper-
ation) and for transfer rates of arbitrary distance
dependence. In fig. 1. we illustrate the importance
of long-range interactions in determining the ob-
servable I(c¢p, ¢1)- These calculations were carried
out for a square lattice, a trap mole fraction of
1073 and equal donor and trap quantum yields. In
curve A, the donor-donor and donor—trap transfer
rates are taken to be w(r)=uv(r)=kp(R/r)®
(orientation-averaged dipole—dipole rate). In curve
B, the rates are w(r)=uv(r)= kp(R/r)"° (orienta-
tion-averaged quadrupole-quadrupole rate). In
curve C, the rates are w(r)=uv(r)=kp(R/r)"
(orientation-averaged octupole—octupole rate). In
each case the ratio of the lattice spacing a to the
interaction length R has been chosen so that the
step rate evaluated at the nearest-neighbor dis-
tance is the same in all three cases (= 1300
hops/lifetime). Thus the three plots differ only in
the extent to which there are interactions outside
the first shell of neighbors. Although each of the
transfer rates is a sharply decreasing function of
distance. this difference is sufficient to dramati-
cally change the dependence of I(cp, ¢+) on cp
for fixed small ¢+. In the Iimit of a transfer rate
that is non-zero only to nearest neighbors, the
observable I(cp, c¢) for small ¢y should be near
zero below the critical concentration for site perco-

. (13)

Fig. 2. I(cp.cy) from eq. (13) for c+=10"3, gp/q+ = 0.5,
a/R =0.60 and w(r)=v(r)=kp(R/r)%. (A) Simple cubic
lattice of spacing a. (B) Orthorhombic lattice with spacing a in
the xy plane and spacing 4. in the = direction. w(a_)=0.1
w(a). (C) Orthorhombic lattice with spacing a in the xy plane
and spacing a_ in the z direction. w(a_)=0.01 w(a). (D)
Square lattice of spacing a. This figure illustrates the influence
of dimensionality on this observable.

lation, and then rise steeply at that concentration,
which for the square lattice is 0.59 [17]. It can be
easily shown that for a nearest-neighbor transfer
rate on a square lattice there is a range of donor
concentrations around the critical concentration
for which there exist no physically reasonable
solutions of eq. (8) in the two-body approxima-
tion, i.e. solutions that are real continuous func-
tions of € for € > 0. For the corresponding problem
on a cubic lattice, physically reasonable solutions
exist for all donor concentrations.

Fig. 2 illustrates the influence of dimensionality
on the trapping observable. Curve A shows
I(cp, cq) for e+ =1072, qp/q+ = 0.5, w(r)=v(r)
=kp(R/r)* and a/R =0.60, for a simple cubic
lattice and curve D shows I{cp, ¢1) for the same
parameters with a square lattice. The other two
plots show I(cp, c+) for orthorhombic lattices in
which the transfer rate evaluated at the nearest-
neighbor distance in the z direction is 1% of that
rate in the xy plane (curve C) and 10% of that rate
(curve B). Most molecular crystal energy transport
systems are very anisotropic and are often mod-
eled with isotropic lattices of lower dimensionality
[4,5]). Fig. 2 shows that adding a small amount of
transfer in a third dimension changes I(cy, ¢1)
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Fig. 3. Comparison of I(cp,cr) from eq. (13) (L) to the
predictions of the continuum theory of ref. [13] (C) for a square
lattice of spacing a. (A) cx =1073; w(r)=0(r)=kp(R/r)";
a/R=06; qp/qr =1 (B) cr =1073 w(r)=uv(r)=
kp(R/r)'; a/R=04; qp/qr=1. (C) Curves Cl and L1
have the same parameters as (B) but with w(r)=v(r)=
kp(R/ r)é. Curves C2 and L2 have thé same parameters as (A)
but with w(r)=v(r) = kp(R /r)5. The continuum and lattice
theories agree only for very low cp, and small a/R.

considerably from the two-dimensioﬂal case.
Most of the theories_that have been-developed

for excitation or charge carrier-transfer and trap- -

ping have -been based on a -continuum ‘model

[8—13], -in - which - the particles. are taken to.be.
randomly -distributed - throughout Some _volume. -

Such theories are apphcable to random solutions

4[18] but itis: not clear to what extent they may be -
L apphed to substltutlonally dnsordered crystals:. Fig. .
.. 3 shows a-comparison - between “the. continuum

-trapping theory ‘of . ref. [13] and- the Iattlce theory -

-of the ‘present work. Cuive.L lin" flg -3A’ shows

" I(cp,'cy) for -a square:lattice, ¢+ =1073; w(r)=

v(r)=kp(R/r)%, a/R = 0.6, and curve L-in fig.
3B shows -I(cp, cp) .for the same system with
a/R = 0.4. The curve labeled C.in each figure is a
calculation from the continuum theory of ref. [13]
for a'continuum with the same number densities of
donors and traps.and the same w(r) and v(r). The
two .theories agree-at small values of cp, and’ this
agreement improves as the interaction length R
becomes large relative to the lattice spacing. Fig.
3C shows the same calculations as 3A and 3B with
transfer rates w(r)= v(r)=kp(R/r)S. (Note that
for a given value of a/R, w(a) will be much larger
for the transfer rate of figs. 3A and 3B than for the
transfer rate of fig. 3C.) The discrepancies between
the lattice and continuum results can be large even
for this longer-ranged transfer rate. These -figures
illustrate that the application of a continuum the-
ory to experiments on mixed crystals may be inap-
propriate unless the interaction length is very large

I ] [ ]
i Sy ©
I - Di
054 +
"] &
i -
O T IE T l+ ¥ ] T T T 1
O 0.5 |
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Fig. 4. The filled circles are measurements on singlet excitation

transport in mixed naphthalene crystals at’4.2 K by Gentry and
Kopelman [S). The squares are calculated.from eq. (13) for a

- square lattice and with the ¢y values-given by Gentry and

Kopelman.- a/R 0.60, qD/q-r’—- 0.5 and w(r)=uv(r)=

" kp(R/r)*. The calculated points do not lie on a smooth curve

-~ because qf the variation in cT, which ranges from 3x107%to
- 1X1073, C . : ; -



156 R.F. Loring et al. / Hopping transport on a randomly substituted lattice

relative to lattice parameters.

Singlet and triplet energy transport and trap-
ping in an effectively two-dimensional system
(perdeuteronaphthalene/naphthalene /betamethyl-
naphthalene mixed crystals) has been extensively
studied by Kopelman and co-workers [4,5]. In our
designation, naphthalene is the donor and be-
tamethylnaphthalene is the trap. Measurements on
singlet excitation transport on this system by Gen-
try and Kopelman [5] are depicted in fig. 4 (circles).
¢+ could not be kept exactly constant for these
measurements, but varies from 3xX107% to 1 X
1073, The squares in fig. 4 are the result of a
two-body calculation of I{cp.ct) for a square
lattice with g¢p/q+ = 0.5 (the value given by Gen-
try and Kopelman), w(r)=uv(r)=kp(R/r)". and
a/R=0.6. We have chosen an orientationally
averaged octupole—octupole transfer rate because
the transition dipole of naphthalene is known to
be small and cannot account for the pure naph-
thalene crystal exciton band structure [19]. The
octupole—octupole term is the next symmetry al-
lowed term in a multipolar expansion of the inter-
molecular interaction [19]. We have assumed that
transport is two dimensional, but it is unclear the
extent to which this is true [4.5]). As discussed
above. a small amount of transport between planes
can have a large effect on this observable. The
calculated points do not lie on a smooth curve as
in figs. 1-3 because of the variation in trap con-
centration. The error bars on the data increase
with increasing I(cp. ¢¢) because of difficulties in
extracting the naphthalene fluorescence from the
betamethylnaphthalene phonon sideband. which
overlaps it [S]. The error bars on the three points
at highest concentration are larger than the error

bar on the point at ¢, =0.72 [20]. Within the
experimental uncertainty, the calculated results and
the data are in good agreement.

- The agreement between the calculation and the
data should not be interpreted as a proof that an
incoherent hopping model is a valid description of
energy transfer in naphthalene at 4.2 K. It is
conceivable that such a model might apply for low
donor concentration (strong spatial disorder) but
that transfer is partially coherent at high donor
concentration. The fact that a master equation
approach may be least applicable at high ¢ for
low-temperature experiments may account for the
discrepancy between data and calculation for the
two points with highest ¢y, in fig. 4. The resolution
of questions concerning the nature of energy trans-
fer in mixed molecular crystals at low temperature
must await theories that take into account incoher-
ent phonon-assisted hopping among molecules with
different site energies, and the possibility of par-
tially coherent transfer. The results presented in
this work will be applicable without ambiguity to
energy and charge carrier transfer in mixed crystals
at higher temperatures where an incoherent hop-
ping model is known to be valid.
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Appendix A. Diagrammatic expansion of the Green function

The expansion of Gs(e). G™(k, €) and GT(k, €) (the Fourier-Laplace transforms of egs. (4) in powers of
the transfer matrix Q can be carried out with the procedure described in detail in section 3 of I, and will
not be discussed further here. The representation of the terms in these expansions by diagrams is
completely analogous to the corresponding procedure in section 3 of 1. The ith donor is represented by a
circle labeled 7, and jth trap is represented by a square labeled j. A factor w;;(v;;) is represented by a solid
arrow from circle j to circle (square) i. Each solid arrow begins in a solid dot denoted a vertex, which has a
value €!, and ends in a point that may or may not be a vertex depending upon whether it is the beginning
of another solid arrow. A factor —w,; (—u,;) is represented by a solid arrow from circle j to circle (square)
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foﬂowed by a dashed arrow retummg to cu'cle J.-Thus a dashed arrow: can only begm at the end of a solld )
arrow and must return to the circle in- which the solid arrow begms -The last afrow-in-the diagram; SOlld or
dashed, ends in a vertex. A- factor — -4, . is represented.by a wavy-line connecting the circlés or.squares
labeled i and j. G™(k, €) diagrams are charactenzed by a continuous path of solid and dashed arrows
beginning-on an initial circle labeled 1 and ending on"a-final cnrcle labeled 2. Circles 1-and 2 are deiioted
root circles and other circles (squares) visited on the path are denoted field circles (squares). Since transfer
out of a trap is forbidden, a trap square-in a G™(k; €) diagram ‘may not contain a vertex. GT(k, €)
diagrams are characterized by a continuous path of solid and dashed arrows beginning on an initial circle
labeled 1 and ending on a final square labeled Ny, + 1. Circle 1 and square Np, + 1 are'denoted roots and
other circles (squares) are denoted field circles (squares). The last arrow in each GT(k, €) diagram ends on a
vertex in square N + 1. This must be the only trap vertex in the diagram. G*(¢) diagrams have a single
root circle labeled 1, one or more field circles (squares), and a continuous path of solid-and dashed arrows
that begins and ends on the root. As in G™(k, €), there may be no trap vertices.

We will base our discussion of these diagrams on the diagrammatic expansion of the Green function for
the continuum transport and trapping problem presented in ref. [12]. We denote by g°%, g™ and g' the
diagrammatic expansions of G*(¢), G™(k, €)and GT(k, ¢) for the continuum problem given in eq. (18), eq.
(20) and eq. (22) of ref. [12]. It should be emphasized that the symbols g%, g™ and g' represent sets of
diagrams and not the values assigned to these diagrams in ref. {12]. In analogy with eqs. (II1.10) and (IIL.11)

of I, we can write

G%(e) = € ' + g* + the infinite series of diagrams constructed by adding to g* diagrams at
most one wavy line between each pair of donor circles, each pair of trap squares, and
each donor—trap pair. Two circles or two squares or a circle and a square may be
connected by a wavy line only if there does not exist a solid arrow that begins in one
and ends in the other. (A1)

G™(k,e)= g™+ the sum of all diagrams derived from g™ by introducing wavy lines in the (A2)
manner described in eq. (Al).

GT(k, €) =g + the sum of all diagrams derived from g7 by introducing wavy lines in the
ot a (A3)
manner described in eq. (Al).

In the thermodynamic limit, these diagrams are evaluated as follows. The field circles (squares) are assigned
dummy labels. A solid arrow from circle j to circle i is assigned a factor w;;. A solid arrow from circle j to
square i is assignied a factor v, ;. Each vertex is assigned a factor ¢~ '. Each wavy line is assigned a factor
—9, .. Each dashed arrow IS assngned a factor —1. This product is multiplied by exp(ik-r,;) for a
"‘(k €) diagram or by exp(ik-ry_,,,) for a G (k, €) diagram. The positions of the second root (for
G™(k, €) and GT(k, €)) and of any fxeld circles (squares) are summed over all lattice sites. These sums are
unrestricted, since the §, . factors correct for configurations in which more than one donor or trap is
allowed to occupy the same site. The result is then multiplied by e~ e, where m is the number of donor
circles and # is the number of trap squares.

The diagrammatic expansions of G™(k, ¢) and GT(k. €) can be simplified by using a topological
reduction procedure as described in section 4 of I to eliminate loops. A loop is a part of a diagram that
becomes disconnected from both root circles by the removal of a single circle and of a pair of vertices
within that circle. A more:detailed definition is given in footnote 13 of I. We can exactly rewrite -the
diagrammatic expansions of G™(k, €) and G(k, €) as new series without loops in which the vertices now
carry a value G3(¢) rather than ¢ '. Egs. (A2) and (A3) can be replaced by '

Gm( k,e)= the sum of all diagrams in eq. (A2) without loops. These diagrams are evaluated
by the same procedure as those in eq. (A2) except that all vertices are assigned the

value G°(¢) instead of €. : (A4)
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GT(A—, €) = the sum of all diagrams in eq. (A3) withoul loops. These diagrams are evaluated
by the same procedure as those in eq. (A3) except that all vertices bur the trap
vertex are assigned the value G*(¢). The trap vertex retains the value e~ '. - (A5)

An important topological feature in the diagrams of eqs. (A4) and (AS) is the node. A node is a vertex in
a field circle with the property that removal of the field circle and of that one vertex within it leaves the two
roots disconnected. A more detailed definition is given in footnote 15 of 1. All of the diagrams in egs. (A4)
and (A5) can be generated from the subset of diagrams in each equation that have no nodes. We define
(k. G3(¢)) and (k. G(¢)) by

Xo(k.6(€)) = 1/cp[65(€)]? [sum of all diagrams in eq. (A4) without nodes], (A6)
S(k. G3(€)) = ¢/c+G*(€) [sum of all diagrams in eq. (A5) without nodes] . (A7)

Both Ep(k. G (€)) and 2 (&, G5(¢€)) depend on € only through G3(e). Expressions relating G™(k. €) and
GV(k,€) to (k. G3(¢€)) and 2 (k, G* (€)) are given in egs. (7).

Appendix B. Evaluation of 22 and

In appendices B and C we discuss the evaluation of those contributions to the two-body approximations
of ¥, and X, that are of order ¢. In summing these diagrams we will use many of the results and
techniques introduced in appendices A, B, and C of I.

We begin by renormalizing the 12 and £ diagrams using the topological theorem presented in
appendix C of I. Although traps are represented by squares and donors by circles in our diagrammatic
notation, we will use the term “circle” for convenience in the following discussion to mean either a donor
or a trap. In examining a £’ or £ diagram it is useful to group the circles into sets such that all circles in
a given set are connected to each other by wavy lines and circles in one set are not connected to circles in
another set by wavy lines. In appendix A of I, we rewrote the 22 series in the absence of traps as a new
series with restrictions on allowed wavy line connections among the circles in a set. We will follow an
analogous procedure here with the more complicated trapping diagrams.

A set of circles in a T2 or £ diagram either contains no traps or one trap. If it contains no traps, we
treat it as we did in appendix A of 1. If it contains a trap, it must fall into one of two categories: (i) the set
contains zero or one donor root circles (£ or ), (ii) the set contains two donor root circles (22 only).
A consequence of the topological theorem of appendix C in I is that we need only retain diagrams in which
each set of circles is connected by some arbitrarily specified singly connected path of wavy lines. (The
remaining diagrams have a total value of zero for any choice of the singly connected path.) When the
diagram is evaluated. such a path linking a set of n circles contributes a factor (n — 1)!. This singly
connected path may be specified for a set of n circles by assigning numerical labels 1 through n to the
circles according to some rule. The only allowable wavy line path is one constructed by linking circle i to
circle i + 1 with a wavy line fori=1, 2, --- n— 1. It is most convenient to adopt two different procedures
for specifying the allowed wavy line connections among a set of n circles containing a trap, depending on
whether the set belongs to category (i) or (ii).

Consider the I% diagrams A through D in fig. 5 *. They differ from each other in the placement of
wavy lines within a set of circles. Such diagrams are denoted topologically similar [1]. Since a wavy line
carries a value —8§, ,. two topologically similar diagrams have values that differ only by a factor of +1.

* Since T and E{3 diagrams contain at most one trap, the dummy label N + 1 will be omitted from the trap in figs. 5-9.
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Fig. 5. Four topologically similar S'2 diagrams. See text for Fig. 6. Four topologically similar £ diagrams in which two
discussion. donor root circles and a trap are linked together by wavy lines.

See text for discussion.

There is thus considerable cancellation in a sum of a group of topologically similar diagrams. The set of
circles containing the trap in A—D falls into category (i). In this case we choose the singly connected path
of wavy lines to be the one constructed by drawing a wavy line from the trap to the first donor in the set to
be visited by solid arrows, from that donor to the next donor to be visited by solid arrows, and so on. When
the diagram is evaluated, that path contributes a factor (n — 1)! where n is the number of circles in the set.
This means that we will represent the sum of A—D with the symbol of diagram C, whose value now has an
additional factor of 2!. This procedure can be verified for this example by noting that diagrams A, B and C
have the same value and diagram D has a value that differs by a factor of —1.

Now consider ‘= diagrams A-D in fig. 6. The set of circles containing the trap in diagrams A-D falls
into category (ii). In this case we choose to represent the sum of a group of topologically similar diagrams
by a diagram in which the wavy line path is constructed by connecting the trap to the first root, the first
root to the second root, the second root to the first donor field circle to be visited by solid arrows, that
circle to the next donor field circle to be visited by solid arrows, and so on. We represent the sum of
diagrams A—-D with the symbol of diagram A, whose value now contains a factor 2!. This result can be
verified by noting that diagrams A, B and C have identical values and that the value of diagram D differs
by a factor of —1.

We have simplified the diagrammatic expansion of %2 and 2% by grouping together diagrams whose
values differ only by factors of —1. We now ‘group together diagrams whose values differ only by a factor
made up of an integer and a power of —cp. We define the notion of the reduced diagram, introduced in
appendix A of I. A reduced diagram is derived from a 3%? or 32 diagram by collapsing all wavy lines
except wavy lines connecting a donor to a trap or a donor root circle to a second donor root circle. A wavy
line connecting circles A and B is collapsed [1] by moving all ends of solid arrows in circle A to circle B and
then removing circle A and the wavy line. This reduced diagram is always itself a member of 2 or 3. A
diagram with no wavy lines or whose only wavy lines connect two donor roots or a donor and a trap is its
own reduced diagram. Two diagrams with the same reduced diagram have values that differ only by a
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A B
Fig. 7. Diagrams A and B have B as a reduced dingram. See Fig. 8. Diagrams A and B have B as a reduced diagram. Sce
text for discussion. text for discussion.

factor made up of an integer and a power of —cy,. We will represent the set of all diagrams with the same
reduced diagram by that reduced diagram in the renormalized X S and I3 series. The value of the reduced
diagram now contains a factor of a polynomial in —¢y. In fig. 7, diagrams A and B both have diagram B
as a reduced diagram. If diagram B has value V, then diagram A has value —2c,V. We represent their sum
by the symbol of diagram B, whose value now includes a factor of 1 — 2¢p,. In fig. 8, diagrams A and B
both have B as a reduced diagram. The value of diagram A differs from the value of diagram B by a factor
of —3cp. We represent their sum by diagram B whose value now includes a factor of 1 — 3cp,. The value of
B also includes a factor of 2! for the wavy line path and it will be useful later to combine these factors into
a polynomial 2 — 6¢p.

Each circle in a renormalized S or £%? diagram has an associated polynomial, because the collapsing
of wavy lines in one set of circles is carried out independently of the collapsing of wavy lines in another set.
We modify the definition of the moveable part in I to apply to the trapping diagrams. For root circle 1, a
moveable part is any end of a solid arrow to visit the circle, unless root 1 is connected by wavy lines to root
2 and to the trap. In this case, root 1 has no moveable parts. For any other donor circle, a moveable part is
any end of a solid arrow in the circle except for the end of the last solid arrow to visit the circle. We use
“end” here in the sense of I. Each arrow has one beginning and one end, with the arrow head pointing
from the beginning to the end. In I for the lattice transport problem, we showed that a circle with »
moveable parts in the renormalized series has an associated nth degree polynomial Q,(cp), whose form is
derived in appendix A of that work. In a renormalized £’ or £ diagram in the present problem, a donor
circle with n moveable parts also has an associated nth degree polynomial in —cp, but this polynomial
may be of three different forms.

A donor circle with no wavy line connection and with 2 moveable parts carries a factor Q,(cp). Two
donor roots, connected to each other but not to a trap by a wavy line, each carry factors of Q,(cp). A
donor circle with n moveable parts connected only to a trap by a wavy line carries a factor R,(cp)=
dlcp 0, cD)]/dcD This result can be verified for the example of fig. 7. The sum of A and B in the original
“‘T) series is represented by diagram B in the renormahzed S® series. The renormalized diagram now has a
factor of 1 — 2¢p, associated with circle 2. Since 0,(¢p) =1t — ¢p, Ry(cp) =1 — 2¢p. The last possibility is
illustrated by diagram B in fig. 8. A wavy line path connects a trap to one donor root and that circle to the
other donor root. For such diagrams, the first donor has no moveable parts, as stated above. If the second
donor has n moveable parts, it has an associated factor of S,(cp)= d?[c30.(cp))/dch. This result can be
verified for the example of diagram B in fig. 8, for which circle 2 was demonstrated to have an associated
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Fig. 9. Represcmmivé examples of the three groups of X5 diagrams ( Dy, Dy, Dy) that compose the I3 series and of the three groups
of S dingrams (T}, 73. Ty) that compose the S} series.

polynomial of 2 — 6¢p. Since Qy(cp) =1~ cp. Si(cp)=2 = 6cp.

We can now present the diagrams in the renormalized 213 and % series that are of order c-. It is most
convenient to divide the diagrams in the following groups and then to sum each group separately.
Representative members of each of the groups are shown in fig. 9. D,: These S diagrams have two donor
root circles, and one trap, with a wavy line connecting one of the roots to the trap. D,: These 313 diagrams
have two donor root circles, a trap and a donor field circle. The two roots are connected by a wavy line as
are the trap and circle 3. D;: These I12 diagrams have two donor roots, a trap and a donor field circle. The
trap is connected to the first root by a wavy line, and the first root is connected to the second root by a
wavy line. T;: These 2% diagrams have one donor field circle and a wavy line between the roots. 73: These
S diagrams have one donor field circle and a wavy line between the trap and the field circle. T;: These
2P diagrams have no field circles and hence no wavy lines.

These sums of diagrams can be evaluated using the techniques of appendix B of I. As an example we
carry out the summation of the D, series in detail in appendix C of this work. The final results are

presented below.
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oo —za 2 —~cab 7 o c.
T,=cp), e“"’v(r)zf e"'da( € __.,,)( 6" < 5 ) : (B5)
r o - ’

1f‘CD+CDe (l—cD+cbe_‘“6)'

=Y e*u(r)s. : (B6)

z and 8 are defined in section 3.

Appendix C. Evaluation of the D, series of appendix B

In appendix B, D, is defined to be the sum of all diagrams in 32 with two donor root circles (labeled 1
and 2) connected by a wavy line and a trap field circle and a donor field circle (labeled 3) that are also
connected by a wavy line. An example of a D, diagram is shown in fig. 9. This series of diagrams is easiest
to sum by first examining a fictitious diagrammatic series F;. The diagrams in F, are identical to the
diagrams in D,. The value of an F, diagram differs from the value of the corresponding D, diagram in that
instead of associating a polynomial in — ¢, with each donor circle, we assign a moveable part on root 1 a
value of m,, a moveable part on root 2 a value m, and a moveable part on circle 3 a value m;. We define
renormalized transfer rates from circle 1 to circle 3 and from circle 2 to circle 3 by

wia(r) = way(r) = w(r) = w(r)/[1+ G*(e)u(r)]. (1)

These renormalized transfer rates include all possible excursions to the trap from a given vertex on circle 1
or circle 3. Since there are no solid arrow connections between circle 3 and the trap, transfer rates w;, and
w5, are not renormalized in this way:

wy (r) = wa (r) =w(r). (C2)

By utilizing the renormalization in eq. (Cl1), we include a set of diagrams that are of order [v(#)]°, which do
not belong in D,. We will sum series D, and F, that include this spurious contribution and then subtract it
off as a final step to recover D,. Since the presence of the trap has been entirely accounted for by the
renormalization of eq. (C1), the problem of summing the F, series is very similar to the problem of
summing the Ef? series in appendix A of I, except that the transfer rates are now asymmetric: w3 # wy,.
We define generalized transfer rates

w'(r w(r
135 ,( )-\. . Ty, = (r) s . (C3)
1+ mw(r)G*(e) 1+ mw'(r)Gi(e)
and generalized return rates
R, — —w(r)(“;-ﬁ(cﬂ)»ml ’ R, = ——w(;')GS(e‘)fnz _ (C4)

1+ mw'(r)G*(e) 1+ myw'(r)G3(e)

The series F, can be written as

F, = cperGe(e )ETISTB"a Z (R; +R3,)
=0

1+ z(my+m,+ 0m;)

= coer6(e) X v (] 1 ! ) (o)
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Substituting eqs. (C9) and (C10) into the sum over i in eq. (C7) gives
i+ R e d/! e? 2
X (-2 z: gL ( , ) = | ;)
i=0 ( ) dy ™'~ (1—c0+c|:,ey)2 y=ody/ '\1=¢ptepe =0
i+1 i+l=—j 8y
d / e
-—Z(_Z) Z(l+l) iv1—j ( 2)
i=0 dy d (l—cD+cD eo’) =0 -
da’ 1 e’ 1
-4+ —In(l —cp + ¥ C11
X dy’ ( ¢p 1 —cptepe” ¢} n1-eptepe )) =0 (c1)
Applying Leibnitz’ rule to the right-hand side of eq. (C11) gives
d+! id 1 e’ 1 1
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We can perform the su‘mmation over i using the identity o
T (x) d*L(y>/dy ly=o= f dae” «L(m) - , (C13)

k=0
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where L(x) is analytic at x = 0. The final result is

e—a9:
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. 0

(1 —cp + cp €7 )

1—cp)(l—e”™)

X ((l/cD) In(l—cp+cpe™™)+ (
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) ' (C19)

As discussed above, to obtain the D, sum from D,, we must subtract off the spurious contribution of order

[o(r)°:
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