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A unified treatment of dipole—dipole excitation transfer in disordered systems is presented for
the cases of direct trapping (DT) in two-component systems and donor—donor transfer (DD)
in one-component systems. Using the two-particle model proposed by Huber we calculate the

configurational average of G °(z), the probability of finding an initially excited molecule still
excited at time ¢. For the isotropic three-dimensional case treated by Huber excellent
correspondence is found with the previously reported infinite diagrammatic approximation.
The anisotropy of the dipole—dipole interaction is included in the averaging procedure. Two
regimes of orientational mobility are considered: the dynamic and static limit, rotations being
much faster or slower, respectively, than the energy transfer. The following geometrical
distributions are investigated: (a) Infinite systems of one, two, and three dimensions which
lead to Forster-like decays. Two orientational distributions are considered for monolayers:
dipoles confined to the plane or oriented isotropically. (b) Bilayers and multilayers. The
averaging procedure for transfer from one layer to another is outlined in detail. The main
parameters determining the decay of G *(¢) are the surface concentration and the ratio of the
layer separation and the Forster radius. In a stack with a small number of layers, which is a
finite system in one of the dimensions, an average over positions of the initially excited donor is
included. At low surface concentration the decay gradually changes from two- to three-
dimensional character as one increases the number of layers. This fractal-like behavior is solely
due to the presence of excluded volumes and the finite nature of the system. Experimental
observables are considered in detail. An analysis including a general formalism is presented to
determine the loss of polarization memory if an excitation is transferred to a random
distribution within the given geometrical constraints. It follows that after one transfer step, in
the worst case, less than 10% of the initial anisotropy is conserved if the appropriate
observation geometry is chosen. The anisotropy decay, which is manifested in a transient
grating or fluorescence depolarization experiment, is thus a useful observable for G°(¢) in DD

transfer.

I. INTRODUCTION

Since the pioneering work of Forster'~ the phenome-
non of energy transfer between an excited donor and a suit-
able acceptor molecule has been studied intensively for a
variety of chemical systems in different geometrical arrange-
ments. This broad interest can be attributed to two facts:
first, because the transfer probability strongly depends on
the separation and relative orientation of the donor and ac-
ceptor, energy transfer can serve as a tool to investigate dis-
tance and orientation parameters of the systems studied. In
order to use energy transfer as a probe of structure, the excit-
ed state coupling mechanism and the nature of the spatial
distribution of the molecules must be known. Second, energy
transfer in the photosynthetic unit is a key step in solar ener-
gy conversion in nature®; if one wants to be able to mimic
nature’s light harvesting device in artificial systems, clearly
the dynamics of energy transfer and the influence of struc-
tural factors must be understood and controlled. While a
mass of experiments has been performed under steady-state
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conditions using fluorescence quantum yields and anisotro-
py as observables, time-resolved measurements became pos-
sible only during the last decade through the development of
picosecond resolving instrumentation. It is clear that more
information can be extracted from a time-resolved decay
curve than from the single data point of a corresponding
steady-state result.

One usually encounters two different experimental
situations: In a one-component system excitation energy is
transferred among molecules of the same kind, provided that
they show some overlap between the absorption and emis-
sion spectrum. This situation will be referred to as the do-
nor—donor (DD) transfer case. If, on the other hand, trap-
ping centers are introduced, an excitation can migrate
among donors and finally become trapped on a trap. A limit-
ing realization of such a system is for low donor concentra-
tion so that the energy transfers in a direct step from the
donor to an acceptor, This situation, which has been the
most thoroughly studied in the past, is known as the direct
trapping (DT) case.

The general theoretical treatment of incoherent excita-
tion transfer in disordered systems is a matter of consider-
able complexity. The early derivations'" all investigated
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the direct trapping case, whereas the donor-donor problem
was only recently addressed in detail by Haan and Zwanzig.®
Using a truncated density expansion in Fourier-Laplace
space they were able to approximately calculate the average
density of excitations at a position r at time #, G(r,¢). Based
on this method sophisticated approximate solutions have
been found using a self-consistent diagrammatic series. Do-
nor—donor transfer’® as well as the general trapping case®'®
in infinitely extended three-dimensional systems has been
treated this way and excellent correspondence to picosecond
fluorescence experiments was found over a range of concen-
trations and times using the diagrammatic approximation.
In addition it was demonstrated that the Green’s function
can be split into three parts: G°(¢), the probability of an
excitation being on the initially excited molecule; G2 (z,r),
the probability that it is in the donor ensemble; G 7(¢,r), the
probability of finding it in the ensemble of traps.

The diagrammatic procedure was later adapted to infi-
nite one- and two-dimensional systems.'! Stepping towards
molecular arrangements of finite size the problem of excited
state transport in a sphere was attacked theoretically for di-
rect trapping, where an exact solution was obtained, and for
donor—donor transfer, where the Green’s function could be
represented as a truncated power series and a Padé approxi-
mant.'? The theory was able to accurately reproduce the
shape of the fluorescence anisotropy decay of dye molecules
confined to the surface of a micelle, and from the single ad-
justable parameter, the micelle radius was obtained."> An-
other type of finite system is an isolated polymer coil; work
devoted to extracting the radius of gyration in polymer
blends from time-dependent polarized fluorescence experi-
ments is in progress.'*!>

G*(t), the configuration averaged probability that the
excitation is on the initially excited donor (either because it
has not transferred away or because it has left and returned),
is a useful part of the full Green’s function describing energy
transport, which is easily identified with the following obser-
vables: in direct trapping, G*(z) - e ~'/" is equal to the flu-
orescence decay of the donor where 7 is the fluorescence
lifetime in the absence of traps; in donor—donor transfer it is
well approximated by the decay of the polarization anisotro-
py following polarized excitation of the system. This arises
from the fact that excitations are transferred from a photose-
lected ensemble of molecules to a randomly oriented distri-
bution resulting in almost complete depolarization of the
fluorescence emitted from molecules not initially excited.
The validity of this assumption will be demonstrated in Sec.
V. It follows that donor-donor transfer can be examined if
the rotational reorientation of the molecules, which also
causes depolarization, is slow compared to the time scale of
energy transfer; this restriction need not be made for direct-
trapping experiments.

Although the quality of the above-mentioned theoreti-
cal approaches is impressive as evidenced by their close
agreement with the experimental results, their application is
limited because of the mathematical complexity. For the
case of a random three-dimensional system the inverse La-
place transform, necessary for comparison to experiment,
has recently been found.'® The other situations require nu-

merical inversion. For more complicated geometrical distri-
butions it is essential to have an energy transfer model which
is mathematically more tractable and, if possible, can be ana-
lytically handled in the time domain. Because we can com-
pare any new approach to the established theories, the new
method can be tested. Such an approach has been proposed
by Huber et al."” for donor-donor transfer and by Blumen
and Manz'® for direct trapping. Briefly, the model considers
only the interaction between pairs of molecules. An exact
configuration averaging leads to a power series, in the trap
concentration for direct trapping and in the donor concen-
tration for donor—donor transfer, which is truncated to first
order. The result is identical to Forster-type equations for
DT and is approximate for DD transfer in the sense that all
paths requiring more than two molecules for an excitation to
return to the original molecule are excluded. The very ap-
pealing feature of this approach is that both the DT and DD
case can be treated in a unified way, leading to a general
result which distinguishes between the two cases simply by a
scaling factor. All investigations, which were concerned
with DT only, can therefore be applied in a straightforward
way to the DD problem also. Apart from this unification, it
is our aim to apply the model to energy transfer in bi- and
multilayer systems which are currently being actively inves-
tigated.'>?°

Before doing so, we feel it to be appropriate to review the
model and averaging procedure in some detail in Sec. II and
to derive results for isotropic, extended systems of one and
two dimensions, and review and unify the results for three
dimensions in Sec. II1. The appropriate equations for the
analysis of energy transfer experiments on monolayers fol-
low directly and an interesting application will be discussed,
allowing measurement of thickness changes of, for example,
films by means of energy transfer. In Sec. IV bi- and multi-
layers will be considered. Apart from the significance in bio-
physical investigations and possible applications in solar en-
ergy conversion, this arrangement can, in a purely
theoretical way, be used to study the effect of restricted geo-
metries on the energy transfer observables. A stack of an
infinite number of layers can be viewed as being continuous
and random in two dimensions but discrete in the third one.
It will be shown under what conditions the discreteness
manifests itself.

With respect to rotational motion we restrict ourselves
to the two limiting cases of static averaging, where the mo-
lecular orientation is fixed on the time scale of the experi-
ment, and dynamic averaging, where a molecule samples all
relative orientations in a time much shorter than one energy
transfer step. An extension to the intermediate case has been
given by Knoester and van Himbergen.?

il. THE TWO-PARTICLE MODEL

We will describe the statistics of energy transfer on the
basis of an interaction between two molecules, the excited
donor and an acceptor for DT, and the excited donor and an
unexcited donor for DD transfer, respectively. Let w(r) be
the transfer rate where r denotes the separation of the two
molecules. The probability E(¢) of finding the excitation on
the initially excited molecule is, for this isolated pair,
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Epr (1) =e= """ (2.1)
for DT where only the forward transfer is allowed, and
Epp (1) = e~ 2" . cosh(w(r)t) = 4(1 + e~ )
(2.2)

for DD transfer where a repeated exchange of the excitation
is considered. In doing the configurational average we follow
the procedure of Blumen'® and of Huber."’

The spatial disorder is modeled by randomly occupying
the sites of a lattice with molecules, the excited donor being
at the origin. With the probability p that a site is occupied
and the assumption that all pairwise interactions between
the excited donor and any other molecule are independent,
one obtains

N
G'(t)=]] 1—p+pPE@r), (2.3)
i=1
where the product extends over the N lattice sites. This
method of distributing molecules in space automatically ex-
cludes all configurations where a site would be occupied by
more than one molecule. Expanding the logarithm of Eq.

(2.3) in powers of p yields

) N

InG*(t) = z 2

i=1
Next, the summation over sites is replaced by an integra-
tion over space, thus going to a continuous spatial distribu-
tion u(r), and only the first order term of the series Eq. (2.4)
is retained. The probability p becomes a number density p
in the spatial dimension under consideration. With Eqgs.
(2.1) and (2.2), Eq. (2.4) is now simplified to

—E(r)]*. (24)

In Gy (7) = —pr (1 —e=*Yu(r)dr, (2.52)
0

InGpp (8) = —%J.w (1 —e=2Uy(r)dr. (2.5b)
0

A comparison of Egs. (2.5a) and (2.5b) shows that both
equations can be unified by introducing a scaling factor A:

A=1 forDT, (2.6a)

A =2 for DD transfer, (2.6b)

InGS(¢) = —%J. (1 — e~y (r)dr. 2.7
0

So far we have allowed w(r) to be of any form and have only
considered the spatial but not the orientational distribution
of the molecules. We restrict further discussion to dipole—
dipole coupling which is responsible for the singlet—singlet
energy transfer in many organic molecules. The transfer rate
is then given by

w(r) =—-——K2(Q) ( )

where T is the excned state lifetime in the absence of energy
transfer, R, the Forster radius, and ©2(Q) a dimensionless
factor describing the interaction strength of two dipoles as a
function of their relative orientation.’

In the dynamically averaged limit, denoted by d, one is
allowed to average x2(2) or, equivalently, the transfer rate
w(r) over the normalized angular distribution v(£}):

(2.8)

(k) = f 2(Q)0(Q)dR. (2.9)
Q
Equation (2.7) now reads
InG§(1) = —ﬂfw{l —exp[ —4 -3
Ao
t/T(Ro/P)S(*) 1} u(r)dr . (2.10)

In the static (st) case, however, the observable itself has to
be averaged over the given angular distribution. Adding this
integration to the starting Eq. (2.3), one obtains®

N
G: (1) = H 1—p +pJ v(Q)E, (t,r;,Q2)dS) . (2.11)
0

i=1
Applying the same set of approximations as before results in
In G2, ()

- "g"rf{l—ex;a[ — A3 1/7(Ry/M%P(D)]]
Ado Jo

Xu(r)drv(Q)dQ . (2.12)

The remaining task for any given spatial and angular distri-
bution is to calculate the integrals Egs. (2.9), (2.10), or
(2.12).

An additional degree of complexity is added if the sys-
tem is of finite size and the distribution #(r) explicitly de-
pends on the position Ry, of the excited donor: u(rRyp ).
This behavior is found, e.g., if the molecules are distributed
within a sphere; yet, as long as the donors are confined to its
surface, the donor position is still an invariant of the system.
This feature has been used in a recent theoretical investiga-
tion on energy transfer in restricted geometries.’” Clearly, in
the absence of positional invariance, an average of the ob-
servable over the distribution of donors has to be performed.
In the case that there is a finite number of distinct environ-
ments (such as positions on a finite chain):

G5(t) =— z G:i(), (2.13)

n i=1
where G ;(t) is the ensemble averaged decay of an initial
excitation located in environment .
For a continuous donor distribution o(Rp, ) one inte-
grates

G'(t)=| G*(t,Rp)o(Rp)dRp

Rp

and obtains, by introducing Eq. (2.7) into Eq. (2.14):

G*(t) =f o(Rp)dRp
Rp

(2.14)

-exp[ —%f(l —e M) y(r,Rp )dr] .

(2.15)

To simplify this rather unhandy expression one can expand
the exponential in the integrand of Eq. (2.15) and truncate
to whatever order is felt appropriate:

G‘(t)=j o(Rp) -dRp[1+ 3 ——(—J(RD))"]
Rp n:

n=1

(2.16)

J. Chem. Phys., Vol. 85, No. 7, 1 October 1986



4090 J. Baumann and M. D. Fayer: Excitation transfer in disordered systems

with

J(Rp) =%J. (1 —e= 2y (r,Rp)dr. (2.17)

Making use of the normalization of (R, ), Eq. (2.16) be-
comes

Gin=1+3 =

f (—J(Rp))'o(Rp)dR,, .
n=1 n! Rp

(2.18)

Equation (2.18) is generally valid; for the dynamic regime J
is given by Eq. (2.17), whereas the static case is obtained if
Eq. (2.17) is also averaged with respect to orientations [see
for comparison Eq. (2.12)].

Il1. ISOTROPIC EXTENDED SYSTEMS IN ONE, TWO,
AND THREE DIMENSIONS

A. Spatial distribution

We first evaluate the spatial integral of Egs. (2.10) and
(2.12). The distributions u, (r) in A-dimensional space are
given by

u,(r)y=2, (3.1a)
uy(r) =2mr, (3.1b)
uy(r) = 4m7. (3.1¢)

Itis convenient to define a dimensionless concentration c,, as
the number of molecules within the A-dimensional sphere
V, of radius R:

ca =paVa, (3.2)
where
V,=2R,, (3.3a)
V,=wR}, (3.3b)
Vi=4%mR} . (3.3c)
With the substitutions
p=i>ERS () (3.4)
2T
and
y= L‘g (3.5)

fa

one obtains the following simplified integrals for the dynam-
ic case Eq. (2.10): For an infinite line (A = 1):

InG3,(t) = _L,ﬂf’f (1—e=*)y~"%dy.
kY o

(3.6a)
For an infinite plane (A = 2):
InG3, (1) = —Lwlﬂj (1—e %) y~*3dy.
31 o
(3.6b)
For an infinite volume (A = 3):
InG3,(8) = —L27p‘/2f (1—e= ) y=324y.
34 o
(3.6¢)

It is easily found by partial integration that

f (1—e“y)y_A/6_‘dy=%l“(1—A/6), (3.7
0

where I'(a) is the gamma function.
Combining Eqgs. (3.2)~(3.7) one obtains the general re-
sult
t A/6
In G (1) = —cy A%~ 1(302) )T (1 — A/6) (—)
.
(3.8)
Proceeding now to the static situation [Eq. (2.12)] we
replace the substitution [Eq. (3.4)] by
p=i3lRsq). (3.9)
27

The spatial integral in Eq. (2.12) follows in the same way as
the result [Eq. (3.8)]:

lnGSAst (2) = — Cp A 861 (%)AM_ <lKIA/3)
t A/6
T -A76) (—) (3.10)
-
with
<|K|“’3>=f [K3(2)]1%%(Q) dQ . (3.11)
Q

It is immediately seen that the dynamic [Eq. (3.8)] and the
static [Eq. (3.10)] limit differ only by a scaling factor

_ (IKIA/3>
7=y (3.12)
InG3, () =y-In G, (1) . (3.13)

Equation (3.13) implies that in going from the dynamic to
the static situation, the concentration ¢ has to be replaced by
¢ - 7. This scaling law has been reported before.®?* It will be
shown that for all situations considered, ¥ is smaller than 1,
so that the decay of G*(¢) is generally slower in the static
case. The numerical value of ¥ depends on both the spatial
dimension A and the angular distribution v({), as is seen
from Egs. (2.9), (3.11), and (3.12). It is found by analysis
of the above derivation that this concentration scaling only
exists if the spatial distribution extends from zero to infinity.
If any of the two integration limits differ, which would corre-
spond to a finite size and/or to excluded volumes, the solu-
tion of Egs. (2.10) and (2.12) depends on {«?) and «*(£2),
respectively, in a more complicated way than Eqgs. (3.8) and
(3.10). An example for this behavior will be found in the
bilayers of Sec. IV.

A further general observation can already be made: The
functional form of the decay G °(z) is solely determined by
the spatial dimension A, governed by the expression
e~ @/ while all other parameters discussed so far, c, 4,
(«*), and y enter only as scaling constants to expand or con-
tract the time scale. It is useful to express this scaling proper-
ty by incorporating the concentration into the time variable
and define

7
r

0, =c (3.14a)

or
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6, = (o). L. (3.14b)
T

On the other hand, this behavior means that the parameters

¢, {«?), and ¥ cannot be determined independently from a

time-resolved experiment.

B. Orientation

We now consider several angular distribution functions
v(Q) and calculate the coefficients («*), {|x|*’*), and ¥ in
the spatial dimensions of interest. The orientation factor
«2() for dipole—dipole coupling is

2

K2=[do‘d1—|—3|§(do'r)(d1’r) , (3.15)

r
where d,,, d, are unit vectors parallel to dipolesOand 1, andr

is the vector joining them. Steinberg® gave an elegant
expression, reducing the dependence to two angles only:

i =cos’Y(3cos’n+ 1), (3.16)

where 7 is the angle between dipole 0 and r and ¢ the angle
between dipole 1 and the direction of the electric field at the
location of 1, produced by dipole 0. Although the distribu-
tions considered here have been covered in the literature,
using different approaches, we briefly outline the derivations
since the procedure is needed in Sec. IV.

We begin with a random three-dimensional system and
allow the dipoles to be oriented isotropically. The angular
distribution, using the coordinates of Eq. (3.16) is

v(n,¥) =Lsinysiny. (3.17)
With the substitutions
x=cost, (3.18a)
y=cos7, (3.18b)
{x?) is easily expressed as
(f):fx’dxf By +1)dy=2/3. (3.19)
0 0

This is the result used by Forster.? The evaluation of (|«|),
which describes the static limit, is analogous and the result
can be found in Table L.

In proceeding now to a two-dimensional system we con-
sider two different orientational distributions: the dipoles
are either isotropically oriented, but still located on a plane,
or their directions are confined to lie within the plane but
random with respect to the azimuthal angle. We will show

4091

that the first case, where the dimensionality of the orienta-
tional freedom is higher than the spatial dimension, requires
additional considerations and is unique in the series of sys-
tems which are discussed in this section. The second distri-
bution, which we refer to as in-plane orientation, is

1
U(ﬂ9¢) - Zﬂ—j ’

and therefore

(3.20)

21 27
(k*) =#£ c0s2¢d'//J (3cos’n+1)dn=5/4
0
(3.21)

and

27
(|K|)2/3 =#J‘ (COS ¢)2/3 d¢
(¢]

21T
xf (3cos’qp+ 1)3dp=0.9462. (3.22)"

0

Equation (3.22) is integrated numerically and the result
found identical to the value of Kellerer and Blumen.?
Finally we turn to the isotropic orientation, thus allow-
ing the dipoles to be within or to stick out of the plane. In the
dynamic limit every excited dipole samples the same distri-
bution of relative orientations to unexcited ones. {x?) there-
fore has the value 2/3, as in the three-dimensional, isotropic
case. In the static limit, however, the mean relative orienta-
tion which is seen by an excited dipole depends on its individ-
ual direction, more specifically on the polar angle measured
from the surface normal. This is easily visualized by compar-
ing a dipole which stands perpendicular to the plane to one
which is within the plane. The former lacks all “head-to-
head” orientations of the dipoles which are most efficient for
energy transfer, while head-to-head orientations are realized
for the latter situation. The consequence is that the initial
angular distribution w, of molecules excited by polarized (or
unpolarized) light needs to be included in the orientational
average of |«|?/>. We consider excitation by polarized light
which leads to two distinct excitation profiles: w,, for the
electric field perpendicular to the plane and two degenerate
distributions w,, and w,, for the field within the plane. Cor-
respondingly we will obtain (|x|*?),, (|«|*’?),, and, al-
though physically not accessible, the average {|x|*/%},,; if all
dipole directions were uniformly excited. The derivation of
these averages is given in Appendix A; their values are found

TABLE . Coefficients in Eqgs. (3.8) and (3.10) for some combinations of spatial dimension and angular distribution in infinite systems.

Dynamic Static

Angular Excitation
Dimension A I'(1—A/6) Ca distribution () polarization {|x]**) ¥
3 1.772 45 P 531 R} isotropic 2/3 0.6901 0.8452
2 1.354 12 p2mRY isotropic 2/3 1 to plane 0.6909 0.7909
|| to plane 0.7641 0.8747
uniform 0.7397 0.8468
in-plane 5/4 0.9462 0.8784
1 1.128 79 P12R, isotropic 2/3 uniform 0.8305 0.8886
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t/t

FIG. 1. Decay of G °(¢) for infinite systems of different spatial dimension in
the DD transfer situation. The lifetime decay e ~*/" is not included: Orienta-
tion: isotropic; Concentration'c = 1; (——-—) one dimensional; ( )
two dimensional; (- - - -) three dimensional; D: dynamic limit; S: static lim-
it; S, : static limit, excitation polarization normal to the plane; S, : static
limit, excitation polarization in the plane.

in Table I. As expected, (|x|*’?) is larger and the decay of
G °(t) therefore faster if the field vector is in the plane, which
is the usval experimental situation. The value given by
Fredrickson and Frank® is based on a uniform excitation
profile. It should be noted that even if the light is unpolar-
ized, as long as the field is parallel to the plane, the average
(|x|?'?) , has to be used.

All the coefficients needed in Egs. (3.8) and (3.10) are
summarized in Table I. Decay curves G°(¢) for isotropic
orientation in all three spatial dimensions are shown in Fig.
1. It is clearly seen that as the spatial dimension becomes
lower, the decay is faster at short times and slower at long
times. Also in the static isotropic two-dimensional case, the
polarization of the excitation field actually influences the
rate of energy transport.

C. Validity of the two-particle model

We separately consider the DT and DD results. In the
case of DT one realizes that Eq. (3.8) is identical to the
expressions derived by Forster!? for A = 3 and Hauser et
al® for A = 2 and 1, who use a different procedure to form
the configurational average. The fact that the first order
term of the exact density expansion [Eq. (2.4)] equals the
Forster results is interesting and deserves some comment.
While the present method strictly avoids multiple occupa-
tion of the same region in space, this possibility is not ex-
cluded in the Forster derivation since all molecules are con-
sidered independently distributed. This difference is
reflected by the presence of higher order density terms in the
exact expression [Eq. (2.4)]. Forster-type equations are
therefore accurate at low to moderate acceptor concentra-

tions. In order to establish an upper limit for the acceptor
concentration, we identify the occupation probability p in
thelattice with the fraction fof the total volume occupied by
acceptor molecules in the case of a continuous distribution.
The first order approximation will be sufficient if p and
therefore farebelow a maximum value £, . This condition
leads to the following upper limits for the concentrations in
three- and two-dimensional systems:

4 R<3)
C3<— fmax —» 3.23
3 3 f v ( a)
R2
€2 <M s — >, (3.23b)
mol

where V,_, and A4, are the molecular volume and area,
respectively. A reasonable value for f , is 0.01, thus reduc-
ing the contribution of the second order term to < 1%. Gen-
erally, the decay described by Forster-type equations will be
faster than the reality because configurations are included
which are physically not allowed.

The DD transfer expression (1 = 2) will now be com-
pared to the infinite order diagrammatic expansion of Go-
chanour, Andersen, and Fayer (GAF)”® which gave excel-
lent agreement with fluorescence anisotropy decays over a
range of concentrations. Knoester and van Himbergen®® re-
cently made this comparison for four different approaches in
three dimensions. After reexpressing the various results as a
density expansion they showed that the three-body infinite
order GAF approximation is exact up to second order in
density. Huber’s result, Eq. (3.8), is shown to be exact in
first order and its second order coefficient to deviate by only
3% from the exact value. A graphic comparison of the three-
body GAF solution and Eq. (3.8) gives two practically in-
distinguishable curves for concentrations up to ¢ = 5 and
times which are of significance in experiments. Only the very
long-time behavior of G *(¢) is inaccurate as shown by a re-
cent analysis of Fedorenko and Burshtein. ' This near equiv-
alence to the GAF theory strongly supports the two-particle
first order approximation as a valid description for DD
transfer even at fairly high concentrations.

For the two- and one-dimensional cases, the three-body
infinite order diagrammatic expansions are not available and
accurate experimental studies on well-defined systems have
only very recently begun to emerge.>* We therefore have to
compare to the two-body infinite order diagrammatic ap-
proximation which has been demonstrated to decay some-
what too fast (about 10% at long time) in the three-dimen-
sional case. Therefore, we expect that Eq. (3.8) should
decay slower than the two-body theory given by Loring and
Fayer!! for two dimensions. This behavior is indeed found.
The decay of the two-dimensional result presented here is
slower than the two-body two-dimensional result to essen-
tially the same degree that the three-dimensional three-body
result is slower than the corresponding two-body result.

We conclude that in the DT case our equations are equal
to Forster-type results; for DD transfer they are an excellent
approximation in three dimensions and are expected to be
accurate in lower dimensions as well.
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D. Applications

1. Monolayers

The preparation of well-defined two-dimensional sys-
tems is a rather difficult problem as compared to the three-
dimensional counterpart. One way to assemble monomole-
cular layers is to spread lipids on water under controlled
surface pressure and optionally transfer this film onto the
surface of a solid substrate.*® This is known as the Lang-
muir-Blodgett technique. There are a number of steady-
state energy transfer studies in bi- and multilayers.'?2%-*
Yet, to our knowledge, time-resolved experiments concern-
ing energy transfer in an isolated monolayer prepared by the
Langmuir-Blodgett technique have not yet been performed.
The few picosecond measurements, which have been pub-
lished, all investigate layers formed by adsorption of mole-
cules from a random solution to the surface of glass, organic
crystals, or semiconductors.?!? Although these results are
encouraging, the accessible range of surface concentrations
is limited due to the formation of aggregates at higher con-
centrations, which act as trapping centers for the excitations.
It is to be hoped that these difficulties can be overcome by
assembling lipid monolayers, which contain lipophilic chro-
mophores, by the Langmuir-Blodgett technique. It would
be valuable to do time-resolved measurements, using the ob-
servables outlined in the Introduction, with this type of lay-
er. The interest arises both from the fundamental question
on how dimensionality restrictions influence the energy
transfer variables and from the potential use of the technique
to characterize bi- and multilayers. Independent informa-
tion about the angular distribution and the time scale of rota-
tional motion, which affect the decay, may be required and
can be obtained from polarized fluorescence experiments in
diluted systems. 262734

0 .5 1 1.5 2
t/T
FIG. 2. Decay of G*(¢) for monolayers in the DD transfer situation. Life-

time decay e ~*/" is not included: Surface concentration ¢, = 1; (- - - -) iso-
tropic orientation; ( ) in-plane orientation; D, S, S, S, asin Fig. 1.

In Fig. 2 we compare G *(¢) decays for a monolayer in
the static and dynamic limit for DD transfer and isotropic as
well as in-plane orientation. The curves are calculated from
Eqgs. (3.8) and (3.10) with A = 2 and the coefficients given
in Table I. As was pointed out before, the functional form of
all curves is the same, the only difference being a scaling of
the time axis. The following two features are obvious:

(1) The decay of the statically averaged ensemble is al-
ways slower than in the dynamic case.

(2) Isotropic orientation gives rise to a slower decay
than the in-plane arrangement. The reason is that in the lat-
ter situation relative orientations, which are favorable for
energy transfer, are more probable.

It is again interesting to note that for the isotropic case, the
polarization of the excitation source influences the rate of
energy transfer.

2. Thickness change of films

Consider a film of a thickness large compared to the
Forster radius R, of chromophores which are randomly dis-
tributed in this medium. For example, the film could be a
photographic emulsion on a substrate. In such a system, ex-
posure to a solvent results in the film swelling in the direction
perpendicular to the plane of the substrate. Energy transfer
observables can be used to determine the change of thickness
which occurs when a film is swollen by a solvent. Note that
the system is modified anisotropically as only one dimension
is affected. We will formally show that, although macrosco-
pically an anisotropic change is introduced, the system as a
whole still shows exactly isotropic behavior with respect to
energy transfer and the expansion factor is easily available
from such experiments.

We make the assumption that the orientational distribu-
tion and mobility of the molecules do not change. The initial
situation is then described by

InG*(t) = —%Mrr (1—e=*"°)Pdr, (3.24)
0

where u is the substitution in Egs. (3.4) or (3.9). After
transforming to Cartesian coordinates we obtain

werw=-£ [ [ [0
nG*(t) i) )

X{l —exp[ —u(x*+y*+2*) |} dxdyd:z.
(3.25)

We now spatially expand the system anisotropically along
the x, y, and z axis by the factors k,, k,, and k,. The only
quantity in Eq. (3.25) which is affected by this operation is
the density, which is reduced to

te P

ke k, k,
The integration limits are not influenced because they al-
ready extend to infinity. The underlying reason is that we are
dealing with a continuous, disordered system which keeps is
disorder and continuity even if the macroscopic boundaries
are anisotropically changed. G *(¢) is therefore sensitive only
to the concentration which is an isotropic quantity.

P (3.26)

J. Chem. Phys., Vol. 85, No. 7, 1 October 1986



4094 J. Baumann and M. D. Fayer: Excitation transfer in disordered systems

In contrast, G*(¢) would be affected in a more compli-
cated way if the chromophores formed a lattice. Here, mac-
roscopic anisotropy would result in an anisotropic spatial
distribution. To come back to the special case of a film swell-
ing in the x direction only (k, =k, = 1), wecan now give a
directly applicable result:

InG(2),, (3.27)

where i denotes the initial, f the swollen state. Equation
(3.27) holds for the static and dynamic limit. It must be
noted that the above argument is only valid if the system is
large compared to the distance scale on which energy trans-
fer takes place.

IV. Bl- AND MULTILAYERS

Lipid bilayers are widely recognized and used as valu-
able models for biological membranes. We wish to calculate
the energy transfer observables first for a bilayer and then for
a stack of any number of monolayers. The procedure which
is developed permits the calculation to be carried out for
uniformly spaced layers or nonuniformly spaced layers. A
multibilayer system is an example of nonuniform spacing.
The layer separation in one bilayer is determined by the
length of the lipid chains, while the separation between
planes of adjacent bilayers is determined by the water con-
tent of the multibilayer. For illustration we present specific
calculations for a single bilayer and a uniformly spaced
stack.

The problem is composed of two parts: transfer from an
initially excited donor to a chromophore in the same layer,
which has been covered in detail in Sec. III, and transfer to
another layer. We will use the terms intralayer and inter-
layer transfer to distinguish between these two cases. Within
the framework of the two-particle approximation, both con-
tributions are independent and can therefore be treated sepa-
rately. The interlayer contribution could be observed experi-
mentally if the bilayer is prepared such as to contain a small
amount of donors on one layer and the acceptors on the
other one. If, however, both layers are chemically identical, a
combination of intra- and interlayer transfer will be seen in
energy transfer experiments.

In the following section we derive the expressions for
G*(t) due to interlayer transfer for isotropic and in-plane
orientation, in the dynamic and static limit and taking into
consideration the polarization of the exciting light where
this is necessary. While in general the configuration average
will have to be performed numerically, there exist asympto-
tic expressions of simple analytic form which are valid if the
layer separation is either much smaller or much larger than
the Forster radius.

A. Interlayer transfer

The coordinate system used in calculating the interlayer
contribution is shown in Fig. 3. d is the separation of the two
layers and 8, denotes the angle between the surface normal
and the vector r which joins the locations of the two dipoles
d, and d,. It is convenient to transform the spatial integra-

X

FIG. 3. Coordinate system for interlayer transfer: d,: donor dipole; d,: ac-
ceptor dipole; E: electric field produced by d,; d: layer spacing.

tion of Egs. (2.10) and (2.12) into an integration over the
angle 6,. We have

r=d/cos@,, (4.1)
and obtain for the spatial distribution
sin 6,
u(6,) =2nd? —. (4.2)
cos® 0,

The dynamic case [Eq. (2.10) ] is then

7/2
InG(1) = —£—277d2f [l—exp[—/li—i(Ro/d)6
A o 2T

sin 4,
(4.3)

X cos® 6, («x?) ] ] do. ,

cos® 8,
and the static one [Eq. (2.12)]:
In G (¢)

T/2 3 !
= —-&277'd2f f [l—exp[—/i———(Ro/d)G
A o Ja 27T

7]
x cosﬁe,xz(n)” 22 49,0(0) -dQ .
cos’ 6

4.4)

r

We introduce the following ratio which will be shown to be a
major parameter for the description of interlayer transfer:

v=Ryd. (4.5)
In addition we define
,u=ii£v(’, (4.6)
2 T
and the surface concentration
c,=pmR}, 4.7

expressed as the number of molecules within a circle of radi-
us R,
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1. Isotropic orientation

The orientation of the dipoles is assumed to be random
in three dimensions, thus allowing them to stick out of the
plane on which they are located.

In the dynamic limit, the value of («?) is 2/3 as found
before. From Eq. (4.3), with the substitutions Egs. (4.5),
(4.6), and

s = pu(x*)cos® 6,
the following integral is obtained:

()
c e
3/1202 (y(xz))‘”f (1 —e%)s~*3ds.

(4.8)

InGj(u)= —

4.9)
The solution is found by partial integration:

InG3(u) =2 [1— e # — () PyGuic)]

Av?
(4.10)
where ¥ is the incomplete gamma function:
!
Z¢%) =f e s'3ds. (4.11)
0

For numerical purposes Eq. (4.11) is most conveniently ex-
pressed by its power series>’

o ln+l
13y, = —_ ) —_— 4.12
r&h 20‘ ) (2/3 + n)n! (4.12)

It is useful to also derive asymptotic forms for small and
large values of . If 4 < 0.05 the integrand of Eq. (4.9) is well
approximated by its first order power series:

u{n?)
InGy(p)= — c22(u<xz))”3f s™3ds, (4.13)
3Av [
which yields
InG5(t) = —%v“f, 1 <0.05. (4.14)
T

Note that in this limit the decay of G (¢) is exponential and
independent of A; it therefore does not discriminate between
the DT and DD transfer situation. This is the time domain
where back transfer is still negligible, which is expected at
short times or large layer spacing.

In the other extreme u > 15, Eq. (4.10) can be simplified
by neglecting the exponential term and approximating the
incomplete by the complete gamma function I'(3):

In G (1) =;19-5-2- [1— @) T®]

=;—;2(1—1.1829,u1/3), u>1s. (4.15)

In the limit of the layers being infinitely close, u— 0, Eq.
(4.15) transforms into the equation describing transfer in a
monolayer, as given in Eq. (3.8):

lim InG5(p) = —c,- A 72PQEN)VPT ) (/7).

p—o

(4.16)

In the static limit we have to be concerned about the

state of polarization of the exciting beam for the same rea-
sons as outlined in the monolayer treatment. The derivation
of In G, . () for uniform excitation and In G}, , (1) for a
polarization perpendicular to the plane is given in Appendix
B and summarized below. We make use of Egs. (A3)—-(AS)

s

to express G ¢, ., () for in-plane polarization by

In G:t,xy (,u’) = 5(3 In G:t,uni (/"‘) —In Gsst,z (:u)) ’
where

4.17)

1 1
10 G (1) = 2 f [1—e=9%9 _ g(x, »)'/?
0

2 Jo
X ¥(2/3,q(x,¥))] dx dy (4.18)
and

e ([
InG;,(n) =2 J-f 3 —1
nGas () 24 Jo o(y )

o k
_1 kQ(x,,V) d d
szl( ) k-k! x e

- flj.l e
=f2 1 =) [1—e- 9%
24 Jo 0( )l ¢

—q(x»'Pr(39(x,y))  dxdy  (4.19)

and
g(x,p) = pux*(1+ 3?) . (4.20)

The integrals [Eqs. (4.18) and (4.19)] are evaluated
numerically using a Gaussian quadrature algorithm, where
the incomplete gamma function is calculated with Eq.
(4.12) for g(x,y) <10 and approximated by I'(3) at
q(x,y) > 10. The sum in the first term of Eq. (4.19) con-
verges to

$ (- praEn”

K= k-k1

= —~C—Ing(x,y) for q(x,y)>10, 4.21)
where C is the Euler constant C = 0.5772.

The asymptotic forms are

In G2, i (1) = —EZ%U45 for i <0.05, (4.22)

T
lnG:t,z(t) = —302045: (4.23)
T

and

In Gl (1) = —;22 [1—1.00164'%] for u>500,
v
(4.24)

In G, (1) =1% [0.8 —0.9356 /3] . (4.25)
v

In order to reduce the time involved in calculation, a
table of the integrals in Eqs. (4.18) and (4.19) is generated
for a sufficient number of values u; In G*(u) is then easily
obtained for any combination of v and ¢ by interpolation in
the table.

2. In-plane orientation

For the case of in-plane orientation, the dipoles are ran-
domly oriented within the plane, i.e., each has zero projec-
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tion on the normal to the plane. Starting with Eq. (3.15) one
obtains for the orientation factor

k= [sin @, sin ¢, + (1 — 3 sin’6, )cos @, cos ¢, 7.
(4.26)

where without loss of generality we have set ¢, = 0. Surpris-
ing at first is that x? not only depends on the orientation of
the dipoles but also on §,. This behavior can be understood
by realizing that the dipole-dipole interaction is stronger for
a head-to-head orientation than for the “side-to-side” paral-
lel orientation. If the two molecules are directly facing one
another (8, = 0) the most efficient orientation is the side-to-
side, while at large lateral displacement (8,—/2) the head-
to-head situation is approached.

The expression Eq. (4.26) can be rearranged into pow-
ers of cos 6,:

K> =a, —a,cos’ 8, +a,cos* 0, (4.27)
with

a, =1(cos A + 3 cos 2)?, (4.28a)

a,=3(cos A + 3 cos Z)(cos A +cos 2), (4.28b)

a; =3(cos A + cos Z)?, (4.28¢)
and

A=¢y—¢:, (4.29a)

S=¢o+¢. (4.29b)

Starting with the dynamic limit we first need to calculate the
average orientation factor

(*) = {a,) — (a,)cos? 8, + (a;)cos* 9, . (4.30)
These averages are given by

(@) = #f# J:ﬂ a, dd, dé, (431)
resulting in>®

(a)) =%, (4.32a)

(a,) =3, (4.32b)

(a3) =3. (4.32¢)

(«?) is recognized to contain the average orientation factor 3
for the monolayer situation, modified by two correction
terms which vanish as the monolayer arrangement is ap-
proached (6,—7/2).

We now insert Eq. (4.30) into Eq. (4.3):

1
InGj(u)=— SZZJ; {1 —exp[ — u({a,)s — (a,)s*?
+ {a3)s>?) 1} 57 ds, (4.33)
where
s=cos®4, . (4.34)

The integral in Eq. (4.33) is calculated numerically. Care
has to be taken to sample enough points in the proximity of
s = 0, which is achieved by dividing the range of the integra-
tion up into several intervals.

An alternative way to evaluate Eq. (4.33) is shown in
Appendix C where also the derivation of the asymptotic
forms can be found:

InG5(1) = —feu*s; p<005, (4.35)
T

In G (u) = % (1.8 — 1.4587 /3 — 0.4974 —1/3)
)

for s> 5000. (4.36)

The basic equation for the static limit is easily obtained
from Eq. (4.33) by performing the angle average of
In G°(u) instead of the coefficients a; [Eq. (4.32)]:

InG3 ()

¢ 1 277 27
=~ )y J, [ el —atas e
+a,°%)1} s ds dp, dg, . (4.37)

This triple integration is done numerically by dividing the s
interval into several sections. The asymptotic forms are de-
rived in Appendix C:

In G5 () = —ge*l; 1<005, (4.38)
T
In G5, (1) =/{£2-2-[1.6—— 1.2813 /3 + 1.34 .y~ 1/3]
D
for p>5000. (4.39)
3. Results

Before explicitly calculating decay curves for G*(¢) let
us summarize the results of the previous section, which was
exclusively devoted to the transfer of excitations between
layers, i.e., interlayer transfer. In all the five distinct situa-
tions of excitation transfer between planes (isotropic/dy-
namic; isotropic/static/z polarization; isotropic/static/xy
polarization; in-plane/dynamic; in-plane/static), we find
that G°(¢) decays exponentially if the two layers are far
apart as compared to R, and the decay constant depends on
the specific conditions but not on whether it is a DT or DD
transfer experiment. In the other extreme, where the layers
are close, the general behavior

G*(t) =rexp{ —p(t/m)'> —q(t/r)"V3}  (4.40)

is found and the parameters », p, and g are specific to the
respective situations. In all cases the monolayer decay is for-
mally obtained if the spacing between the layers approaches
Zero.

Another way of interpreting the asymptotic forms is to
identify large layer spacing with short time and small layer
spacing with long-time behavior. This in turn means that, as
G *(¢) decays, there is a crossover from the initial exponen-
tial to the final e ~#*'” — % ~'” dependence. Consequently, the
scaling of concentration with time, which was demonstrated
for infinite systems without excluded volumes in Eq. (3.14),
is not found in a bilayer. For the intermediate range between
small and large layer separation, we have provided the neces-
sary details to compute tables of the integrals which are in-
volved.

In Figs. 4 and 5 decays of G *(¢) are presented for direct
trapping in a bilayer, where the donors are situated in the
first layer and the acceptors in the second one. This type of
system has been realized and direct-trapping experiments
have been carried out under steady-state conditions.>? In

J. Chem. Phys., Vol. 85, No. 7, 1 October 1986



J. Baumann and M. D. Fayer: Excitation transfer in disordered systems
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FIG. 4. Decay of G*(¢) in a bilayer for direct trapping in the static limit.
Donors are on one layer, acceptors on the other one. Lifetime decaye — /" is
not included: Surface concentration of acceptors ¢, = 1; Orientation: in-
plane; ( ) interlayer transfer for v = Ry/d, from top to bottom: 0.5,
0.75,1, 1.5, 2, 3, 10. From Eq. (4.37); (- - - -) intralayer transfer in a mono-
layer. Donors and acceptors are in the same layer. From Eq. (3.10).

Fig. 4 the orientation is in-plane and the system is taken to be
in the static limit. The solid curves differ by the layer spacing
d which decreases in going from top to bottom. It is clearly
seen that changes in the shape of these decays are most sensi-
tive to the variations of the layer separation if the ratio
v=Ry/d=1. In experiments designed to measure d, the
chromophores should therefore be chosen such that their

65w

t/T

FIG. 5. Decay of G*(z) in a bilayer for direct trapping; donors are on one
layer, acceptors on the other one. Lifetime decay e — */ is not included: Sur-
face concentration of acceptors ¢, = 1; R,/d: 1 for the top S curves, 5 for the
bottom 5 curves; (- - - -) isotropic orientation; ( ) in-plane orienta-
tion; D, 8, S, S, asin Fig. 1.

4097

Forster radius is comparable to the layer spacing. As the two
layers get very close, the transfer observable approaches the
form as found in a monolayer which contains both donors
and acceptors. This decay is also shown in the figure as a
dashed line and one concludes that two layers spaced by less
than one-tenth of R, are indistinguishable from a monolayer
as far as energy transfer is concerned.

In Fig. 5 we examine the effect of the orientational pa-
rameters on G °(¢) for direct trapping in the same system as
described in Fig. 4. Two different layer spacings are consid-
ered: d = R, and d = Ry/5. Figure 5 demonstrates that a
precise knowledge of the orientational freedom is required in
interpreting this kind of experiment. The decay of an orien-
tationally frozen system is generally slower than its orienta-
tionally dynamic counterpart. Interestingly, G*(¢) decays
more slowly with in-plane than isotropic orientation if the
layers are far apart, while this order is reversed if they are
brought together. There is a crossover region which is not
shown in the figure.

B. Multilayers

In a stack of n layers, which are chemically equivalent,
G*(¢) is composed of the intra- and all possible interlayer
contributions. If n is small, the system has to be regarded as
finite in the direction normal to the surface. This makes it
necessary to average also over starting positions. Since we
have positional invariance within the layer, the only spatial
variable over which this average is performed is the number
of the layer on which the initially excited donor is located. If
we denote by G {(#) the probability that an initially excited
molecule on the plane / is still excited at time 7, the decay for
the stack is then given according to Eq. (2.13) by

G ==73 6. (4.41)

n =1
G} (2) is obtained by multiplying the intra- and all interlayer
contributions:

n—i i—1

G-:(t) = G.isntra(t) II G;’,inter(t) : H G;’,intcr(t) s
. =1

j=1
(4.42)

where G },,.... (#) denotes interlayer transfer to the Jthneigh-
bor layer. The first product in Eq. (4.42) contains the inter-
layer contributions from layer i to all the layers on one side of
i, while the second product is responsible for interlayer
transfer on the other side of i. The index j in Eq. (4.42)
labels the relative distance of the layer to which energy is
transferred from layer i, j = 1,2,..., being the first, second,
etc., neighbor layer, respectively.

As n is made large, Eq. (4.42) approaches the expres-
sion

n/2

2
lim Gi(t) = G*(t) =G:,. (1) H Gj-,ime,(t)] , (4.43)
i=1

n—eo

which is now independent of the starting position i. The nu-
merical procedure used to evaluate Eq. (4.43) is to include
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FIG. 6. Decay of G *(#) in mono-, bi-, and multilayers for DD transfer in the
static limit. Lifetime decay e ~*/" is not included: Surface concentration:
¢, = 1; Orientation: isotropic; Excitation polarization: parallel to the layers;
(——~) monolayer; (- - - -) random distribution of the same number of
molecules in three dimensions. (a) Ry/d = 1: ( ) multilayer, con-
taining, from top to bottom, 2, 3, 4, 6, 10, « equally spaced layers; (- - - -)
equivalent volume concentration ¢; = . (b) Ry/d = 0.5: ( ) mul-
tilayer, containing from top to bottom, 2, 4, « equally spaced layers;
(- - - -) equivalent volume concentration ¢; = ¢

enough layers for the value of the expression to have con-
verged for all times of interest.

In Fig. 6(a) the overall decay G, (¢) is shown for a
monolayer and stacks of two up to an infinite number of
equally spaced layers for DD transfer in the static limit of
isotropic orientation. An interesting question to be ad-
dressed is to what extent the infinite layer stack behaves dif-

s
wn
n

ferently from a situation where the same number of chromo-
phores is randomly distributed in three-dimensional space.
Any difference can be attributed to the fact that a stack of
layers has excluded volumes. With the definitions [Eqgs.
(3.2), (3.3b), and (3.3c) ], a volume concentration ¢, can be
formally calculated from the surface concentration ¢, of the
multilayer system on a purely geometrical basis:

(4.44)

Cy = Cy — ——.

3 d

G *(¢) for the random distribution is then obtained from Eq.
(3.10) using ¢; of Eq. (4.44) and is also presented in the
figure as a dashed curve. It is obvious that the decay of a
stack with infinite layers closely resembles the random solu-
tion. Starting from a monolayer we therefore find a gradual
transition from two- to three-dimensional behavior as more
and more layers are added. However, the validity of this
statement depends on the surface concentration.

If in Fig. 6(a) the surface concentration is lowered, the
multilayer decay becomes indistinguishable from the ran-
dom solution over the whole time interval. If the concentra-
tion is raised, the decay looks more and more two dimension-
al. It is reasonable to assume that the ratio p of the mean
nearest-neighbor separation in the plane to the layer spacing
d is of importance:

(4.45)
(%)

It is found by numerical comparison that for p > 3, G*(¢) of
the infinite layer stack and the random solution are identical.
The intermolecular distances in the plane are on the average
larger than the layer separation so that the discreteness of the
layered structure is no longer manifested in the energy trans-
fer.

If p<1, the predominant contribution to the overall
decay of G°(¢) is intralayer transfer. Adding layers to a mon-
olayer does not change G °(¢), and the decay of the extended
stack looks two dimensional. This situation is illustrated in
Fig. 6(b).

We therefore conclude that in a multilayer system the
decay G*(¢) can vary continuously between the forms for
the isotropic two- and three-dimensional cases, depending
on the number of layers and the surface concentration. It is
tempting to introduce a noninteger spatial dimension into
Egs. (3.8) and (3.10) describing transfer in isotropic sys-
tems to account for this behavior. Although we are consider-
ing a structure which is by no means fractal,?® a fractal-like
behavior in energy transfer experiments is predicted which is
solely due to the presence of excluded volumes and/or the
finite character of these structures. A similar conclusion is
drawn by Yang ez al.>® in a recent paper, where they compare
simulations of DT transfer in Vycor glass, which is treated as
a regular structure with excluded volumes, to experimental
data.

The characteristics of the energy transfer observable in
an extended stack illustrated here for DD transfer with iso-
tropic orientation in the static limit, are valid for all other
situations as well.

J. Chem. Phys., Vol. 85, No. 7, 1 October 1986



J. Baumann and M. D. Fayer: Excitation transfer in disordered systems 4099

V. EXPERIMENTAL OBSERVABLES

The observable in direct-trapping experiments does not
need much comment: it is the decay of the donor fluores-
cence I(t) which is related to G°(¢) by

Ity =G*(t)-e~ """, (5.1

where 7 is the fluorescence lifetime of the donor in the ab-
sence of traps. Alternatively, instead of monitoring time-
resolved emission, donor ground state recovery experiments
can be performed using either pump-probe or transient grat-
ing techniques. [In a transient grating experiment, the signal
is proportional to the square of Eq. (5.1).]

In a one-component system the observable for donor-
donor transfer is less straightforward. One makes use of the
fact that emission from molecules which are excited by po-
larized light is partially polarized. The observed emission
consists of two contributions: the first one originating from
the ensemble of initially excited molecules, the second one
from those molecules to which energy has been transferred.
The usual assumption,*®*! which has been examined nu-
merically in some detail by Jablonski*? for isotropic three-

.dimensional systems, is that there is a sufficient loss of polar-
ization in transferring excitations from the initially excited
to the second ensemble that fluorescence from the latter can
be treated as completely unpolarized. The experimental ob-
servable is the decay of the fluorescence anisotropy or other
polarization sensitive observables such as a polarization
transient grating. Because we presented in this paper sys-
tems of different dimensionalities with respect to spatial and
angular distribution, we have to reexamine the above as-
sumption for each situation separately. We will develop a
general formalism which permits calculation of the residual
anisotropy of the indirectly excited ensemble analytically.
We assume that the orientations of the molecules are frozen
so that the only process which depolarizes the fluorescence is
energy transfer and, for simplicity, that the absorption and
emission dipole moments are oriented parallel in the molecu-
lar frame. The latter approximation is of importance only if
fluorescence anisotropy is measured while it is irrelevant if
transient linear dichroism or transient polarization grating*?
experiments are performed to obtain the same information.

In addition, we assume that once an excitation has been
transferred it can only return to the molecule it came from
but not go to another unexcited molecule. This is equivalent
to allowing only pairwise interactions which is the basis of
our calculation of G*(¢) in the preceding section. It is clear
that this restriction leads to a worst-case estimate because
with each additional transfer step to a randomly oriented
distribution the remaining polarization memory is reduced
further. What we set out to derive is the normalized distribu-
tion w(Q;t), which is the probability of finding a molecule of
orientation () excited at time 7, including the initially excited
and the indirectly excited ensemble after one transfer step,
under polarized excitation conditions. We use the term ac-
ceptor to denote a molecule which is excited by energy trans-
fer, bearing in mind that donors and acceptors are chemical-
ly equivalent.

In order to evaluate w({2;¢) we define the following
functions: w,({2) is the initially produced angular distribu-

tion of excited molecules. w; (Q;{}) is the conditional prob-
ability that an excitation from a dipole oriented ), is trans-
ferred to a dipole at (2, and is determined by averaging the
dipole—dipole orientation factor «* [Egs. (3.15) and (3.16) ]
for the fixed orientations £, {2, over spatial configurations.
e~ /7. G*(Q;t) is the probability of finding an excitation on
an initially excited molecule whose orientation is {}, aver-
aged for spatial configurations and acceptor orientations.
G°(Q;t) thus governs the time dependence of transfer from
one donor of specified orientation to the whole angular and
spatial distribution of acceptors, whereas wji (Q;{2) de-
scribes how an excitation, which has been transferred, is dis-
tributed among acceptor orientations. The distribution
w(Q;t) can now be expressed if one realizes that w,(Q) dis-
appears with G*(Q;t), while w](Qq;{)) builds up with
1 — G*(0;t). We therefore obtain

w(;t) = e_'/’[wo(Q)G‘(Q;t)
+f W} (Q®) - wp(Q) - (1 — G*(Qet))
Q,

0(0) -dQO] ) (5.2)

where v(£,)d(), is the angular volume element.
In the case that G *(¢) is independent of the orientation
Q of the excited donor, Eq. (5.2) simplifies to

w(Q;t) = e"’/’[wo(Q)G’(I) + (1-G*(#))

J wy (ﬂo;ﬂ)wo(ﬂo)v(ﬂo)dﬂo] .
a,

(5.3)

This simplification applies for most systems considered in
this paper, except for layers having chromophores with iso-
tropic orientation. Owing to the different ways in which the
distributions w,(Q) and w; (Q;Q) are created, we apply
two distinct coordinate systems, which are compatible with
the laboratory fixed coordinates imposed by the polarized
fluorescence experiment. Figure 7(a) shows these coordi-
nates used to calculate the initial distribution w, (), where-
as Fig. 7(b) contains all the angles needed for evaluation of
wi (24;Q2). The spherical coordinates 8, and ¢, are em-
ployed such that the treatment of bilayers is facilitated.

Once the distribution w(£2;t) is known, the polarized
fluorescence intensities 1, 1 (8)s I, (2), and I,,(t) are ob-
tained in a straightforward way by projecting onto the z, x,
and p axis, respectively, and integrating the squared projec-
tion over angles:

I(1) = f J w(6,4;t)cos’ Ov(0,4) dO dé , (5.4a)
0 Jo

I,.(t)= f f w(6,4;t)sin? 6 cos? dv(6,4) dOds ,
e
* (5.4b)

I,(1= f J- w(6,¢;t)sin? @ sin’ dv(6,4) dG do .
0 Js
(5.4¢c)
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(a) z

- IJ.y

o o I,
/lv ’
¢ Iy
excitation

(b}

excitation

FIG. 7. Coordinate system for polarized fluorescence experiments. Excita-
tion is along the x axis: 1, : fluorescence intensity polarized parallel to the
excitation polarization; ,,, I, : fluorescence intensity polarized perpendic-
ular to the excitation polarization; d,: directly excited dipole; d,: dipole ex-
cited by one transfer step. (a) Coordinate system for fluorescence from the
directly excited ensemble w,(6,4). (b) Coordinate system for fluorescence
from the indirectly excited ensemble w, (6,¢4) [see Eq. (5.12)].

It will be shown that I , (¢) and |, (¢) are identical in a three-
dimensional random distribution. I, (¢) will vanish in a
layered system with in-plane orientation, and will be found
nonzero but different from 7, (¢) in layers with isotropic
orientation. This gives rise to additional considerations con-
cerning the proper conduct of experiments.

The decay of the fluorescence anisotropy, which is the
observable to be compared to the theoretical function G (),
is in the most general way defined by

r(t) = Iu(t) —1,;(2) :

Ii(0) + 1, () +1,(0)
The remainder of this section is concerned with the evalua-
tion of w, () and the integral in Eq. (5.3) which we denote
by

(5.5)

i=xy.

w, (Q) =f w! (Qe;Wwo (Qe)v(Q) dO, . (5.6)
Q

As stated before, w; (Q;Q2) is proportional to the orienta-
tion factor 2 of two interacting dipoles oriented at 2, and (2,
respectively, averaged over spatial configurations and
weighted with 7%, the distance dependence for transfer. We
therefore have to integrate

1
0,(2) =FLL’K2(QO;Q;0,>

X wo(Q)v(Qo)u(Q,)r %dQ,dR, ,
which in the coordinates of Fig. 7(b) becomes

1
w1(9;¢) = Fj j J; s K2(90,¢0,0,¢,9,,¢,)wo(60,¢0,)

X 0(60pd0)u(6,,8,)r"°d6,dd, db, dp, . (5.8)
Nis anormalization constant and # (6,,4, ) the spatial distri-
bution of the acceptors. With the same coordinates the orien-
tation factor [Eq. (3.15)] is given by

(5.7)

x% = [sin 8, cos @, sin 8 cos ¢ + sin G, sin @, sin & sin ¢ 4 cos 6, cos 6

— 3(sin 6, cos @, sin 8, cos ¢, + sin B, sin @, cos 8, + cos G, sin 6, sin @, )

X (sin @ cos ¢ sin 6, cos ¢, + sin 8 sin @ cos 6, + cos & sin 6, sin )]

This expression can be inserted into Eq. (5.8) and the qua-
druple integration carried out analytically for the appropri-
ate spatial distribution 4 (6,,4, ) and the angular distribution
wo(B0,d,) of initially excited molecules, which is a lengthy
but straightforward procedure.

In the following sections we present the results for the
various geometrical situations which are covered in this
work.

A. Isotropic three-dimensional distribution

The normalized initial distribution after polarized exci-
tation as shown in Fig. 7(a) is

wo(6,4) = 3 cos’ 0, (5.10)
and the angular volume element
v(9)=—1—sin9. (5.11)
4

(5.9)

—

For symmetry reasons the distance dependence in Eq. (5.8)
is irrelevant here, i.e., transfer from a donor at the origin to
acceptors randomly located on a spherical shell will result in
an angular distribution w, (6,¢) whose shape is independent
of r; the overall scaling with 7—® can be properly accounted
for by including it in the normalization factor ¥. Equation
(5.8) thus becomes

T AT AT p2T
w,(6,¢) =—!—f f f f K2 - cos? G, sin 6, sin 6,
NJ Jo Jo Jo

X db, d¢,db, de, . (5.12)
The result of the integration is
w,(8) = A4(8sin* @ + 9 cos®0) . (5.13)

As expected, this distribution is axially symmetric and
slightly elongated in the direction of the excitation polariza-
tion, thus still carrying a small memory of the initial polar-
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ization. Inserting Egs. (5.10) and (5.13) in Eq. (5.3) and
projecting according to Eq. (5.4) gives

—t/T
I() =5— (43 +32G°(1)), 5.14
1 (8) 125 (43 + (1) ( a)

/T
L) =% 41— 16 G%(1)) . 5.14b
() 5 ( 1¢2)) ( )

The two perpendicular components are identical here. The
fluorescence anisotropy Eq. (5.5) is then

M) =+ G0 . (5.15)
We conclude that the anisotropy decays to a finite value
r.. at long times, when G *(¢) approaches zero. The ratio of
r., to the anisotropy r, at ¢ = 0 is a measure of the amount of

polarization memory which is retained after the first transfer
step. One finds from Eq. (5.15) that

r./ro=%=4%. (5.16)

This result is in accordance with the findings of Galanin*
and Jablonski.*?

B. Layers with in-plane orientation

We consider only the experimentally realistic case that
the excitation polarization is in the plane and the fluores-
cence is observed along the surface normal. In Fig. 7 the
layers are thus in the x—z plane. We start with a monolayer
and set

$o=0=0, (5.17a)

0. =u/2, (5.17b)
and

v(8) =1/27. (5.17¢)

Asin the three-dimensional system, the distance dependence
in Eq. (5.8) need not be included.
We have for the initial distribution

we(6) =2 cos® 6 (5.18)
and
1 2w 2T
w,(6) -——-—f f K% cos? 6, d6, dg, (5.19)
NJ Jo
which results in
w,(6) = (19 sin® @ + 21 cos? ) , (5.20)
—t/7
L= eso (41+19 G*(1)), (5:21a)
e—t/r
I, (1) = 20 (39 —-19G*(r)), (5.21b)
1,()=0. (5.21¢)
The anisotropy is
r()=4+8G(). (5.22)
Again we find a residual anisotropy after long time
r /ro=5%. (5.23)

We now turn to a bilayer and make the same analysis for
interlayer transfer. wy(6) is the same as (5.18). In contrast
to the monolayer, integration over the spatial distribution
has to be included in calculating w,(6) and consequently,

also the distance dependence. This is deduced from Egs.
(4.27) and (4.28), where it is seen that x* depends on the
lateral displacement, expressed by &,, between the two di-
poles. We make use of Egs. (4.1) and (4.2) and obtain in
analogy to Eq. (5.19):

1 21 /2 2
w,(8) =— J—" f K? cos? 8, sin 6,
NJ Jo Jo

X cos® 6, d6,d8, do, . (5.24)

The result of this integration is found to be identical to the
monolayer case [Egs. (5.20)-(5.23)]. Energy transfer
within the layer or to the next layer, therefore, is detected in
the exact same way by means of the anisotropy decay.

C. Layers with Isotropic orientation

As has been demonstrated in Secs. III and IV, G*(¢)
depends explicitly on the orientation Q of the initially excit-
ed donor, and we have to make use of Eq. (5.2) instead of
Eq. (5.3). However, in order to keep the length of this deri-
vation reasonable, we make the assumption that we can aver-
age G*(1,Q) over donor angles separately and thus again
arrive at the expression [Eq. (5.3)]. G,,, (¢), which was
calculated in Appendices A, B, and Eq. (4.17) is exactly this
average over donor orientations in the case of in-plane polar-
ization. The above approximation can be justified by com-
paring the decays of G *(¢) for z and in-plane polarization in
Figs. 2 and 5, which are seen to be only slightly different. We
thus infer that the dependence of G °(#,£}) on the donor ori-
entation  is not strong so that using its mean value is a fair
approximation. In addition, for +—c, Eq. (5.3) becomes
exactly identical to Eq. (5.2) since G *(¢)—0 for all Q. The
residual anisotropy r_, which we will obtain using the ap-
proximation Eq. (5.3) is thus exact.

We are concerned only with in-plane polarization for
situations involving intralayer and interlayer transfer. For a
monolayer, which is again oriented in the xz plane of Fig. 7,
we set

6, =n/2, (5.25)

and neglect the distance dependence in Eq. (5.8). w,(&) and
v(8) are as defined in Egs. (5.10) and (5.11).
We have to integrate

20 p2w
w,(0,¢)=%£’£ J(; K% cos’ 6, sin 6, d6, dd, dé, ,

(5.26)
which gives
w,(0,4) = #(4sin* @ + 15 sin” 6 cos® ¢ + 21 cos* 0) .
(5.27)

This is the first time we obtain an angular distribution of
excited acceptors which is no longer axially symmetric. Con-
sequently, there are two distinctly different perpendicular
fluorescence components:

—t/T
I =£1_1? (43 +23G*(1)), (5.28a)

—/7

110

e

I, ()= (41 -19G*(1)), (5.28b)
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—t/7

1,(0) = ellO (26 —4G*(1)), (5.28¢)
and

() =#&+#G), (5.29)

(r, /7o)y =4.5%, (5.30)

r, (1) =4+ G, (5.31)

(r,/10), = 38.6%. (5.32)

A few comments are necessary here: in order to calcu-
late the anisotropy r, (¢) or r,(¢) from polarized fluores-
cence decays [Eq. (5.5)], all of the three different orthogo-
nal fluorescence components must be measured. In a layer
system as discussed here, it is, for obvious reasons, very diffi-
cult to obtain 1, (¢) experimentally. In order to be able to
extract the anisotropy one can follow two different lines. The
denominator of Eq. (5.5) corresponds to the overall decay
I(t) of the molecules, which can be measured in the absence
of energy transfer, i.e., at low concentration. Knowing /(¢),
one can obtain r, (¢) as defined in Eq. (5.5) from two polar-
ized fluorescence decays only:

Iy() =1, (1)
I(t) ’
The alternative approach is to observe the fluorescence
no longer normal to, but at 45° from the surface, in the xy

plane. We denote the perpendicular fluorescence compo-
nent, which one measures in this observation geometry, by

re(t) = (5.33)

—t/T
Ty (O =3 () + 1, (1) =5S— (6723 G*(1)) .
220
(5.34)

The parallel component /) (¢) obtained in this measurement
configuration is identical to I () measured in a rectangular
observation geometry. The corresponding anisotropy is then

L) =1,
I () +21,,,(0)
and is again experimentally available from two polarized flu-

orescence decays only. The connection of Eq. (5.35) to
G (1) is easily obtained from Eqgs. (5.28) and (5.34):

r, ()= +£G0, (5.36)
(o /70)ny =21.6% . (5.37)

This high residual anisotropy is unfortunate and we
conclude that the rectangular measurement geometry
should be used at the expense of having to measure the sam-
ple lifetime independently.

Interlayer transfer in a bilayer follows in an analogous
way. We use w,(8) and v(8) from Egs. (5.10) and (5.11),
u(6,) from Eq. (4.2), and include the distance dependence
to obtain

7oy () (5.35)

w] (0,¢)
1 7 p2m /2 2T
=— f f f J x> cos? @, sin &, sin 6, cos® 6,
Nl Jo Jo o
-d6,d¢,do, do, (5.38)
and after integrating

w,(0,¢) = §(5 sin* § + 7 sin® sin’ ¢ + 7 cos® 9) .
(5.39)

Again this distribution has no axial symmetry. It is interest-
ing to note that there is considerable transfer to dipoles per-
pendicular to the surface as evidenced by the sin® ¢ term,
although the excitation polarization is within the plane. This
behavior is, as discussed earlier, a consequence of the head-
to-head alignment of the dipoles being the most efficient for
energy transfer. This relative orientation is available only for
initially excited dipoles with substantial out-of-plane orien-
tation.

We obtain from Eq. (5.39),

—t/7

I (0 == (19417 6°(1)), (5.40a)
—t/r
I(t)=5—(17-5G()), (5.40b)
—t/7
L) =" (24— 126°1), (5.40¢)
—t/T
I, =% 41 -17G1)), 5.40d
Ly () 20 ( (t)) ( )
where I,,, has been defined in Eq. (5.34).
Going further we find
r(t)=4+RG0), (5.41)
(r_ /1)), =8.3%, (5.42)
= —h+BG®, (5.43)
(r,/r), = —20.8%, (5.44)
and
rxy(t)= _&)+%Gs(t), (5.45)
(r /70)sy = — 5:6% . (5.46)

The negative values [Eqs. (5.44) and (5.46)] are a direct
consequence of the favored transfer to dipoles with out-of-
plane orientation.

To decide between rectangular and 45° observation in
this case one has to be aware that in the one-component bi-
and multilayers intra- and interlayer transfer always occur
together. While the 45° geometry is favorable for the inter-
layer contribution [Eq. (5.46)] it leads to a high residual
anisotropy for the intralayer part [ Eq. (5.37)]. Under right-
angle observation, however, the residual anisotropy of both
contributions is well below 10% [Eqs. (5.30) and (5.42) ] so
that this setup is to be preferred for mono- and multilayers.

D. General remarks

We have proven that there exists a direct relationship
between G *(¢) as calculated for DD transfer in the static
limit and the decay of the fluorescence anisotropy 7(¢). In all
geometrical situations studied we find that a small anisotro-
py remains when G *(¢) has decayed to zero.

As demonstrated throughout the paper, the behavior of
layered systems which allow isotropic orientation is richer
than all the other geometries. We have shown that the three
orthogonal fluorescence components in such a system are
not identical, which is a direct consequence of the anisotrop-
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ic dipole—dipole interaction, and the orientational dimen-
sionality being higher than the spatial one. We have demon-
strated how anisotropies have to be calculated from
polarized fluorescence measurements and which observa-
tion geometry should be chosen to obtain the most reliable
data.

In this section we established the relationship between
G °(t) and the fluorescence anisotropy. However, the same
information can also be obtained from pump-probe or polar-
ization grating experiments*® using polarized pump and
probe beams. In a pump-probe experiment the observables
are the time-dependent transmissions 7| (), T, (¢) of the
probe beams polarized parallel and perpendicular to the
pump beam. It is easily shown that these transmissions are
proportional to the polarized fluorescence intensities 1, (¢),
I, (¢) used so far.

In a polarization grating experiment, two pulses of or-
thogonal relative polarization are crossed inside the sample
to set up a pattern of periodically varying states of polariza-
tion. A probe pulse is diffracted off this grating. The decay of
the diffracted intensity D(z) is found to be

Dty (I, (8) — I, (1))> = (e ""-r(2))*. (5.47)

Any residual anisotropy will be less prominent in a polariza-
tion grating experiment because the square of r(z) is ob-
served. An advantage of this technique is that one measures
against a zero background and that the difference
I, (t) —1,(2) results from a single measurement which
makes numerical subtraction [Eq. (5.5)] of two indepen-
dent curves unnecessary. If layered systems with isotropic
orientation are to be measured, some care has to be taken to
orient the sample in such a way that the plane, which is
defined by the two polarization vectors of the excitation
beams, coincides with the layers in the sample. This is most
easily realized at a small intersection angle of the beams.

VI. CONCLUSIONS

We have described the excitation transfer function
G*(t) in a unified way for either direct-trapping or donor-
donor transfer experiments. The general formalism allows
for fast or frozen rotational motion of the molecules and for
any orientational and spatial distributions. The extension to
discrete and continuous systems of finite size has been dis-
cussed. We have examined to what accuracy the decay of the
fluorescence anisotropy is a measure of G *(¢) in the case of
DD transfer. We found that in all situations studied, the
residual anisotropy at long times is < 10% of the initial value
after a single transfer step, if the observation geometry is
chosen appropriately. In many situations this residual an-
isotropy is even < 5%. We have derived the general proce-
dure to make these estimates for other systems as well.

The bulk of this work is concerned with the derivation of
the configuration average of G*(¢) in several geometrical
distributions. We obtained Forster-type analytic expressions
for infinite disordered systems. Comparison of the result for
a three-dimensional system to the three-body infinite order
diagrammatic expansion of GAF’ established the validity of
the two-particle model up to relatively high concentrations.

Transfer on monolayers is seen to depend markedly on
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the orientational degree of freedom. The behavior is richest if
the orientational dimensionality is higher than the spatial
one; in this case the polarization of the exciting light relative
to the surface influences the decay of G*(¢). In going to
bilayers we separated G °(¢) into two independent parts, one
accounting for transfer within the layer where the excited
donor is located, the other one describing transfer to the
other layer. For the interlayer contribution exponential de-
cay is found for large layer spacing while monolayer behav-
ior is approached if the two layers are very close. For the
intermediate regime the configuration average has to be ob-
tained numerically which we described in some detail.

Knowing the intra- and interlayer transfer functions,
multilayers can be investigated by properly multiplying all
the required contributions. An average over starting layers,
i.e., the layer on which the initially excited donor is located,
has to be performed. It is found that there is a gradual transi-
tion from two- to three-dimensional decay behavior as one
adds more and more layers to a monolayer, on condition that
the mean nearest neighbor distance within the plane is signif-
icantly larger than the layer spacing; a stack containing a
large number of layers can thus behave almost exactly as a
random solution. However, if the layers are drawn apart,
thereby leaving the surface concentration unchanged, trans-
fer within the layer dominates and the overall decay is closer
to two dimensional. One deduces from the material present-
ed that energy transfer experiments can measure the inter-
layer distance if the surface concentration and the orienta-
tional distribution are known. The procedure can be easily
applied to stacks of bilayers which usually possess two differ-
ent layer spacings. Energy transfer experiments in aligned
stacks of phospholipid bilayers containing lipophilic chro-
mophores are in progress in this laboratory.

The two-particle interaction model, averaged over the
spatial and angular configurations, has thus proven valuable
in gaining insight into energy transfer behavior in a variety of
systems. Applications to finite size polymer systems are in
progress. It is to be hoped that the approach described here
can serve to model energy transfer in many other systems’
which are of experimental interest.
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APPENDIX A

In this appendix we derive the average of |«|*/* for a
monolayer with isotropic angular freedom for different po-
larizations of the exciting light.

We first consider the hypothetical situation that there is
a uniform excitation probability for all differently oriented
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dipoles. In analogy to Egs. (3.16)—(3.19) we obtain
1 1
(") i =f x*3 de 3+ 1) dy=0.7397.
0 0

(Al)

Let the surface normal be the z axis. If we excite with polar-
ized light, the E field being parallel to the x, y, or z axis, we
produce the initial distributions wy ., w;, ,, and wj, ,, respec-
tively. Each of them represents a cos” distribution which we
normalize individually. They add up to the uniform distribu-
tion

(A2)

The same must be true for the average of any function f;
where the average is formed over the initial distribution and
all relative orientations to the acceptor dipoles at all posi-
tions:

3u)O,uni = wO,x + wO,y + wO,z .

(S ami =) + () + (). (A3)
For symmetry reasons we also have

(=) (A4)
This allows us to use the linear combination

Hwoyx +wWo,y) = Wo sy » (AS5)

which is now adapted to the symmetry of the overall spatial
distribution. We therefore need to calculate only

(=)= ()y, (A6)
and obtain { /'), from Eq. (A3) by
(=3 umi =2 )y . (A7)

The reason for constructing symmetry adapted distribu-
tions is that the average can be performed more easily using
the two angles of Eq. (3.16) only, rather than five spherical
coordinates: two for the donor orientation, two for the ac-
ceptor orientation, and one for the acceptor position. Since
both distributions w,, and w,,, are axially symmetric we
are allowed to fix the position of the acceptor relative to the
donor and calculate two types of averages: 7;, for a cos? dis-
tribution whose symmetry axis coincides with the vector
joining the two dipoles, and £, if they are orthogonal. We
denote the former initial distribution by w,, and the latter by
w,, - As before there is the additivity relation

3.7;mi =Z, +2];, =3(Dumi - (A8)
Note that { ) denotes an average over relative orientations
and positions, whereas f is the orientational average for a
fixed relative position.

It is easily seen from the definition of the angles 7 and ¢

in Eq. (3.16) that ?p can be calculated using these coordi-
nates:

%=1 =—i-f (cos ¥)?'? sin ¢ dy
o
xf (143 cos® )3 cos®> ndny
0

1 1
=f x23 dxf y*(1+3p*)"3dy=0.8373.
0 0
(A9)
£, which is identical to { f'),, follows from Eq. (A8):

(f)e=Fo =33 um — F)
and
(o =3+ L) =13 + ) - (All)

Combining Eqs. (A1) and (A9)-(All) for f= |«|*?
yields

(x[?%), = 0.6909,
(k|23 =0.7641 .

All integrations were performed numerically.

(A10)

(Al2a)
(Al12b)

APPENDIX B

Here we present the derivation of G, (#) and
G ;.. (1) for interlayer transfer in a bilayer with isotropic
orientation, corresponding to uniform and polarized excita-
tion perpendicular to the planes. The coordinate system is
shown in Fig. 3.

We start with Eq. (4.4) and obtain for the hypothetical
uniform excitation, following the same approach as in the
dynamic limit:

lnG: uni )=&J. l—e"“"z(m
i (4 AV? Ja [

— (e (D) Py Gun*(Q)) ]
Xv(Q) dQ. (B1)

Implicitly we have made use of the fact that the average
orientation between dipoles two and one is independent of
6,. The relative angles % and ¢ defined in Eq. (3.16) are
applicable here, and with Egs. (3.16)-(3.19) the integration
over angles in Eq. (B1) becomes

1 1
10 G (1) = [ [ [1—eme
wani (1) A Jo Jo [

—q(x, ) *y(q(x,y))] dx dy,
(B2)
where u is defined in Eq. (4.6) and
g=px’(1+3)%). (B3)
If, however, the exciting light is polarized along the z
axis, normal to the planes, an initial distribution of excited
molecules is produced which is proportional to cos® 8,. In
consequence, the axial symmetry around the vector r is
broken, which makes the use of the angles 7 and 1 obsolete.
We can nevertheless restore the required symmetry by split-
ting up the electric field vector E in a radial component E,,
parallel tor and the angular part E,, , perpendicular tor. Itis
then

E =FEcos@,, (Bd4a)
E, =Esiné, . (B4b)

Both field components can be thought of as exciting two
independent orthogonal cos? distributions which we recog-
nize to be the distributions w,, and w,, encountered in Ap-
pendix A. In analogy to Appendix A we thus have to evalu-
ate the averages _7p and £, and weight them with cos® , and
sin’ 8,, respectively [ Eq. (B4) ] as we later perform the inte-
gration over 8,.
As before, j_f,, is obtained from

Fuo =33 umi — f0) - (B5)
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The angular average f, between an initial distribution in
layer one excited by z-polarized light and an isotropic distri-
bution in layer two, at the fixed relative position defined by
6,, ¢, is therefore

£.(8,) =cos?6, f, +sin® 6, f, . (B6)
Using Eq. (B5) we obtain from Eq. (B6),
7.(8,)=f,(3c0s? 0, — 1) + (fduni 3 — 3 c05*6,) .
(B7)

We now replace f by (1 — e~ 7% %) [see Egs. (2.12) and
(B3)] and explicitly calculate the angular averages f, and

f:mi:
FACH!

1 1
=J- f (1 _e—q(x,y)cos 9’)(%0082 0,—5)3-y2dxdy
0 Jo

1 1
+f f (1 — g 9% P008 9')(§—gcos2 0.)dxdy.
(4] 0

(B8)

The factor 3 y? in the first integral of Eq. (B8) is the normal-
ized distribution w,, = 3 cos® 7.

Finally we integrate Eq. (B8) over 8, and ¢, using Eq.
(4.2) and obtain after rearranging the terms:

s 302 72 — g(x, y)cos® 6,
InG;,(up)= —=2 (l ")

sin 8

x(l—yz)

3C2f ff (1 —q(xy)cos 0)

" 46, dx d
g, Y

sin 4,
X(3y*—1)———db, dxdy. (B9)
cos 6,
With the substitution
s=gq(x, y)cos® 8, (B10)
we can simplify to
In G5, () = — -2 me f f (x5, )12
nG; = — X,
st,z /“ uvz o o o q y
X(1—e~%) s *3(1 —y*) dsdx dy
¢, q(x, y) J~l Jd : .
- —e
MUZJ:) o Jo ( )
Xs~Y3y* —1)dsdxdy. (B11)

Integration over s can be performed analytically [see Eqgs.
(4.9)-(4.12) for the first integral in Eq. (B11) and Ref. 35
for the second one]:

lnG:t,z(#)— 3("2 fJ- [l__e q(x, »)

— g0, M PyRg(x, )] (1 —)?) dx dy

al [ 5

X3y —1)dxdy.

l)k Q(XJ)
k-k!

(B12)

The remaining dual integration is done numerically.

To obtain the asymptotic form for z <1 we expand the
exponential term in Eq. (B11) to first order; the result of the
integration is

InG;, (1) = —%sz“£, 1 <0.05. (B13)
T
The same procedure leads to
In Gl () = —ye* L, p<005 (B14)
T

for the uniform excitation which is identical to the dynamic
situation, Eq. (4.14).

The asymptotic form for large values of u is found by
neglecting the exponential terms in Eq. (B12) and approxi-
mating ¥(2/3,q) and 2_, ( — 1)*¢*/k - k! by I'(3) and

— C —In g, respectively [Eq. (4.21)], where C is Euler’s
constant.

After integration one obtains

In G, (u) = f—z; (0.6255 — 0.9356 /%) . (BI5)
vV

Empirically it is found that the form

In G, (1) =<2 (0.8 —0.93564'%), p>500,
v

(B16)

is the better approximation. The reason for the discrepancy
in the offset parameter is that for the few orientations where
q is still small the approximation — C — In ¢ is no longer
valid and leads to contributions to the overall integral which
are too large as compared to the exact sum expression, thus
resulting in a negative bias.

Under uniform excitation conditions we obtain from
Eq. (B2), using the same approximations as above:

10 G i (1) =% (1 — (&) i - T@) ')
D

(4
=ﬁ (1—1.0016p'73) . (B17)

It can easily be shown that as the two layers are brought
infinitely close together, Eqs. (B15) and (B17) transform
into the monolayer expressions [Eq. (3.10) and Appendix
Al

APPENDIX C

In this section we derive the asymptotic forms of Eqgs.
(4.33) and (4.37) and show an alternative way to numeri-
cally evaluate the integral [Eq. (4.33)]. In order to circum-
vent the singularity at s = 0 when numerically integrating
Eq. (4.33), two successive partial integrations can be per-
formed to leave only terms of the form

1
H(a) = f exp[ — pu({a,)s — (a,)s*® + (a;)s°/*)] - s~ ds
0

(C1)

with a>0, whose numerical evaluation is safer. Equation
(4.33) thus becomes
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InGj(p) = /{c—;z{l — (1 + jua))exp[ —pu((a;) — {a;) + (a3)] +p[$(a) H(0) — (a;)H() |

+ 47 = Ha)?HB3) + 2(a,) @) H(1) — §€a,)(a)H($) ]}

The asymptotic form for small values of 2 is found again
by using the first order power series of the integrand in Eq.
(4.33):

InGi(t) = — ;—;2/1((01)/2 —{a,)/3 + (a5)/4)

- —%cziv“ for 12 <0.05. (C3)

To find the asymptotic form for large values of u we rewrite
Eq. (4.33) with the substitution

={a,) us, (C4)
n G4 () = — =2 (@) j(“""[l e
3/102 0
(a ) 24/3
'exP((al)z4/3 R
/3
- (2?)35)/3 ' ;52/3)] 27z (C5)

If u» 1, the major contribution to the integral [Eq. (C5)] is
in the range z<€u because this part is strongly weighted by
z7*3, Yet, in this same region, the argument of the second
exponential term is small so that we can proceed to approxi-
mate it to first order which leads to

InG(u)
3;202 [((al)#)lmfo

_fa) [ . ey
@y d  TET gyl

(ap
XJ e"zl”dz].
0

Any incomplete gamma functions which are obtained after
integrating Eq. (C6) are well approximated by complete
ones so that the asymptotic form becomes

(a,)p
(1—e~Hz"%3dz

(C6)

(02> _ 1/3F 2
+——3<al> ({a)w)'°T'(3)

<a3> —1/3 i
—9—<a;—>‘((01>/‘) F(:;)]

=% [1.8 — 1.4587 "/ — 0.4974 = "/3] .
1))

C
InG* =—2[1
nGalk) Av?

(CN)

Its validity has been established for & > 5000. In the limit of
p going to infinity the monolayer expression is retrieved

[Eq. (3.8)):
t 1/3
lim In G5(u) = —cd “2*(a, )P T(3) (—)

H—ro0 T.

(C8)

(C2)

The asymptotic forms for transfer in the static limit fol-
low from Eq. (4.37) by applying the same approximations as
in the dynamic treatment. Consequently, the result for small
values of 1 is found to be identical to Eq. (C3). For large 4,
however, the asymptotic form cannot be formally estab-
lished using the arguments following Eq. (C5) because there
exist relative orientations where @, is very small, and the
assumptions which were used are no longer valid for these
few orientations. Nevertheless, it is found that the functional
form [Eq. (C7)] is conserved, {a,)'’® transforms to {a!”*
and the coefficients k, and k, can be determined empirically
by fitting to the exact form Eq. (4.37):

InG3 (1) =;—;2(kl (@) TR u' -k T p™'"?)

(C9)
with
k =16,
k,= —0.5,
which gives
InG? (1) =~2.(1.6 — 1.2813 &'/
Av?
+1.34u=3)  for u>5000. (C10)
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