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Picosecond transient grating experiments in sodium and iodine vapors, involving the 35— 3P
and X — B transitions, respectively, are discussed in detail. Population gratings in sodium
demonstrate that the technique can be used to measure velocity distributions in the gas phase.
It is shown that the time dependent transient grating signal is related to the Fourier transform
of the velocity distribution. Similar experiments on iodine illustrate the effect of state changing
collisions on the grating signal. Theoretical calculations for a model in which the change of
state is caused by a single collision are given. Close agreement with the data is observed for the

situation in which the collision takes the initial velocity into a random velocity distribution.
From this model a collision cross section is determined. The results demonstrate that
information on collision dynamics can be obtained from grating experiments. In addition, the
sodium experiments are used to illustrate a new type of time domain high resolution
spectroscopy. When the grating excitation pulses have perpendicular polarizations, a
polarization grating, rather than the usual population grating, is formed. Diffraction from the
sodium polarization grating shows larger time dependent oscillations in the diffraction
efficiency. These oscillations yield the ground state and excited state hyperfine frequencies
(1.77 GHz and 189 MHz, respectively). A detailed theoretical description of the origin of the
oscillations is presented. The results suggest that polarization grating spectroscopy can have
applications in other areas, such as molecular rotational dynamics.

I. INTRODUCTION

In this paper, three different aspects of the application of
picosecond transient grating spectroscopy to gas phase sys-
tems are presented. First, theory and experiments on very
low pressure Na vapor demonstrate that the time dependent
transient grating signal can be used to measure the transla-
tional motion of atoms and molecules. In fact, the grating
signal decay is related to the Fourier transform of the gas
velocity distribution. Second, theory and experiments on
moderate pressure I, vapor illutrate the effects of state
changing collisions on the transient grating signal. Analysis
of the data leads to a determination of the collision cross
section associated with the state change. Finally theory and
experiments on Na vapor are used to elucidate a new type of
time domain, ultrahigh resolution spectroscopy. The experi-
ments involve the time dependence of a polarization grating.
Unlike the more conventional population grating methods,
the polarization grating, when applied to Na, displays a time
dependent signal with pronounced oscillations at the Na
ground state and excited state hyperfine frequencies (1.77
GHz and 189 MHz, respectively).

There are a wide variety of experiments used to probe
velocity and collisional effects.” Brewer and co-workers'®
employed photon echoes to study grazing collisions. In this
work, a single vibration—-rotation line was excited with a nar-
row band laser. The time dependence of the photon echo
signal revealed information on the velocity changes pro-
duced by collisions which preserved the vibrational-rotation
state. There is quantitative agreement between experiment
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and theory which provides considerable insight into the ef-
fects of grazing collisions. Warren? is currently using narrow
band pump probe experiments to examine velocity changing
collisions. In these experiments, a narrow band dye laser is
tuned to a frequency in the Doppler profile of a single rovi-
bronic transition. A second dye laser probes the time depen-
dent bleaching at a second frequency in the line. By using
pulse sequences with various phases one can obtain various
types of information on collisionally induced velocity
changes. In these experiments, as well as those which mea-
sure Doppler linewidths in equilibrium®* or chemically
reacting systems,* information on velocity distributions and
collisional dynamics is obtained in some manner from the
narrow frequency bandwidth of the experiment.

The grating approach is inherently different. It exam-
ines the spatial position of molecules as a function of time,
and thereby obtains velocity information directly. The mea-
surement of gas phase velocity distributions is analogous to
recent grating experiments used to examine exciton trans-
port in crystals,>® and charge carrier transport in hydroge-
nated amorphous silicon.” The grating works in the follow-
ing manner [see Fig. 1(a)]. Two time coincident picosecond
laser pulses of the same wavelength are crossed in the sam-
ple. Interference between the two coherently related pulses
creates an optical fringe pattern in the sample such that the
intensity of light varies sinusoidally in the beam overlap re-
gion. The spacing of the interference fringes is determined by
the angle between the beams and by the wavelength of the
light. When the frequency of the excitation pulses coincides
with an absorption band of the gas phase molecule, excited
states are produced. These excitations initially will have the
same spatial distribution as the sinusoidal optical interfer-
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FIG. 1. (a) Transient grating experimental geometry. The excitation
pulses, which propagate essentially in the z direction, form a grating with a
wave vector along y. The probe pulse is directed into the sample to meet the
grating Bragg condition. Part of the probe is diffracted from the grating to
give the signal. (b) A population grating is formed by the interference of
excitation pulses with parallel polarization. One grating fringe is shown.
The electric field amplitude varies sinusoidally along the grating wave vec-
tor { y direction). (¢} A polarization grating is formed by the vectorial ad-
dition of the electric fields of perpendicularly polarized excitation pulses.
Again, one grating fringe is shown. The electric field polarization varies
from linear to left circular to linear to right circular and finally back to
linear across one fringe. The electric field amplitude is constant across the
fringe.

ence pattern, i.., there will be an oscillatory spatial variation
in the concentration of excited states. After a suitable time
delay, a probe pulse (which may differ in wavelength from
the excitation pulses) is directed into the sample along a
third path. The probe pulse experiences an inhomogeneous
optical medium resulting from the regions of high and low
concentrations of excited states. These alternating regions
have different indices of refraction, and consequently, a spa-
tially periodic variation in the index of refraction is estab-
lished. Thus, the probe pulse encounters a Bragg grating
which causes it to diffract into one or more orders. [See Fig.
1(a).]

Now consider the effect of the translational motion of
excited gas phase molecules. The excited molecules will
move from regions of high excited state concentration, grat-
ing peaks, to areas of low excited state concentration, grating
nulls. The translational motion will fill in the grating nulls
and deplete the peaks. Destruction of the grating pattern by
spatial redistribution of the excited molecules leads to a de-
crease in the intensity of the diffracted probe pulse as the
probe delay time is increased.® Thus, the time dependence of

the grating signal is directly determined by the translational
motion.

In the Na experiments presented below, the gas is in
thermal equilibrium. Therefore the velocity distribution is a
Mazxwell-Boltzmann distribution, i.e., a Gaussian. The sig-
nal decay is the product of an exponential lifetime decay and
a Gaussian which is the Fourier transform of the Maxwell-
Boltzmann distribution. These experiments demonstrate the
feasibility of making fast measurements of velocity distribu-
tions without the necessity of observing well resolved spec-
tral lines. The method can be extended to systems which are
not in thermal equilibrium. For example, the velocity distri-
butions of fragments from a photodissociation reaction can
be examined.

In the I, experiments discussed in this paper, the pres-
sure is sufficiently high that there is on the order of one hard
sphere collision per I, molecule during the time of the experi-
ment. The grating excitation takes place into the middle of
the B state vibrational manifold. The initial B state grating
has too small a diffraction efficiency to produce a detectable
signal at ¢ = 0. However, a very strong signal grows in with
time. The buildup of signal results from collisions between
excited and ground state I, molecules which cause the excit-
ed molecules to experience a state change. The state that is
populated via collisions absorbs the probe strongly, and
therefore, gives rise to a large diffraction efficiency. The time
dependence of the transient grating signal is a competition
between the growth of an observable grating caused by colli-
sions and the destruction of the grating pattern resulting
from the translational motion of the molecules. The signal
carries information on the initial velocity distribution, the
collisional process, and the velocity distribution of those
molecules which scatter into the observable state. Detailed
theoretical modeling shows that the collision cross section
for the state change is somewhat smaller than hard sphere,
and that the state changing collision randomizes the initial
velocity.

The experiments examining translational and colli-
sional phenomena on Na and I, employ population transient
gratings. The polarization of the excitation beams are para-
lle], resulting in an optical interference pattern [Fig. 1(b)].
This interference pattern gives rise to a spatially oscillating
concentration of excited states, and therefore a diffraction
grating. In another set of Na experiments described below,
the excitation beams have perpendicular polarizations
which gives rise to a polarization grating [Fig. 1(c)]. Be-
cause the optical pulses have perpendicular polarizations,
they cannot interfere. The intensity is constant over the exci-
tation region. However, the perpendicular electric fields add
vectorially with a phase factor that changes with distance
along the grating wave vector. This gives rise to a pattern
which varies from lineary polarized light to left circularly
polarized light (lcp) to linearly polarized light, to right cir-
cularly polarized light (rcp).

The Na 32S,,, and 3°P,,, ,, levels are split into mani-
folds of states by the hyperfine interaction. These splittings
give rise to a number of possible transitions with well defined
AM = + 1 selection rules between ground and excited hy-
perfine states. The AM = + 1 and the AM = — 1 transi-
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tions are driven by rcp and lep light, respectively. The signal
in the Na polarization grating exhibits oscillations that are
characteristic of the ground and excited state hyperfine fre-
quencies. The theoretical analysis presented in this paper
demonstrates that the observed oscillations in the grating
signal stem from the spatial anisotropy of the excitation con-
ditions. In rcp regions of the grating, superposition states are
created by AM = + 1 transitions. In the lcp grating regions,
AM = — 1 superposition states are generated. In both rcp
and Icp grating regions, the absorption probability oscillates
at the hyperfine frequencies. The linearly polarized probe
encounters a grating with an oscillating diffraction effi-
ciency which gives rise to a modulated diffracted signal in-
tensity. A detailed theoretical analysis shows that the oscil-
lations should vanish for a population grating (parallel
excitation polarizations) when certain phase relationships
are obeyed.

The unique time behavior of the Na polarization grating
is expected to occur whenever there exists manifolds of states
with AM = - 1 selection rules. Hyperfine splittings should
be observable in a solid such as Pr*?in LaF,. In addition, gas
phase molecules have rotational states with well defined M
values and AM = + 1 selection rules. Therefore, polariz-
tion grating spectroscopy should be useful in the study of the
rotational state dephasing.”

This paper is organized in the following manner. Section
II discusses the theory involving the measurement of gas
phase velocity distributions and presents Na experimental
results. Section III shows the results for I, experiments and
discusses the theory concerning the effects of states changing
collisions on the grating signal. Section IV returns to Na, and
presents theory and experiments on the polarization grat-
ings. Some preliminary aspects of the Na and I, experiments
have been presented previously.'®!!

Il. GAS PHASE VELOCITY DISTRIBUTIONS: THEORY
AND Na POPULATION GRATING EXPERIMENTS

A. Theory

As described in the Introduction, the time dependence
of the transient grating signal is directly related to the trans-
lational motion of the atoms or molecules. The optical inter-
ference pattern generated by crossed excitation pulses is
mimicked by the concentration of excited moleculesatr = 0.
As time evolves, the translation of the atoms destroy the
grating pattern, and the grating diffraction efficiency is re-
duced.

For the situation in which a gas is in thermal equilibri-
um at temperature 7, the velocity distribution perpendicular
to the grating fringes is given by

— m vz mvl/2kgT
Sw) (277'k8 T) ¢ '
In the above equation, y is the grating wave vector direction
(see Fig. 1), m is the mass, &k is the Boltzmann constant,
and T is the temperature. Since the grating fringe spacing
(1-15 #m) is much smaller than the other dimensions in the
problem, (grating height and depth are hundreds of xm)
only the motion in the y direction will influence the signal.

(2.1)

At time f = O the relative concentration of excited mole-
cules at position y is

N(p,0) =1/2(cos Ay + 1), (2.2)

where A = 277/d and the fringe spacingd = A /2 sin(8 /2).8
A is the wavelength of the excitation beams and 6 is the angle
between them. The grating signal S(¢) is determined by the
difference between the excited state concentrations of the
grating peaks ( y = 0) and nulls ( y =d /2) attime 2. Atany
position y, the relative concentration of excited molecules
with velocity v, in the absence of collisions is

N”(yt) =1/2[cos A(y —v,8) + 1] flv,)e™ "7, (2.3)
where 7 is the excited state lifetime and the term ¢ ~*/" has
been added to account for the decay of the grating resulting
from population relaxation. It is important to note that the
argument of the cosine is indicative of the fact that a mole-
cule with velocity v, arriving at point y at time ¢, initially
started at a position y — v, 2. To evaluate the peak-null dif-
ference in excited state concentration D(f), N{ y,t) must be
calculated:

N(p,t) =J N>(yt)dv, . (2.4)

The signal $(¢) is proportional to [ D(#) ] Consequently,
S(t) =A[D(1)]* =A[N(O,;) —N(d/2,0)]*. (2.5)

Substituting Eq. (2.3) into Eq. (2.4) and then substitut-
ing this result into Eq. (2.5) yields

(2.6)

+ 2
St =4 [e"’/’ S, )cos(Avyt)duy] .

Equation (2.6) is a general result for any velocity distribu-
tion f(v,) when the time scale of the measurement (a few
nanoseconds) is fast compared to the collision time. The
integral is the cosine Fourier transform of the velocity distri-
bution f(v, ). Thesignal S(¢) is proportional to the square of
the Fourier transform of the velocity distribution multiplied
by the square of the population relaxation term.

For a velocity distribution f(v, ) described by Eq. (2.1),
Eq. (2.6) becomes

S(8) = g o= BT/, (2.7

Equation (2.7) shows that a Gaussian velocity distribution
yields a signal which is the product of a Gaussian and an
experimental term. By changing A (changing the fringe
spacing), one can scale the time such that different portions
of the velocity distribution are emphasized on the experi-
mental time scale.

—2/r

B. Experimental procedure

In the sodium experiments tunable pulses were genera-
ted by synchronously pumping two dye lasers with the sec-
ond harmonic of an acousto-optically Q-switched and mode-
locked Nd:YAG laser. The output of one dye laser was used
to produce the excitation pulses, while that of the other was
used to generate the probe. Thus, the probe and excitations
could be independently tuned into the upper or lower sodi-
um D lines at 589.0 (°P,,,) and 589.6 nm (*P,,,). The tuna-
ble pulses were 18 ps in duration, had a bandwidth of 0.7
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cm ™', and were attenuated to ~ 100 nJ and ~0.5 uJ for the
excitation and probe, respectively. The spot sizes were 200
pm. The excitation pulses had parallel polarizations to form
a population grating (Fig. 1).

The diffracted signal was detected by a cooled photo-
tube and sent into a lock-in amplifier. The probe was delayed
from the time coincident excitation pulses with a motor driv-
en delay line which generated a voltage proportional to the
delay. A small computer was used to digitize the output of
the lock-in amplifier and the delay line voltage. In this man-
ner the time dependent curves were stored for subsequent
analysis.

The Na sample was contained within a 3 cm long optical
cell with 1 cm diam windows. The cell temperature was con-
trolled by the voltage applied to heating wire wrapped
around the cell. There was an independently heated side arm
which was used to control the Na pressure at about 2 107
Torr."? The cell temperature was measured by a resistance
thermometer in contact with the body of the cell. It is inter-
esting to calculate the total number of atoms that contribut-
ed to the signal. If the temperature of the main part of the cell
is 600 K and the vapor pressure is 2 X 10~ Torr, the density
is 3.2 X 10° atom/cm?. For a fringe spacing of 12 um and a
beam diameter of 200 m, the grating volume is approxi-
mately 33X 10° um®. The number of atoms within this vol-
ume is ~ 10°,

C. Results and discussion

Figure 2 displays transient grating data taken on Na
vapor at ~600 K with the excitation wavelength tuned to
the 2P;;, manifold and the probe wavelength tuned to the
2P, ;> manifold. The curve exhibits a nonexponential decay.

DIFFRACTED SIGNAL

{nsec)

TIME

FIG. 2. Na population grating. The signal intensity is plotted vs the probe
delay time. The probe and excitations are tuned into the P, ,, (589.6 nm)
and %P,;, (589.0 nm) manifolds, respectively. The fringe spacing of the
grating is 12.2 um and the temperature T (measured by a resistance ther-
mometer) is 585 K. The solid line is the theoretical fit to data obtained from
Eq. (2.7). The fringe spacing is set at 12.2 um, while the lifetime is fixed at
16 ns. The adjustable parameter, the temperature T, is in agreement with
the measured temperature.

At very short time ( < 1 ns) there is a large coherence arti-
fact arising from the macroscopic polarization which is ini-
tially produced upon excitation. This polarization decays on
the time scale of the free-induction decay associated with the
Dopper linewidth. For Na at 600 K, the Doppler linewidth is
6.2 1072 cm ™", which corresponds to a decay time of ap-
proximately 0.5 ns. Following the decay of the macroscopic
polarization, the transient grating decays because of popula-
tion relaxation (fluorescence) and the translational motion
of the atoms. The fluorescence lifetime in the absence of
collisions is 16 ns."

The curve through the data in Fig. 2 is the best single
parameter fit to Eq. (2.7). The fringe spacing is 12.2 ym,
7= 16 ns, and m is the mass of Na in grams. The single
adjustable parameter is the temperature T. The calculated
curve has 7T, = 590 K as compared to the approximate sam-
ple temperature of 585 K measured by the thermometer in
contact with the optical cell wall. After the initial coherence
artifact, the shape of the calculated curve is in excellent
agreement with the data.

Figure 3 shows the same grating decay as in Fig. 2, as
well as those taken at different fringe spacings, namely 5.3
and 6.8 um, and with different experimental conditions (i.e.,
wavelengths of probe and excitation and temperature). Note
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FIG. 3. Comparison of Na experimental data (taken under different condi-
tions) to theoretical fits obtained from Eq. (2.7). Tand T, are the measured
and fit temperatures. A, = probe wavelength; A = excitation wave-
length. (a) Fringe spacing==12.2 pm. A, =589.6 nm (°P,;;); A,

=589.0 nm (*P;,). T=385 K; T, =590 K. (b) Fringe spacing = 6.8
pm. A, =A,. =589.6 nm (°P,;;). T=585K; T; =605 K. (c) Fringe
spacing = 5.3pum. A, = 4., = 589.6nm (°P,,,). T=T750K; 7, = 760 K.
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that as the fringe spacing becomes smaller, the time required
for atoms to move from grating peaks to nulls is decreased,
and therefore the decay of the signal is faster. As can be seen
in Eq. (2.7), the time is scaled by the inverse of the fringe
spacing. As the fringe spacing becomes smaller, the Gaus-
sian term will increasingly dominate the lifetime exponen-
tial. The theoretical fits drawn through the data in Fig. 3 for
fringe spacings of 12.2, 6.8, and 5.3 um have temperatures
(T} ) of 590, 605, and 760 K, respectively. The correspond-
ing temperatures measured by the resistance thermometer
(T) are 585, 585, and 750 K. Thus, there is excellent agree-
ment between theory and experiment over this range of
fringe spacings. It should be mentioned that deviations from
the expected results were found to occur at fringe spacings
significantly smaller than 5.3 um because of interference
from the coherence spike and at fringe spacings greater than
20 um because of boundary effects. This latter consideration

involves the fact that at large fringe spacings, the Gaussian -

intensity profile of the laser beams becomes an important
factor since there are only a few fringes inside the grating
region.

Figures 2 and 3 demonstrate that gas phase velocity dis-
tributions can be directly examined with the transient grat-
ing approach. It is not necessary to have high resolution or a
well resolved spectrum. The measurement is made by direct
observation of the translational motion of the atoms or mole-
cules against a well-defined distance scale provided by the
grating fringe spacing. The Na experiments [which are
quantitatively described by Eq. (2.7)] illustrate the situa-
tion of thermal equilibrium in which there are no.collisions
on the time scale of the experiment, i.e, a few nanoseconds. If
a system is initially created with a nonequilibrium velocity
distribution, velocity changing collisions will bring the sys-
tem into thermal equlibrium. (The collisions discussed here
do not change the electronic or vibronic state of the atoms or
molecules. State changing collisions of this nature are dis-
cussed in Sec. II1.) If the time scale of the velocity changing
collisions is long compared to the experimental time scale,
the grating experiment can be used to follow the time evolu-
tion of the velocity distribution function. If velocity chang-
ing collisions occur on a time scale which is fast compared to
the experimental time frame, then the velocity of any particle
will be randomized well before it travels a distance equiva-
lent to the grating fringe spacing. (The mean free path of the
particle is much smaller than the fringe spacing.) In this
situation, transport is diffusive on the distance scale of the
experiment. For diffusive transport, the grating signal de-
cays as’

S(t) =A e 22Prg=2/m, (2.8)
The decay is exponential with the transport term again mul-
tiplied by an exponential population decay term. A and 7
have been previously defined, and D is the diffusion con-
stant. For a thermal equilibrium system,

D=2/3[(k3T*/mm)"*/oP], (2.9)

where P is the pressure and o is the collision cross section.'*
The other parameters have been defined earlier.

Hl. STATE CHANGING COLLISIONS: I, POPULATION
GRATING EXPERIMENTS AND THEORY

A. Experimental procedure

Transient population grating experiments were con-
ducted on I, vapor at moderate pressure. The general experi-
mental setup was similar to that discussed earlier. Tunable
30 ps, 10 uJ dye pulses were beam split and crossed to form
the grating. The excitation pulses were tuned to 560 nm. The
probe pulse was obtained by doubling the output of the
Nd:YAG laser. The resultant 532 nm pulse was 80 ps long
and 5 uJ in energy. The excitation and probe bandwidths
were ~10 and ~1/3 cm™, respectively. Spot sizes were
about 250 pm. The sample was I, vapor in a 1 cm length
evacuated cell which was wrapped with heating wire. The
temperature of the cell was held at 430 K. The I, pressure
was maintained at approximately 16 Torr by controlling the
temperature of a side arm.'>

Figure 4 shows transient grating data taken with a large
(15 um) fringe spacing. At this large fringe spacing, transla-
tional motion has little effect on the signal. The grating time
dependence results from population kinetics. The signal is
seen to have ~0 intensity at # = 0 and to grow rapidly with
time. This is in contrast to Fig. 3 in which the Na data dis-
plays the time dependence of collision free translational mo-
tion and excited state decay. The 560 nm excitation wave-
length causes transitions from the ground state X('=.;") to
V=19 vibrational level of the B (*7,-, ) state. The 532 nm
probe corresponds to a transition from the X state to V=31
of the B state.!®'” In the absence of collisionally induced
state changes, the probe should experience a maximum grat-
ing diffraction efficiency at ¢ = 0. The fact that a strong in-
creasing signal is observed, demonstrates that the state being
probed is not the initially prepared excited state, but rather a
state which interacts strongly with the probe radiation field
at 532 nm. (Since the absorption from the X state at 532 nm
is weak,'® the signal from this transition is extremely small®
and consequently not detected.) At the temperature and
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FIG. 4. Transient grating signal obtained from I, with a fringe spacing of 15
pm. At large fringe spacings the decay of the grating resulting from molecu-
lar motion is minimal on the experimental time scale. Thus, in this regime,
the grating examines population kinetics. Unlike Figs. 2 and 3, the I, data
display a buildup of signal rather than a decay. State changing collisions
populate the “observable state” and give rise to the time dependence of the
signal.
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pressure of the experiment, the I, molecules will experience a
small number of hard sphere collisions on the experimental
time scale. These collisions must cause state changes to an-
other electronic state or to a different region of the vibration-
al manifold of the B state. The new state formed cannot be a
dissociative state since the rising signal implies a buildup of
population. Furthermore, iodine atoms do not absorb the
532 nm probe.

To see if a reasonable number of collisions occur on the
time scale of the experiment, one can calculate a hard sphere
collision frequency'® for I, at 16 Torr and 430 K.. If the hard
sphere collision parameter d, is set equal to twice the I, bond
length (2.66 A),'® the average hard sphere collision time is
~ 12 ns. Consequently, a significant number of I, molecules
can undergo at least one hard sphere collision.

Figure 5 displays fringe spacing dependent data. Except
for different fringe spacings, the conditions for each data set
are identical. As the fringe spacing is decreased, the destruc-

(8 d=125um

DIFFRACTED SIGNAL

] ) d-e6um

DIFFRACTED SIGNAL

(c) d=4.lum

DIFFRACTED SIGNAL

0 5 10 15
TIME (nsec)

FIG. 5. Fringe spacing dependences of the I, grating signal. As the fringe
spacing is decreased, the influence of the molecular motion becomes more
apparent. The destruction of the grating by molecular motion competes
with the collisionally induced buildup of population in the observable state.
At smaller fringe spacings molecular motion reduces the grating at earlier
times; hence, the signal peaks earlier. The sample temperature and pressure
for all three curves are 430 K and 16 Torr.
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tion of grating pattern by molecular translations becomes
increasingly important. The rapid rise in signal is damped by
the Gaussian decay produced by the distribution of molecu-
lar velocities.

Physically the situation is as follows. A fringe pattern of
excited states is produced at 7 = 0. However, the resulting
grating interacts so weakly with the probe pulse that the
grating has essentially zero diffraction efficiency. Therefore,
the initial grating is not observable. Nonetheless, as time
proceeds, the translational motion begins to smear out the
grating and collisions occur. The collisions take some mole-
cules from the initial ensemble to a new state (or states)
which interacts strongly with the probe pulse. Molecules in
the new state form the observable ensemble. If collisions oc-
cur before the grating pattern is destroyed by motion in the
initial ensemble, a grating signal will grow in. This behavior
can be qualitatively described by Eq. (2.7) if the exponential
decay is replaced with an exponential growth term, so that

S(t) =A e~ BORTIM(| g hry2 3.1

where k is related to the collision frequency. For very large
fringe spacings (A —0) the Gaussian term becomes a con-
stant, and the signal simply exhibits an exponential buildup.
This is the behavior that would be observed in a conventional
transient absorption experiment. However, when A becomes
significant, the Gaussian eventually overwhelms the expo-
nential. Figure 6 illustrates the change in signal [Eq. (3.1)]
as a function of the fringe spacing. k has been set equal to the
average hard sphere collision frequency at 8.5X107 s™!

DIFFRACTED SIGNAL

TIME (nsec)

FIG. 6. Curves calculated from the zeroth order model [Eq. (3.1)] for
fringe spacings that correspond to the I, data shown in Fig. 5. T'is the ex-
perimentally measured temperature while the collision parameter 4, is an
adjustable variable. For this figure d, has been set equal to the hard sphere
collision value of 5.3 A. The curves behave qualitatively like the data in Fig,
5. With this model, there are no values of d, that can produce curves which
quantitatively agree with data for all the fringe spacings.
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(k =v27d*{v)n; n is the number density which equals
3.6 10" for I, at 16 Torr, 430 K). It is clear that Eq. (3.1)
is qualitatively in accord with the data in Figs. 4 and 5.

Although Eq. (3.1) is qualitatively correct, it is not an
accurate description of the grating data. This zeroth order
model does not account for the location of a molecule at the
time of collision, nor does it permit the velocities of mole-
cules in the observable ensemble to be different from their
velocities in the initial ensemble. Furthermore, in the zeroth
order model the velocity dependence of the collision fre-
quency is not included. These deficiencies prevent Eq. (3.1)
from providing a quantitative analysis of the data.

To obtain a better understanding of the system dynam-
ics which give rise to the time and fringe spacing depen-
dences of Figs. 4 and 5, a detailed model of the effect of state
changing collisions on the grating signal is presented. In this
model a single collision takes a molecule from the initial
ensemble to the observable ensemble. In a previous publica-
tion,'® calculated curves obtained from a single collision
model were presented. The equations from which these were
derived were found to be incomplete. As will be shown be-
low, the complete theory presented here provides an accu-
rate description of the data.

B. Theoretical model: Single collision change of state

As mentioned in the previous section, the zeroth order
model fails to accurately describe the grating data because it
does not allow for changes in velocity of the molecules upon
collisions nor does it consider the velocity dependence of the
collision frequency. In this section a single collision model
that will account for the aforementioned factors is given in
detail. The model depicts the situation in which a single colli-
sion causes a given excited molecule to change state. The
molecule leaves the initial ensemble and enters an observable
ensemble. The model keeps track of the trajectory of the
molecule by noting where and when the collision takes place
and by accounting for injtial and final velocities. After a
molecule collides once, it is not considered to experience any
further collisions. Under these conditions, the time depend-
ence of the spatial profile of the observable ensemble is evalu-
ated.

The single collision model is essentially a convolution
problem. The grating results from groups of molecules
which scatter at different times. For example, the grating
signal at a delay time of 3 ns results from molecules that have
undergone state changing collisions at that particular instant
and from molecules that have scattered at delay times of 2 ns,
1 ns, etc. In order to calculate the grating signal (for a given
fringe spacing d) as a function of time, the time dependent
spatial profile of the observable molecules, denoted by N,
needs to be considered. Similar to the analysis given in the
previous section [see Egs. (2.2)—(2.5)], the problem in-
volves calculating N '( y,t) at the points y = 0 (peaks) and
y =d /2 (nulls). The grating signal is then taken to be pro-
portional to the square of the peak-null difference in number
density D(¢). In the following discussion, the appropriate
expression for D(¢) will be derived in view of the single colli-
sion model.

Suppose a molecule with an initial velocity v is excited at
time ¢ = 0. If the molecule collides at time ¢’ (thereby enter-
ing the observable ensemble) and acquires a new velocity v’,
then the total distance traveled by the molecule along the
grating wave vector ( y direction) at the observation time ¢ is

dy=v,t' +u,(t—1'). (3.2)
The relative concentration of observable molecules that ap-

pear at position y at time ¢, which have collided at time ¢ ' and
have had a velocity change of v— v/, is

N'(ptt'wp') =i(cos{A[ y—v,t' —vj(t—1t")]}+1)
XP(v—-V)YP(t'p) . (3.3)

In comparison to the expression in Eq. (2.3), the argument
of the cosine reflects the total distance traveled by the mole-
cules. The term P(v—-v') describes the probability that a
molecule starts with an initial velocity v and ends up with a
final velocity v’ after a collision. P(¢',v) is the probability per
unit time that a molecule with velocity v will undergo a colli-
sion at time ¢'. The total number of observable molecules
arriving at position y at time ¢, N'( y,¢), is obtained by inte-
grating Eq. (3.3) over the velocities v and »" and over the
scattering time ¢ ":

N'(yt)

=’[]L-[‘—;—(cos{A[y—vyt'——vy’(t—t’)]}+ 1)
XP(v-v')P(t"w)dt' dv' dv. (3.4)

The peak-null difference in the concentration of molecules in
the observable state is derived from Eq. (3.4):

D) =N'(0,t) —=N'(d/2,t) (3.5a)
=ff J- cos A[vyt’+v;(t—t')]
XPw-v)P(t'v)dt dv' dv. (3.5b)

Equation (3.5b) is a general expression for the single
collision model since the two probability terms have not yet
been specified. In order to perform the above integration,
one must first define P(2',v). If the relative population of N
molecules with velocity v, N'(2,v), exhibits an exponential
buildup of the form 1 —e ™ ' where k, is a velocity depen-
dent collision frequency, then

N'(tp) =f Pt'p)dt'=1—e " (3.6a)
0
and
P(t' ) =(§£5(tt_”ﬂ) —k e b (3.6b)

Substitution of the above expression for P(¢',v) in Eq. (3.5b)
yields

Dm:fff k, e " P(o-')
vJV Jt' =0

Xcos Afv,t' +v, (¢ —1t')] dt'dv dv. 3.7)

Equation (3.7) is still a general expression since the
scattering probability function P(v--v’) has not been de-
fined. As mentioned earlier, P(v—v') gives the probability
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that a molecule with an initial velocity v scatters into a final
velocity v’. Two limits for P(v—v’) will be considered. In the
first case (model I), the state changing collision does not
change the molecular velocity. Thus a molecule that scatters
into the observable ensemble continues to move with its ini-
tial velocity. This model preserves the molecular trajectories
and the translational temperature of the initial ensemble. In
model II, the velocity of a molecule is randomized by the
state changing collision. The final velocity distribution is
Maxwell-Boltzmann with a temperature T, that is not nec-
essarily equal to the initial temperature T,
P(v—v') for the two limiting models is given by

model I:

P(ovov') =e~ ™75 (3.8)
model II:

P(o—v') = e——mu’/2kBTXe—mv’2/2kBT/. (3.9)

Both models I and II result in observable ensemble velocity
distributions which are Maxwell-Boltzmann distributions
with well defined temperature. It is possible, that following
state changing collisions, the velocity distribution is not
Gaussian with a definite temperature. This point will be dis-
cussed following the data analysis.

First consider model I. Substituting Eq. (3.8) into Eq.
(3.7) gives

t
D(t)=ff k, e~ cos(Av,t)e” " "dt'dv, (3.10)
vJt' =0

where g=m/2k, T. Integrating over time yields

D(t)=fe-8“’cos(Auyt)(1—e“""‘) dv. (3.11)
The velocity dependent collision rate &, is given by

k, =s(@ +v:+2 + ()H)'?, (3.12a)
where

s=mndln. (3.12b)

If k, in Eq. (3.11) is replaced by an average collision fre-
quency k (k =v2Z 7d*(v)n), then the subsequent integra-
tion over the velocity gives the peak-null difference for the
zeroth order model discussed earlier [see Eq. (3.1)]. The
zeroth order model describes the case in which the initial
ensemble simply damps into the observable ensemble. As
mentioned previously, the zeroth order model does not accu-
rately describe the data.

The full analysis of model I involves the integration of
Eq. (3.11), which cannot be done analytically. However, the
integration can be reduced to a two-dimensional problem by
noting the symmetry between v, and v,. If a change to a
cylindrical coordinate system is made by defining vZ + v2
=v?} and dv, dv, =v,dv, d, integration over the azimuthal
angle in velocity space can be performed. Substituting Eq.
(3.12) into Eq. (3.11), carrying out the tranformation, and
integrating over ¢ yields

D(t) =27rJ- f vle—g(l’§+v%)
v, Ju,

X cos(Av, 1) (1 — e >3+ A+ O gy gy
(3.13)

Equation (3.13) was integrated numerically using the
Gaussian quadrature method. The results for a fringe spac-
ing of 4.1 m, a temperature of 430 K (the sample tempera-
ture) and two collision parameters are compared to the data
in Fig. 7. Note that as the collision parameter is increased the
maximum shifts to earlier time. The maximum of the calcu-
lated curve will not coincide with the data for any choice of
the collision parameter. For a collision parameter of 5.3 A or
less, the maximum always occurs at approximately 4.5 ns. It
is clear from the figure that model I does not accurately
describe the data. Similar results were obtained for different
fringe spacings. The fact that model I does not allow for
velocity changing collisions results in the model’s inability to
reproduce the experimental grating curves.

For model II, Eq. (3.9) is used for P(v-v') in Eq.
(3.7). The equation for the peak-null difference becomes

2
D(t)=ffj. kve*gvze—g'v'z
vJU J'=0

X cos Alv,t' +v)(t—1t")] e 5 dt' dv' dv.
(3.14)

DIFFRACTED SIGNAL

0 4q 8 12 16
TIME (nsec)

FIG. 7. Comparison of I, data obtained at 4.1 um with curves calculated
from model I [Eq. (3.13)]. In this model the velocity of a molecule is un-
changed by the state changing collision and the temperature T'is the sample
temperature. d, is an adjustable parameter which is given values of 5.3 and
17Ain parts (a) and (b), respectively. Note that an increase in Ehe collision
parameter d, shifts the maximum to earlier times. Ford, 55.3 A, the maxi-
mum occurs at roughly 4.5 ns. Consequently, model I cannot be made to fit
the data and is, therefore, not an accurate description of the I, system.
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Integrating over ¢ ' and combining various terms yields
k,e & e—&v2
D(t) = f z
( v u’k5+Az(U;-—Uy)2
X [k, cos(Avyt) + A(v, — v, )sin(Av; )

—e M A(vy —v,)sin(Av, 1)

—e ™k, cos(Av,) ] dv' dv . (3.15)
Equation (3.15) can be somewhat simplified by elimi-
nating the integration over v and v, since these variables do
not affect the time dependence:
J
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k _’8”1—8’";2
D(t)=ff 2 ue2 ’ 2
vy ki + A%(v) —v,)

X {k, cos(Av;t) + A(v, — v, )sin(Av)t)
—e ™ "'[k, cos(Auv,1)

+ Ay —vy)sin(Avyt)]}dv,’, dv. (3.16)

To further reduce the dimensionality of the problem, one can
perform the transformation to cylindrical coordinates [see
Eq. (3.13)] for the unprimed velocity components and inte-
grate over the azimuthal angle. The time dependence of the
peak-null difference from Eq. (3.16) becomes

e ey 2, 2 y2)1/2
D(t)=27rsfff W +vi + W)V
b o PO+ 07+ (0)7) + A2, —v)? 0 ‘

X [s(F + 07 + ()22 cos(Avyt) + A(v) — v, )sin(Au)r) — e O 02 L2 4 (1)2)172 cos (A, 1)

+ A(vy, — v, )sin(Av,2)] ] dv, dv, dv, .

In the above equation, the explicit expression for k, [Eq.
(3.12)] has been employed.

Integration of Eq. (3.17) was performed using the
Gaussian quadrature method for the v, and v, variables and
Simpson’s rule for the v, coordinate. Typically, the range of
integration required for convergence was from 0 to

+ 5% 10* cm/s. The two adjustable parameters for this

model are the collision parameter d. (s = 7d?n) and the
final temperature T, (g' = m/2ky T, ). In Tables I and II,
the results for a one parameter and two parameter fit are
listed for several fringe spacings. In the one parameter fit, the
final temperature 7, was set equal to the initial temperature
of 430 K and d, was allowed to vary. For the two parameter
case both the final temperature and d, were allowed to vary.
Figures 8(a)-8(e) compare the data to curves generated
from Eq. (3.17) using the parameters listed in Table IL
(Curves drawn using the Table I parameters give essentially
the same results. ) The theoretical curves in Fig. 8 show good
agreement with the data. The overall results demonstrate
that the model is an essentially accurate description of the
collisional process. The temperature in Table II are all close
to the ambient temperature of 430 K. Although the cross
sections vary from curve to curve, they lie within a narrow
range. The average value of the collision parameter for the
change of state is 3.8 A, which is significantly smaller than
the hard sphere collision parameter of 5.3 A.

TABLE I. Model II: One parameter fit (4. ).

(3.17)

I

Some cross sections for various energy transfer pro-
cesses involving iodine collisions with iodine as well as with
other molecules have been studied. An extensive review of
the experimental results for I, is given by Steinfeld.?! Cross
sections for quenching the B state of iodine (where the colli-
sion partner is a ground state molecule) listed by Steinfeld
are on the order of 200 A2. For vibrational energy transfer
within the B manifold, total cross sections are given as 88
and 19 A% forv = 15, j =33 andv = 43, j = 12, 16, respec-
tively. In comparison, the average cross section obtained
from Table I1, 45 A2, is certainly reasonable.

Although model I is in good agreement with the data, it
is not perfect, since a small range of cross sections is ob-
tained. This range could be the result of physical factors that
are not taken into account by the model. First, only the effect
of the single collision which causes the change to the observ-
able state is considered. Secondary collisions, which may or
may not cause state changes, can certainly alter the velocity.
The single collision model which does not account for these
secondary collisions uses an effective cross section to de-
scribe both the change of state and the velocity change. The
model yields a value of the cross section which is smaller
than hard sphere. It is, therefore, not unreasonable to as-
sume that by the time a state changing collision occurs, the
velocity has been somewhat but not completely randomized.
The choice of the velocity scattering probability is another

TABLE II. Model II: Two parameter fit (d,,T} ).

d(um) d.(A) o(A?) T,(K) d(pm) d.(A) o(A?) TH(K)
12.5 33 34 430 12.5 34 36 405
6.6 33 34 430 6.6 33 34 420
5.5 3.1 30 430 5.5 3.1 30 420
4.6 44 61 430 4.6 44 61 425
4.1 49 75 430 4.1 4.5 64 480
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FIG. 8. Comparison of model II [Eq. (3.17)] curves generated from the best fit parameters (listed in Table II) with I, data taken at five different fringe
spacings. In this model the velocity of each molecule is randomized upon collision. The initial velocity distribution is characterized by an initial temperature
which is set equal to the measured sample temperature T The final velocity distribution is characterized by T, which is an adjustable parameter. The second
adjustable parameter in the model is 4, the collision parameter. These results demonstrate that model I1 is an accurate description of the collision dynamics.

point. The probability employed in model II not only rando-
mizes the velocity, but assumes that the final distribution is
governed by a well-defined temperature. This form of the
scattering function would not be appropriate for a non-
Boltzmann final velocity distribution. An improvement over
the single collision model would involve the use of two dis-
tinct cross sections: one for the state changing collision and
another for velocity changing collisions. The latter cross sec-
tion would describe the decay of the velocity autocorrelation
function. An additional consideration that has been neglect-
ed in the single collision model is the fact that the grating
signal may not result from a single state. If many states are
involved there could be several distinct cross sections.

In the I, experiments, the identity of the state or states
giving rise to the strong absorption at 532 nm, and hence the
grating diffraction, is at present unknown. The strong signal
indicates that the probe transition must be spin allowed.
Furthermore, the buildup of signal with time demonstrates
that the origin of the transition must be a bound state. How-

ever, the final state produced by interaction of the observable
ensemble with the probe need not be bound. (The grating is
not affected by events which occur after the probe has inter-
acted with the sample.) From the I, energy level diagram
given by Mulliken?? and the wavelengths of the probe and
excitation pulses, it seems reasonable to propose that the
grating signal can be attributed to transitions from either one
of the bound A(*%,,,’,,) states to one of the unbound
states from the 2422 family (*2,,,’Z, o+, ). Another possi-
bility would be for the transition to occur from an excited
vibrational level of the ground state manifold (12g+ ) to the
dissociative 'II, state of the 2431 family. An attempt to lo-
cate the origin of the transition was made by tuning the exci-
tation wavelength between 560 and 670 nm. The signal be-
came weaker as the wavelength was tuned to the red of 560
nm and disappeared altogether at 630 nm. The shape of the
grating decays remained constant and a signal at # = 0 was
never observed. The identification of this 532 nm transition
is open for further investigation.
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IV. ULTRAHIGH RESOLUTION POLARIZATION
GRATING SPECTROSCOPY: Na EXPERIMENTS AND
THEORY

A normal population grating is established by the inter-
ference of two crossed excitation pulses which have the same
polarization. If the polarization of one of the excitation
pulses is rotated by 90°, a polarization grating is generated
(see Fig. 1). In a population grating, the two excitation
pulses constructively and destructively interfere to produce
the optical fringe pattern. The interference results from the
changing phase relationship of the two overlapping beams
along the grating axis ( y direction in Fig. 1). When the two
pulses have perpendicular polarizations they cannot inter-
fere. However, the two fields will add vectorially. If one
pulse is polarized vertically (alongx) and the other horizon-
tally (along y), then when their relative phase is O [see Fig.
1(¢)] the E fields will add to give linearly polarized light
with a polarization that bisects the vertical and horizontal
axes [left-hand side of Fig. 1(c) ]. As one moves to the right
along the grating axis y, the two pulses are no longer in
phase. This results in elliptically polarized light. When the
phase difference is 7/2, the light is circularly polarized [left
circular polarized (lcp) in Fig. 1(c) ]. Moving further to the
right gives elliptically polarized and then linearly polarized
light at a relative phase of 7. The linearly polarized light at 7
is perpendicular to the linearly polarized light at 0. Moving
from O to 7 corresponds to one-half a fringe in a normal
parallel grating. Continuing to the right the field again be-
comes elliptical and at 37/2 it is now right circular polarized
(rcp). Finally at 27, the field is again linearly polarized.
Zero to 27 corresponds to one complete fringe in a parallel
grating. While the polarization varies from linear to circular
for perpendicularly polarized excitation pulses, the total in-
tensity (the square of the absolute value of the electric field)
is constant everywhere.

A comparison between Na population and polarization
grating decays for a fringe spacing of 12.2 gm is shown in
Fig. 9. The polarization grating data [Fig. 9(b)] was taken
with the excitation beams tuned to the *P,,, manifold and
the linearly polarized probe tuned to the >P,;, manifold. The
interchange of the probe and excitation wavelengths does
not effect the population grating signal, but it does effect the
polarization grating as discussed below. The temperature
and fringe spacing are the same for both scans. The polariza-
tion grating signal, which is linearly polarized and rotated
90° with respect to the probe, exhibits pronounced oscilla-
tions which are independent of the fringe spacing. The oscil-
lation frequency is identical to the Na ground state hyperfine
splitting of 1.77 GHz.>® The overall envelope of the signal
maintains the Gaussian shape exhibited by the population
grating signal. Both scans contain a coherence spike at short
times.

When the excitation and probe pulses are tuned into the
same spin-orbit manifold the pattern of oscillations is differ-
ent (see Fig. 10). In Fig. 10, both the excitation and probe
are resonant with the ?P,,, manifold. (The temperature is
approximately the same as in Fig. 9 and the fringe spacing is
again 12.2 ym.) Unlike the two color result, the polarization
grating signal envelope does not appear to match the popula-
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FIG. 9. (a) Population grating. Fringe spacing = 12.2 um; A_,. = 589.0
nm; A, = 589.6 nm; T"= 585 K. The solid line through the data is the theo-
retical fit (T, = 590 K). (b) Polarization grating. Fringe spacing = 12.2
pm; A, = 589.6nm; 4, = 589.0nm; T = 605 K. The observed oscillations
in the polarization grating data correspond to the ground state hyperfine
splitting of 1.77 GHz. The polarization grating signal envelope follows that
of the population grating when the probe and excitations are tuned into
different excited state manifolds. The interchange of the probe and excita-
tion wavelength does not affect the population grating signal.
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FIG. 10. Na polarization grating. Both the probe and excitation pulses are
tuned into the 2P, ,, manifold. The high frequency oscillations result from
%S, /2 ground state hyperfine splitting (1.77 GHz). A slower oscillation,
which results in a peak at ~4 ns, is due to the excited state hyperfine interac-
tion (189 MHz). The oscillation from the excited hyperfine states is shifted
by the Gaussian envelope decay to earlier time. (Fringe spacing = 12.2 um;
T=585K.)
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tion grating decay curve. This is because there is an addi-
tional low frequency component in the oscillation. A single
maximum for this component is observed at =4 ns. This
second component is a manifestation of the excited state
(?P,,,) hyperfine splitting of 189 MHz. The maximum is
shifted somewhat to shorter time (4 ns as opposed to 5.3 ns)
because of the damping from the Gaussian envelope. In Fig,
11, the probe and excitations are tuned into the ?P,,, mani-
fold. While still clearly visible, the oscillations are signifi-
cantly smaller than for the P, , case. The scan in Fig. 12 was
taken with the sodium cell placed in a static magnetic field of
~900 G. The magnetic field splits the degenerate sodium
hyperfine levels giving rise to additional frequency compo-
nents. The magnetic field effect further demonstrates that
the oscillations are the result of the hyperfine structure of the
sodium atom.

Figure 13 is a schematic illustration of the Na energy
level structure taken from Rothberg and Bloembergen.?
The ground state has an unpaired electron in the 3§ orbital.
In the excited state, the unpaired electron occupies the 3P
orbital. The spin-orbit interaction couples the electron spin s
with the orbital angular momentum / to give rise to the spin-
orbit states with angular momenta J. In the ground state
I =0 so that s =J = 1/2, while in the excited state [/ = 1,
giving J = 3/2 and J = 1/2. However, the Na nuclear spin,
I=3/2. For the ground state, the Fermi contact hyperfine
interaction couples [ and s to give the states F=I+J =2
and F =1 —J = 1. Associated with each F are the 2F 4 1,
M, magnetic substates. In the absence of a magnetic field
the M states are degenerate. Therefore, the state F = 2 is
fivefold degenerate while F = 1 is threefold degenerate. For

DIFFRACTED SIGNAL

TIME (nsec)

FIG. 11. Na polarization grating signal obtained when the probe and excita-
tion pulses are tuned into the >P,,, manifold. The ground state modulations
are much less pronounced in this situation than for the 2P, ,, case shown in
Fig. 10. The effect of the excited state splittings on the signal envelope, how-
ever, is comparable for both manifolds. (Fringe spacing = 12.2 um;
T=3585K.)
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FIG. 12. The experimental conditions are the same as those described in
Fig. 10 except that a static magnetic field of ~900 G is applied in the x
direction. The magnetic field splits the degeneracy of the |FM) hyperfine
states causing additional frequency components to occur in the grating de-
cay.
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FIG. 13. Energy level diagram of the Na atom. The hyperfine interaction
splits the ground state into two levels which are separated by 1.77 GHz. The
excited state is split into two manifolds by spin-orbit coupling. These two
manifolds are further split into various hyperfine levels. The hyperfine lev-
els for both the S and P manifolds are characterized by the combined nu-
clear and electronic angular momentum quantum number F. Each F level is
a multiplet of 2F + 1 degenerate states. In the presence of a magnetic field,
the states within the multiplets are no longer degenerate, but are separated
by the Zeeman splitting. The double arrows represent one possible pathway
for multiple interactions with the radiation field.
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the excited states, the Fermi contact interaction is zero.
However, the anisotropic hyperfine interaction®® couples
J = 1/2 with I = 3/2, to give two values of F, 2 and 1 and
J=3/2 with I=3/2 to give rise to four F values, 3, 2, 1,
and 0. Again each F value has associated with it 2F + 1 M.
states which are degenerate in the absence of a magnetic
field.

The hyperfine oscillations in the polarization grating
arise from the interplay of three factors. (1) Optical transi-
tions between ground and excited state hyperfine levels obey
AM; = + 1 selection rules. In the coordinate convention
that is employed in this discussion, AM = + 1 transitions
are induced by rcp light and AM, = — 1 transitions are
induced by lcp light. (2) The polarization grating excitation
contains spatial regions which are rcp and regions which are
Icp (see Fig. 1). (3) The picosecond pulses are of sufficiently
high intensity that the Rabi frequency spans all levels in the
ground state hyperfine manifold and in the excited state
manifold. Therefore, any transition which is permitted by
the selection rules can be driven by the laser fields.

Previously, polarization gratings have been analyzed for
systems of randomly oriented molecules with well-defined
transition dipole moments?’ or in terms of a Kerr effect.”® In
those experiments, the probe is resolved into two linear vec-
tors 2, and &, shown in Fig. 1(c). For an absorption polariza-
tion grating, the regions that are oriented along é, exhibit
partial bleaching in that direction. The sample absorbs the &,
component of the probe more strongly than the &, compo-
nent. The opposite response occurs for the grating region
oriented along &,. The circular regions of the grating absorb
the &, and &, components of the probe equally. The net result
is that the two components of the probe experience two dis-
tinct gratings which are spatially shifted from each other
along the grating wave vector by half a grating wavelength.
Because of this spatial shift, the outgoing E fields from the
two gratings are phase shifted by exactly 180°. This results in
a rotation of the signal polarization by 90° with respect to a
probe polarized parallel to one of the excitation polariza-
tions.

For the sodium excited state polarization grating, the
vectorial analysis discussed above cannot explain the grating
diffraction since an atom does not have an intrinsic direction
for the transition dipole. However, if one decomposes the
probe into right and left circularly polarized components,
one can show that the rcp and lcp excited regions of the
grating behave differently. This results from the AM,

= + lor — 1 selection rule for rcp or lcp light. (The con-
vention that is used in this discussion is as follows: rcp light
exhibits clockwise rotation in a right-handed coordinate sys-
tem when observed along the propagation axis, namely the
positive z axis. The selection rule AM; = — 1 for Icp and
AM_ = + 1 for rcp, is consistent with this convention.) In
the regions excited by rcp light, AM, = + 1 transitions are
partially bleached. Correspondingly, in the regions excited
by lcp light, AM, = — 1 transitions are partially bleached.
The rcp and Icp excited regions of the grating interact differ-
ently with the right and left components of the probe. In
contrast, the linear parts of the grating are excited by both
circular polarizations, and therefore, interact identically

with both probe components. Consequently, the two compo-
nents of the probe experience two distinct gratings, spatially
shifted by a half grating wavelength. This results in the ob-
served 90° rotation of the signal polarization relative to the
probe polarization.

The modulations in the signal intensity only appear in
the polarization grating. These modulations, which persist
well beyond the free induction decay time associated with
the Doppler linewidth, cannot result from a macroscopic
polarization beating. Furthermore, the number density is
sufficiently low to preclude multiatom quantum beat effects.
Hence, the modulations must arise from a single atom phe-
nomenon. The oscillation in signal amplitude results from
coherent superposition states formed on each atom by the
excitation pulses. Because the oscillator strengths of the
2S1/2t0?P, , ,» transitions are large,”” multiple interactions
with the excitation field occur readily. The Rabi angle for a
100 nJ, 18 ps excitation pulse focused to a spot size of 200 zm
is approximately 7 7. Thus, state from both %S hyperfine
levels will be coupled via transitions to and from the 22 mani-
fold. Since the Rabi frequency is much larger than the hyper-
fine splitting, couplings between all the hyperfine states are
energetically possible.

Figure 13 displays one possible multiple interaction
with the field. The double arrows indicate field induced cou-
plings between the ground and excited state. A state from the
28,2 F = 1 manifold is coupled to a state from the P, ,,
F = 1 manifold with the appropriate change of M, e.g., for
a rcp field, AM = + 1. This process is indicated by the
arrow labeled 1. The field couples the resulting excited state
to a state of the ground level F' = 2 manifold, again with a
change of M,.. This is indicated by an arrow labeled 2. The
result in this example is the production of a three ket super-
position state involving kets from both ground state hyper-
fine manifolds. The kets in the superposition have time de-
pendent phase factors which have frequency differences at
the hyperfine splitting. As will be shown in detail below, the
phase factors result in a time dependent transition probabili-
ty which oscillates at the hyperfine splitting. The oscillating
transition probability gives rise to an oscillating diffraction
efficiency which results in the modulations of the observed
signal.

Recently there has been considerable interest in the non-
linear optical properties of sodium vapor. Four wave mixing
(FWM) experiments have been performed in the frequency
domain to obtain information concerning the third order
susceptibility ¥ 25-32 and the effects of collisions with buff-
er gases.”® Time domain FWM experiments such as the tri-
level echo,”® two-photon echo,** stimulated echo,* grating
echo,? and backward photon echo®” have also been em-
ployed to study collisional relaxation as well as investigate
the effects of pulsed incoherent light.®

Unlike fluorescence quantum beat experiments,
nonlinear experiments, such as FWM, involve higher order
interactions with the E fields which can reveal ground state
splittings. In these nonlinear experiments, a macroscopic po-
larization is generated which will exhibit the beat frequen-
cy.*! A transient grating experiment is inherently different
from typical time-delayed four-wave mixing experiments in

39,40
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that the grating does not require the interaction of a probe
pulse with a macroscopic polarization. The intensity of the
grating signal pulse is given by the grating diffraction effi-
ciency which is a function of the peak-null difference in the
refractive index. (At probe delay times less than the free
induction decay period a macroscopic polarization exists in
the sample. The macroscopic polarization gives rise to the
coherence spike in the grating decay curve.)

In the normal grating framework, it is not obvious how a
hyperfine oscillation might be observed. The transient grat-
ing signal is the portion of the probe induced free-induction
decay that constructively interferes in the Bragg diffraction
direction to give rise to the signal.*? The magnitude of the
diffraction for an excited state grating is determined by the
peak-null difference in the excited state number density.®*?
Therefore, the modulations in the grating signal can only
result from modulations in the diffraction efficiency.

To obtain a detailed understanding of the Na polariza-
tion phenomena, it is necessary to address the problem quan-
titatively. It is particularly important to explain the appear-
ance of hyperfine oscillations in the polarization grating data
and the absence of oscillations in the population grating
data. The qualitative discussion presented in connection
with Fig. 13 does not reveal the major difference between the
two types of experiments. It is also necessary to understand
why the modulations are less pronounced in the 2P;,, data
(Fig. 11) than in the 2P, ,, data (Fig. 9), and why the two
color polarizating grating data (Fig. 9) exhibits only the
ground state hyperfine frequency while the one color data
(Fig. 10) exhibits both ground and excited state hyperfine
frequencies.

The exact solution of the grating problem involves treat-
ing a multilevel system coupled to both linear and circularly
polarized light. In principle, analytical solutions for certain
multilevel problems can be obtained if a multilevel rotating
wave approximation (RWA) can be applied.*> However,
the difficulty of the solution increases dramatically as the
number of levels increases. Furthermore, for the situation in
which the transitions are driven by rcp and lcp circularly
polarized light, as they are in sodium, the treatment of an
interaction with a linear field cannot employ the RWA.

The ground state (%S,,,) has eight hyperfine levels as

does the 2P, ,, state. Therefore, an analysis involving these]

Awt

electronic manifolds involves 16 states. A detailed, quantita-
tive understanding of the problem can be obtained by limit-
ing the consideration to four states. If the system is taken to
be in a particular ground eigenket, only certain states can be
coupled to the initial eigenket through multiple interactions
with the field. Because of the AM, = + 1 selection rules,
not all states are involved when a particular initial state is
chosen. The following derivation of the grating diffraction
efficiency from a limited set of states will illustrate the prin-
cipal features of the experiments. Extensions to a full treat-
ment are discussed following the development.

In a polarization grating, the regions excited by lcp light
are subject to the selection rule AM, = — 1. If the initial
ground state is |10)g, the following superposition can be
formed by the interaction with the lcp field**:

[¥.) =a|l0)g e ™ + b |1 — 1), e~ 4 ¢|20)5 e~
4 0[11)p e~ @ (4.1)

The subscripts on the kets indicate whether they belong to
the ground state (S) or the excited state (P). (Note that
even though the |11) state is not excited, its inclusion in the
superposition state with a zero coefficient is necessary for the
subsequent analysis. ) In the rcp regions, a different superpo-
sition state is formed:

[Yr) =a'[10)s e ™"+ b'|11)p'e ™" 4 ¢'|20) g e~
+0|1—1>Pe_i“’2" (4.2)

The states |¢x ) and |4, ) given in Egs. (4.1) and (4.2) are
generated during the time the excitation pulses are in the
medium. Once, the pulses have left the sample, the coeffi-
cients a, a’, b, b’, ¢, and ¢/, in the absence of fluorescence,
remain constant in time.

As mentioned earlier, the oscillations in the polariza-
tions grating signal result from time dependence oscillations
in the grating diffraction efficiency. To calculate the time
dependent diffraction efficiency it is necessary to analyze the
interaction between the field and the atomic system in terms
of the uncoupled atomic basis states [m,m;m,), where I, I,
and s are the nuclear, orbital, and spin angular momenta.
The supersposition state |, ) [Eq. (4.1)] can be written in
terms of the uncoupled basis states (see the Appendix):

%) =\/2M[cos—2—| —1/2 0 1/2)g —isin-Azi‘u/z 0 — 1/2>s] e~

1 1 1
b|—| =321 —-1/2)p ——|—=3/20 - 1/2)p ——| —1/2 0 —1/2
b= e = e )

1 . 1 1 1
— | —-1/2 -1 1/2 it 0l ——13/2 —1 1/2Yp ——I3/2 0 —-1/2)p ————|1/2 0 1/2
R />P]e + [‘/21/ e 12)p ==l o

)
1 — i,
+‘_/-6—|1/2 1 —1/2)P]e 2'+|SL)'

(4.3)

In Eq. (4.3), the hyperfine frequency Aw = (@, — w,), the average frequency = (@, + @3)/2, M= (a +c—|la —¢|)/2
(this is the modulation depth factor), and |S; ) represents an additional term which occurs if a#¢. Note that M essentially

gives the smaller value of the coefficients ¢ and c.

In an analogous manner the rcp superposition state [Eq. (4.2)] can be written as
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[Ye)=vV2M' [cos——-l —1/2 0 1/2)¢ —isin—-2—-ll/2 0 — 1/2)4 e~

2

1 1
b'|-—13/2 —1 1/2Yp ——i3/2 0 —1/2)p —
+ [ﬂ;/ 12)p =13/ /2)5

1
2v73

1172 0 172),

1 ; 1 1
—— — cy —_ =321 -1/2)p ——|~3/2 0 1/2
Sl 1/2),,]e +o[‘/21 / /D=2 =3/20 1/2),

1 1 .
e 120 1/2)p+——| —1/2 —1 172 ] —dwt 1S
2v3i/ />p+V6l Ye| e @+ |Sk)

In the above equation, M’ and |S;) have the analogous
meaning as M and |S, ) in Eq. (4.3).

The form of the superposition states |, } and |y ) are
very similar. Up to this point, however, the phase factors of
the kets in the superposition states have not been specified.
In general the coefficients a through ¢’ are complex quanti-
ties. As will be seen shortly, the phase factors that are re-
sponsible for the appearance of oscillations in the polariza-
tion grating and absence in the population grating are the a—
¢ phase relationship and the a’—¢’ phase relationship. In the
population grating, the magnitude of the signal depends
upon the global phase differences between rcp and lcp super-
position states. The phase factors of the b and b’ coefficients
can be shown not to affect the time dependent observables.
The terms in Egs. (4.3) and (4.4) with coefficients band b’
will be labeled {P, ) and | Py ), respectively.

The phase factors can be explicitly incorporated into
|6, ) by recasting a and ¢ as a e~ and ¢ ¢ ~ . From Eq.
(4.3), |#, ) can be rewritten in the following form:

[¥.) = VZM[cos(-—A—?w-t— +%’-‘—)! —1/2 0 1/2)¢

. . [ Awt ¢L)
lSln( 2 -+ )

X|1/2 0 — 1/2>S]e“"“"+°L>+ IS.) + [P) .

4.5)

In Eq. (4.5), b =0 — ¢y, D, =(¢; + ¢3)/2,
} = (w,; + @,)/2. [See Eq. (4.3).] A similar expression is
obtained for |¢z ):

1Y) =\/2M[cos(_é-2a_’£+%§_)
X|—1/2 0 1/2)¢ —isin(_‘}zﬂt.+f25_)

X|1/2 0 — 1/2>S] e MR L gy + PR) .
(4.6)

In obtaining Eq. (4.6),a’=ae” “ and c'=ce” "%, and bz
and P are analogous to ¢, and ®, . Since the strengths of
the fields are identical in the lcp and rep regions of the grat-
ing it is reasonable to take the magnitudes of the rcp and lcp
coeflicients to be the same. Consequently, the modulation
depth factors in Egs. (4.5) and (4.6) are equivalent. Also,

4.4)

r
the relative phases of the b and b ' coefficients have not been

specified since they are of no consequence.

At this point, one needs to consider the interaction of a
linear probe with the rcp and Icp superposition states |¢/g )
and |¢, ). The probe will be taken to be a delta function in
time with ~0° flip angle to avoid complications arising from
the system evolution while the probe pulse is in the sample.
The probe is now resolved into lcp and rcp components.
First consider the interaction of the lcp component of the
probe with |¢,). An lcp E field drives |¢,) through the
coupling of the states |—1/201/2)s and
| —1/2 —1 1/2),. Note that the AM selection rule and
orthogonality of the nuclear and electronic spin wave func-
tions prevents any other couplings. The probability of ab-
sorption of Icp light by an atom in the state |¢, ), P.;, is
proportional to the difference between the squares of the
magnitudes of the coefficients for the states
| —1/2 0 1/2)5 and | — 1/2 — 1 1/2),. The quantities
are obtained by using the appropriate projection operators
on |, ) [Eqgs. (4.3b) and (4.5)]. Thus,

Po={| —1/2 0 1/2)5 s(—1/2 0 172[¢p,.)
| =172 =1 1/2), (=172 — 1 172|¢,)

= !\/2Mcos(-ézﬂt« +%’:) o~ Qo0

+{S.| —1/2 0 172)¢]
— P =172 —1 172),]2. (4.7)

The evaluation of Eq. (4.7) requires a specific form for
|S.). Although |S, ) depends on the relative magnitudes of
a and ¢, the functional form of the diffraction efficiency is
independent of whether a>c or a<e. For the purposes of this
discussion, the case in which a>¢ will be evaluated. For this
situation, |S; ) has the form

|a —

_le—c _
I$:) === 1720 1/2)

— 172 0 — 1/2)] e~ i@+ (4.8)

Using the definitions given previously for , Aw, ®,,and ¢,
(2 —w,=Awand @, — ¢, = ¢, ), evaluation of Eq. (4.7)
now leads to

P, =2M[M+|a— c}}cosz(A;)-—t- + -¢2—L-)
a—cf _ P

+ 2 6

(4.9)
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Equation (4.9) illustrates that the absorption probability
P, oscillates at the hyperfine frequency. This type of phe-
nomenon has been seen by Ducas e al.*° in a sodium absorp-
tion experiment in which a coherent superposition of *P, ,,
levels was generated. The analysis presented here is partly
based on their results.

Now consider the effect of the rcp component of the
probe on the superposition |5 ) formed in the rcp grating
region. The transition occurs because of the coupling of the
states |1/2 0 — 1/2)gand |1/2 1 — 1/2),. The probabil-
ity of absorption for this interaction is obtained in a manner
analogous to P;; using projection operators for the coupled
states [see Eqs. (4.4) and (4.6) for |z )]. |Sg) is defined
for a>c as follows:

la —~

1Sk) =—\/—;—'[| —1/2 0 1/2)

— 172 0 —1/2)g] e "+, (4.10)
By using the definitions of Q, Aw, ®,, and ¢z, one can
evaluate Pgp

Ppr =2M [M + |a — c|]sin2(-A—;)£ + %5;)
la—c? 167
T3 6

Two additional interactions still need to be accounted
for. They are the absorption probability of the Icp probe
component by the rcp grating region P, , and the absorption
probability of the rcp probe component by the lcp grating
region Pg; .

Pip={r| —1/2 0 1/2)5 s( = 1/2 0 1/2|¢fz)
—(Pr| =172 =1 1/2), p(—1/2 =1 172|¢hg)

=2M[M+ |a —c|]cosz(A2a£+¢_R) + la —c?

(4.11)

b

2 2
(4.12)
Prr =¥, |172 0 — 1/2)5 s{1/2 0 — 1/2|¢;)
— (WL 172 1 —1/2), {172 1 —172]¢,)
- — ol1ain2( A0t ¢_L) la —cf®
=2M[M+ |a c|]s1n( 5 + 5 + B
(4.13)

The diffraction efficiency of an excited state grating re-
sults from the contributions of a phase and amplitude (ab-
sorption) component. Because the grating is being probed
on resonance with the electronic transitions, a phase grating
contribution to the diffraction efficiency will vanish.® The
diffraction efficiency for an E field impinging on an ampli-
tude (absorption) grating is determined by the peak-null
difference in the optical density (OD).%** (The diffracted
intensity is proportional to the square of the peak-null differ-
ence in OD.) For the Icp probe component, the Icp grating
regions serve as the peaks while the rcp grating regions serve
as the nulis. The diffraction efficiency for the lcp probe com-
ponent is proportional to the difference between the results
of Egs (4.9) and (4.12):

771cp°‘PLL — Py,

(4.14a)

Thep < 2M [M + |a — Cl]sin[Aa)t + M

Xsin(¢R ';¢L ) _ |b612 .

In a similar manner, the diffraction efficiency for the rcp
probe component is obtained:

(4.14b)

ﬂrcmeRR _PRL ’ (4.152)
Neep < 2M [M + |a — c|]sin[Aa)t + ﬂl‘—;ﬁk—]
. [(Pr — S0 ) |b|?
X st - . 4.15b
n( 2 6 (4.15)

A comparison between Eqgs. (4.14b) and (4.15b) shows that
the diffraction efficiencies for the rcp and lep E fields are the
same. (Again, because of equal field strengths in the rcp and
lep regions of the grating, |6 |*> = |4 '|2.) Both fields are mod-
ulated at the hyperfine frequency Aw. The depth of modula-
tion is dependent upon M and the difference between the
phase angles ¢, and ¢, .

If anincident E field, E; = E,., + E,, impinges on the
grating, the E field that is diffracted is

Es = A [nlcp Elcp + eionrcp Ercp ] . (4-16)

In Eq. (4.16), 4 is a constant that is dependent upon experi-
mental parameters such as the beam geometries and sample
OD, and @ is the spatial phase difference between the lcp and
rcp grating. The phase angle 0 = (27/d)(x,;, — X5 ),
where x,, and x,,, are the spatial positions of the rcp and Icp
peaks and d is the fringe spacing. In the case considered here,

0 = 7. Hence,

E, =Ang [E, ~E, ], (4.17a)
-— 2
17E=2M2sin[Awt+ é. + o ]sin(¢R ¢L)__ b '
2 2 6
(4.17b)

Equation (4.17b) illustrates that the signal E field is linear,
but rotated by 90° with respect to the incident field E,, and
modulated at the hyperfine frequency. Also note that if the
sample is completely in the ground state, i.e., =1 and
b=c=0, Eq. (4.17b) yields ng = 0.
To this point in the development, ¢ — ¢, could take
on any value, except for even multiples of 7, and yield a
modulated grating signal. However, a maximum modula-
tion in the signal results when ¢ — ¢, = + 7. Further-
more, since a maximum in the signal occurs at 7 =0 (see
Figs. 9-11), 4, + ¢ = + 7. (Note that the signal intensi-
ty is proportional to 7%.) These conditions give solutions
r» =0and ¢, = + . Other solutions can be obtained by
adding or subtracting 27 from ¢, and/or ¢p. The possible
values of ¢, and ¢, range from — 47 to + 4. In view of
this discussion, the maximum modulation in the diffraction
efficiency is observed when

2
e = — 2M? cos Awt — 6] . (4.17¢)
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A similar analysis of the population grating diffraction o) = 1 (d) + [0 ))
efficiency will result in the complete cancellation of the mod- 0 V2 L ’
ulations for particular values of ¢, and é;. In a population

grating, the peaks are excited by linearly polarized light, and = 23 [(a+a)|10)s e ™" +b|11)p e~

the nulls are unexcited. In the peaks, the system is driven by , ot , o

both Icp and rcp light simultaneously (AM, = + 1). If the +O|l—1)pe™ ™"+ (c+c)[20)s e "] .
system starts in the same initial state as before, |10)g, the (4.18)

resulting superposition state has a form which is a linear  Note that |¢,) is a superposition of four states, while |t/ )
combination of |1, ) and |z ). However, the values of the and |, ) are superpositions of only three states.

phase angles ¢, 41, ¢, and ¢} are not necessarily the same Rewriting Eq. (4.18) in the uncoupled representation
as in the polarization grating: | leads to a form which is a composite of Eqs. (4.5) and (4.6):

— z'(sin(—-—A;)t + %"—) e 4+ sin(———-A;’t + %R-) e~ ‘¢°)§ 1720 — 1/2)3] e~ i+ %o

1
+T/—2—[‘SL>+]SR>+'PL>+'PR>]' (4.19)

InEq. (4.19), Po=(P, + Py )/2and go= (P — P, )/2. The sodium atoms in the nulls of the grating are taken to be in the
ground eigenstate |10):

[¥n) =110)5 e ™"

_—.-‘/i-z- [[—1/20 1/2)s = |1/2 0 — 1/2)5] e~ (4.20)

The grating diffraction efficiency will be analyzed in the same manner as before. The probe will be decomposed into a
right and left component and the peak-null difference in the absorption probability will be evaluated for each component. The
absorption probabilities for the lcp and rcp probe components in the peaks are

Pro=1|{gol —1/2 0 1/2)5)* — {thy| — 1/2 — 1 1/2),]?, (4.21)
Pro = [{¥o|1/2 0 — 1/2)5|* — [{¢ho|1/2 1 — 172),*. (4.22)
The corresponding terms for the null regions are

Pry=[{¢y|—1/20 1/2>s|2" [(¥n|—1/2 —1 1/2)P'2’ (4.23)
Penw=1[{Uy[172 0 —1/72)5)> — (¥ |1/2 1 —1/2),]2. (4.24)

The diffraction efficiencies for the two probe components are calculated from Egs. (4.19)—(4.24). Again, to define |S;) and
|Sk ), the condition that a>c is adopted [see Eqgs. (4.8) and (4.10) ]:

Thep <Pro — Pry » (4.25a3)
Aot & Aot ¢ Aot | ¢ Awt ¢
i Mo ( 52+ 5 ) 4 co(B20 4 2 2 con( B2 4 Yo (224 92 ) o2,
+ 2M |a — ¢|cos J[cos(ée-t- + fl‘—) cos (Aﬁ)—t- +¢, — 5) “+ cos(—Aﬂ-t- + -@5—) cos (Ac_o_t_ + &y — f_b)]
2 2 2 2 2 2
2 27 lb !2
+ jla—c|*cos é———li—— 172. (4.25b)

In the above expression, ¢ is one-half the global phase difference between |z and |¢,); #=(¢, — $,)/2, where ¢ and &,
are phase angle of the coefficients ¢’ and a [see Eqs. (4.1) and (4.2) ]. The angle ® is the average global phase factor given by
(¢ +¢1)/2:

ﬂrcp OKPR,O - PR,N H (426&)
. of Aot | &, . of Aot & (Aot | 6.\ . (Aot &
o (254 5] (5 ) 2 on( 857+ e
+ 2 M |a — cicos a[sin(ﬂ + ib—’“-—) sin(-&l)-t- + @, — ?I—)) + sin(-{-x—a’i + ﬁQ~)sin(f}2t— + &y — 6)]
2 2 2 2 2 2
2 o523 101°
+ |a —c¢|* cos ¢~—12~— 172. (4.26b)
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In deriving Eqs. (4.25b) and (4.26b), it is again reasonable
to take |b |2 = |b'|%

In the experiment, the observed diffracted signal from
the population grating does not possess any modulations and
is linearly polarized parallel to the probe at all times. Hence,
71, must equal 7,,, and both must be independent of time.
This condition restricts the values of the phase angles ¢, and
¢r (the phase angles between a— and a'—') and ¢, [the
average phase difference given by (®, — ®;)/2]. A consis-
tent solution for 7,.,, and 7,,, can be obtained by setting ¢,
equal to 0 (&, =Py) and ¢, /2=¢x/2 + 7 (d;, — ¢z

= 4 27): '
- 2 0023 _ JB1°

Mep = Nrep = @ — ¢|* cos® @ BETEE 172.  (4.27)

The diffracted £ field for the population grating is [see
also Eq. (4.16)]

Es = A [ﬂlcp Elcp + eionrcp Ercp ] . (428)

For 6 = 0 (there is no spatial phase shift) Eq. (4.28) be-
comes

Es =A77E [E'lcp + Ercp] ’ (4293)

where 7y is given by Eq. (4.27). Thus, the diffracted signal
has no modulations and is linearly polarized with the same
polarization as the incident probe. As an additional consi-
deration, the diffraction efficiency must go to zero when the
system is in the ground state (¢ = 1, b = ¢ = 0). Hence, the
global phase difference ¢ must equal an odd multiple of 7/4.
Consequently,

(4.29b)

It is worthwhile to summarize the polarization and pop-
ulation grating results. The analysis of the polarization grat-
ing indicated that in order for modulations to occur,
ér — ¢, could not equal an even muitiple of 7. A maximum
in the signal modulation depth would be observed if
ér —$, = + 7. (Since the modulations in the grating de-
cays were rather large, it was not unreasonable to propose
that ¢ — ¢, = =+ m.) The condition for maximum modu-
lation, coupled with the fact that the diffracted signal inten-
sity is a maximum at 7 = 0, led to the solutions ¢ = 0 and
¢, = + . For the population grating, the absence of oscil-
lations in the diffracted signal and the fact that the signal is
linearly polarized at all times yielded the relations &, = ®,
and ¢R - ¢L =+ 2ﬂ.f

An additional phase angle condition that was obtained
in the population grating analysis stemmed from the fact the
grating diffraction efficiency must be identically zero if the
system is in the ground state. This requirement gave a limit-
ed set of values for the global phase difference between the
right and left component wave functions. The phase differ-
ence was found to be ¢, = + 7/4, + 37/4. (¢, was not a
factor in the polarization grating analysis.) From the possi-
ble values of dg, ., P, ®., o, and $, one can obtain a
particular solution for the phase angles of the right (4] ,4;)
and left (4,,4,) components of . If ¢} is set equal to zero
then ¢} =0, ¢, =7/2, ¢, =3n/2, and ¢; = — 7. By com-
parison, the phase angle requirement in the polarization

grating does not yield a single set of angles if ¢; =0. This is
because the global phase difference between |¢/z ) and |9, )
is unimportant in this case. If ¢ and ¢, are both arbitrarily
set equal to zero, then the polarization grating solution is ¢}
=0,¢; =0, ¢,=0,and ¢, = — =.

A simple interpretation of the above results is as follows.
In the polarization grating, the excitations produce rcp and
Icp grating regions, characterized by right and left wave
functions, that are spatially separated. Because of this spatial
separation the rcp and lcp grating regions contribute inde-
pendently to the grating signal in the sense that there is no
need to specify a particular global phase relationship. How-
ever, the internal phase factors between the ground state kets
for |z ) and |4, ) differ by a factor of + 7 (for the condi-
tion of maximum modulation.) This shows that rcp and lcp
light from the grating excitations drive the sodium atom
transitions 180° out of phase with each other. This phase
shift manifests itself in the time dependent absorption proba-
bilities of the two grating regions which oscillate out of phase
by 7. Since the out-of-phase components are spatially sepa-
rated by half a grating fringe and the lcp and rcp probe com-
ponents sample the peak-null (half-fringe spacing) differ-
ence in absorption probability, the diffracted signal exhibits
osciliations.

On the other hand, the interpretation of the population
grating is different. It might at first seem plausible to simply
add the contributions of the out-of-phase components from
the polarization grating since there is no spatial separation
between the rcp and lcp grating regions. This simple addi-
tion would appear to cause a cancellation in the oscillations.
However, the results showed that this is not the case since
ér — &, = + 2mandnot £ m. Unlike the three state super-
positions of the polarization grating, the wave functions gen-
erated in the population grating contain four states. This
puts different constraints on the population grating solution
which give rise to a different relationship between ¢, and
éx. Consequently, the experimental results demonstrate
that the interaction of a sodium atom with linearly polarized
light is not equivalent to the sum of separate interactions of
the atom with rcp and Icp light.

It should be emphasized that the particular solutions
obtained for the phase angles were derived from the consi-
deration of a limited number of states and from the coher-
ence generated between the |10)s and |20)¢ states. Some-
what different results would be obtained from coherence
between the |11)g, |21) and the |1 — 1), |2 — 1) pairs.
Although the phase differences ¢ and ¢, should be the
same, the global factors and the absolute values of ¢, — ¢;
would be different. This results from the fact that the magni-
tudes of the Clebsch—-Gordan are different from kets other
than |10) and |20).

In addition to the ground state hyperfine interaction,
the excited state hyperfine interaction also affects the signal.
The influence of the upper state splitting is evident in Fig. 10
where the probe and excitation are tuned into the 2P, ;, mani-
fold. The excitation pulses generate coherences between
both the ground and excited state hyperfine states. In the
analysis given above a minimum set of states was used in
order to illustrate the principal effects. If a sodium atom
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starts in the [10) ¢ state, a lcp excitation field will actually
generate the following superposition:

[¥.) =all0)g e ™" + b,|1 — 1), e ="
+ 5,02 — 1)p e™ @ 4 ¢[20)g e~

+0[11), e~ 4 0[21), e~ @ (4.30)

The superposition states discussed earlier, such as Eq. (4.1),
omitted the additional excited states.

The excited state splitting is only observed when the
probe pulse encounters a time dependent optical density
variation resulting from the time evolution of the coherently
prepared excited |m,;m,m,) states. If the excitation pulses
excite the 2P, ;, states, a probe which is tuned into the 2P;,,
manifold will not be sensitive to the *P, ;, coherence. Conse-
quently, no modulation corresponding to the excited hyper-
fine splitting is observed. This is why the nondegenerate
(two color) polarization grating experiment has the same
envelope as the population grating (Fig. 9), while the degen-
erate (one color) polarization grating experiment has the
additional low frequency oscillation (Fig. 10).

So far this discussion has explained why there are oscil-
lations in the polarization grating data and not in the popula-
tion grating data, and why the degenerate polarization grat-
ing experiment displays the excited state hyperfine
frequency while the nondegenerate experiment does not.
The final point that needs to be addressed concerns the fact
that the modulations are less pronounced in the 2P;,, polar-
ization grating than in the 2Py, case. As was shown earlier,
the modulations stem from the oscillation of the |m,m,m_)
character of the ground state superpositions. This oscillation
led to a time dependent absorption probability for lcp and
rcp light. However, the 2P;,, manifold contains more
|m,m,;m,) states in the expansion than does the ?P, ,, mani-
fold. This leads to additional transition pathways from the
ground state kets which wash out the oscillations. An analy-
sis similar to that given above for the P, ,, state was per-
formed for the 2P;,, state. Oscillations in probability
between ground state hyperfine kets, |m;m;m,) occur
[analogous to Egs. (4.5) and (4.6) ]. However, both of the
kets involved are coupled to *P;, states by the probe. Conse-
quently, there is no oscillation in transition probability and
no contribution from these kets to a modulated grating sig-
nal. This cancellation of the modulation in transition proba-
bility can be shown to occur for all the °S,,,—2P;, transi-
tions except for those involving the |2 — 1),. and |21),.
states. Another factor which reduces the observed modula-
tion depth for the 2P, ,, data from that of the *P,,, data, is
that the 2SP,,,»2P,,, transition contains two additional
pathways which do not involve coherences between ground
state hyperfine levels. These pathways, which originate from
|2 —2)s and |2 2) ¢, contribute to the grating signal but not
to the modulation.

The factors which reduce the modulation depth of the
ground state hyperfine oscillations in the *P,,, experiment
do not apply to the excited state hyperfine oscillations. Con-
sequently, the effect of the lower frequency modulation in
the 2P,,, and 2P, ,, grating signal decays are comparable. A
comparison of Figs. 10 and 11 shows that the envelopes for

the decays at the two different wavelengths are similar al-
though the complex hyperfine structure of the *P;;, mani-
fold is not resolved.

The analysis of the sodium grating experiments has ex-
plained the origin and nature of the oscillations observed in
the polarization grating signal. A small subset of all the pos-
sible states was considered in order to demonstrate the im-
portance of the phase factors in generating the oscillations in
the polarization grating and cancelling the oscillations in the
population grating. The theory predicts that one should see a
power dependence in the modulation depth. This was not
observed experimentally since the Rabi angles of the excita-
tion pulses even at the lowest powers (100 nJ) were still on
the order of 777. A more detailed analysis of the sodium grat-
ing experiments would include the interaction between all
possible states connected by the excitation fields. For most
purposes the results obtained by considering the system to
start in different eigenstates can simply be added.

Finally, in these calculations the probe pulse is taken to
be very weak. Because of the large Na transition moments,
an atom can undergo several optical nutations during the
time the probe is in the sample. This would cause the signal
pulse envelope to be modulated at the Rabi frequency. The
linear probe would also tend to mix the initial superposition
states. However, the overall integrated intensity of the dif-
fracted signal as a function of probe delay should only be
dependent upon the time evolution of the states prepared by
the excitation pulses before the probe pulse arrives. To study
the time resolved signal pulse envelope or the absolute dif-
fraction efficiency, it is necessary to perform a more detailed
analysis than presented here.

V. CONCLUDING REMARKS

This paper has described the application of picosecond
transient grating experiments to the investigation of gas
phase dynamics and spectroscopy. First, in the Na experi-
ments, it was demonstrated that in the absence of collisions
on the experimental time scale (a few nanoseconds), the
grating signal is related to the Fourier transform of the veloc-
ity distribution. The experiment does not require the obser-
vation of resolvable spectral lines and therefore can be ap-
plied in situations where Doppler linewidth spectroscopy is
not possible. While a thermal equilibrium sample was inves-
tigated, the method is not limited to equilibrium systems.
For example, if molecule AB is photodissociated to A + B
with grating excitation conditions, a probe tuned to an A
fragment absorption will yield the A velocity distribution.
The probe can be tuned into a B absorption, and the B veloc-
ity distribution measured. Another application is the study
of the evolution of velocity distributions when a system is
perturbed from equilibrium. If a perturbation occursat t = 0
in a low pressure system, collisions will return the system to
equilibrium. Transient grating decays mesured at various
times after # = 0 can monitor the evolution of the velocity
distribution.

In addition to the collision free Na experiments, the I,
studies demonstrated the ability of the grating experiment to
examine the effects of collisions on excited molecules. The
signal contains information concerning the initial velocity
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distribution, the effect of the collisions, and the velocity dis-
tribution following a state changing collision. The experi-
ments on I, showed that a collision of an exited I, molecule
with ground state I, molecule can result in a change of state
of the excited collision partner. The new state absorbs
strongly at 532 nm. The cross section for this process is
somewhat smaller than hard sphere, and the initial velocity
is randomized by the collision. In terms of studying colli-
sional kinetics, the grating method inherently establishes a
well-defined distance scale (determined by the fringe spac-
ing) which provides an extra dimension in the measurement.
State populations and spatial distribution functions are
probed simultaneously.

The application of the polarization grating method to
Na vapor demonstrates the possibility of obtaining Doppler
free, high resolution spectroscopic information from a time
domain technique. In Na, atomic hyperfine splittings were
observed. However, the same approach should be useful
whenever AM = + langular momentum selection rules are
obeyed. Thus, the polarization grating could prove useful in
the investigation of vibronic rotational state dynamics and
dephasing.

Finally, the transient grating method has other attri-

]

APPENDIX

butes which could prove useful in a number of situations.
Since the grating measurement is performed on a small vol-
ume, the technique could be employed to investigate the
macroscopic anisotropy of large systems, Furthermore, the
grating signal is a coherent beam, which is generally more
readily detectable in an adverse environment than a signal
generated by conventional spectroscopic methods. The com-
bination of these features should make gas phase picosecond
transient grating experiments useful in the examination of
combustion, flames, and plasmas, and in a wide variety of
gas phase problems.
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The expansion of the coupled sodium |FM;) states (3S and 3P) in terms of the |m;m,m,) states is listed below. The
Clebsch-Gordan coefficients were derived by raising and lowering operator techniques:

2S N
172+
22) =1{3/2 0 1/2),
[21) =y3/4]1/2 0 1/2) +1/2]3/2 0 — 1/2),

20)=1/v2|—1/2 0 1/2) + 1/v/2|1/2 0 - 172},
2 —1)=1/2|-3/2 0 1/2) ++3/4|-1/2 0 —1/2),

2 —2)=|—-3/20 —1/2),
111y =1/2(1/2 0 1/2) — 374 (3/2 0 — 1/2),

10) =1/v2|—1/2 0 1/2) —1/v2[1/2 0 — 1/2),
1 —1)=3/4|—-3/201/2)—1/2| —1/2 0 - 1/2) .

2P1/2:
[22) =273 (3/2 1 —1/2) = 1/v/3{3/2 0 1/2),

21)=1/v2{1/2 1 —1/2) - 1/2|1/2 0 1/2) + 1/V'12|3/2 0 — 1/2)

+1/V6]3/2 —1 1/2),

20)=1/v3|—1/21~1/2) = 1/vV6|—1/2 0 1/2) + 1/v6[1/2 0 - 1/2)

—-1/Vv3]172 -1 1/2),

2 —1)=1/v/6]|—3/2 1 —1/2) —1/V12|—=3/2 0 1/2)
+1/2|—1/20 —1/2) = 1/vV2|—1/2 —1 1/2),

|2 =2)=1/v/3|—=3/2 0 —1/2) —\2/3 | —=3/2 — 1 1/2),

N1)=1/61/72 1 —1/2) —1/v/12]1/2 0 1/2) — 1/2|3/2 0 — 1/2)

+1/v21(3/2 -1 1/2),

10)=1/v3|—1/2 1 —1/2) —1/v6| - 1/2 0 1/2)

—1/V6|172 0 —1/2) + 1/v/3|1/2 — 1 1/2),
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1 —1)=1/v2|-3/21 — 1/2) —1/2| —3/2 0 1/2)
—1/V12|=1/20 = 1/2) +1/vV6| - 1/2 — 1 172 .
2Ps/z:
(33)=1[3/21 1/2),
32) =1/v6(3/2 1 —1/2) +1/V3 [372 0 1/2) +1/v2]1/2 1 1/2),

131) =+2/15|3/2 0 —1/2) + 1/v/15(3/2 — 1 1/2)

+ 15172 1 —1/2) +2/5(1/2 0 1/2)
+1/v5]—1/2 1 1/2),
[30) =1/4/20]3/2 —1 —1/2) ++3/10{1/2 0 — 1/2)
+43720 |1/2 — 1 1/2) +43/20 | - 1/2 1 —1/2)
+43710 [ — 172 0 1/2) + 1420 | —3/2 1 1/2),
3 —1)=1//51/2 =1 ~3/2) +2/5| - 1/2 0 - 1/2)
L 1/V5 | =172 =1 172) +1/V15| =372 1 —1/2)
+2/15 | —3/2 0 1/2),

3 —2)=1/v2|—-1/2 =1 —1/2) + 1/v/3|=3/2 0 — 1/2)
+1/v6|—=3/2 -1 1/2),

3 =3)=|-3/2-1-1/2),

[22) = —1/V6([3/2 1 —1/2) —1/v/3|3/2 0 1/2) + /V2|1/2 1 172),

21)= —1/V/33/20 —1/2) —1//6]3/2 —1 172) + 1/V2| =172 1 1/2),

20y = —1/2{3/2 —1 —1/2) = 1/V6[1/2 0 —1/2) = I/V12|172 — 1 1/2)
+1/V12 [ =1721 —1/2) + 1/V6| —1/2 0 1/2)
+1/2|-3/211/2),

2 —1)= —1/v2(1/2 =1 —1/2) + 1/v/6| —3/2 1 —1/2)

+1/v3|—=3/20 1/2),
2 —2)= —1/v2|-1/2 =1 —1/2) +1/v/3|—=3/2 0 — 1/2)
+1/v6|—=3/2 —1 172),
[11) =y1/5]3/2 0 — 1/2) + 1/v/10(3/2 — 1 1/2)
—\2/15|1/2 1 —1/2) — 4715 (1/2 0 1/2)
+43/10| -1/2 1 1/2),

[10) =49/20(3/2 —1 —1/2) —1/v/30|1/2 0 — 1/2)
~1/v60|1/2 —1 1/2) —1/v60| —1/2 1 —1/2)
—1/v/30| —1/2 0 1/2) ++9/20| —3/2 1 1/2),

1 —1) =3/10[1/2 —1 —1/2) —4/15| ~1/2 0 — 1/2)

—2/15| =172 —1 1/2)

+1/V10| =372 1 —1/2) + 1/V/5]|—=3/2 0 1/2),
[00) =1/2]3/2 —1 —1/2) + 1/v6|1/2 0 — 1/2)

+1VI2(172 =1 12) —1/V12| =172 1 —1/2)

—1/V6|—1/20 1/2) +1/2| —=3/2 1 1/2).
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