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We present a detailed theoretical analysis of three nonlinear optical dephasing experiments, the incoherent photon echo, the 
accumulated grating echo, and the two-pulse photon echo. It has been believed previously that these three experiments provide 
the same information about optical dephasing, and therefore about a system’s dynamics. In systems such as chromophores in 
glasses, proteins, liquids, or complex crystals, in which spectral diffusion (slow time scale energy fluctuations) as well as homo- 
geneous dephasing (fast time scale energy fluctuations) occur, it is proven that these techniques are not equivalent. While the 
two-pulse photon echo measures the homogeneous dephasing, the other two techniques are influenced by spectral diffusion. In 
general, the incoherent echo and the accumulated grating echo will measure dephasing rates which are faster than the two-pulse 
photon echo. The differences among the methods are calculated using a standard two-level system model of glasses. It is found 
that the differences depend on factors such as the pulse duration in the incoherent echo and the triplet life time in the accumulated 
grating echo. We also demonstrate that a combination of techiques can be used to map out the broad distribution of relaxation 
rates which occur in glasses and many other complex systems. 

1. Introdwlion 

In recent years, a variety of optical dephasing experiments have increased our knowledge of the dynamics and 
interactions present in both crystalline and amorphous systems [ 11. An isolated molecule in a mixed crystal is 
surrounded by an ordered host matrix and can interact with the bulk modes of the lattice, the acoustic and 
optical phonons. In addition, the solute itself can undergo motions which are referred to as pseudo-local modes. 
In contrast, molecules in a glass experience a wide range of local environments because of the variety of struo 
tures of the solvent shells around each molecule. The local structures associated with a glassy system are not 
static even at very low temperatures ( k: 1 K) . Small potential barriers separate different local mechanical con- 
figurations. Tunneling and thermal activation result in constantly changing solvent structures. This is in contrast 
to a crystal in which phonon-induced fluctuations occur about a single equilibrium lattice structure. 

The constantly changing local structures in a glass cause the heat capacities of glasses to be markedly different 
at low temperatures than those of crystals [ 21. Anderson and co-workers [ 3 ] and Phillips [ 41 independently 
proposed a model based on the two-level system (TLS ) to explain these differences. TLS represent extra degrees 
of freedom that are characteristic of the glassy state, and they contribute a term approximately linear in temper- 
ature to the temperature dependence of the heat capacity of a glass. Briefly, a TLS is composed of two separate 
local potential minima separated by a barrier. Changes in local glass structure are modeled as transitions be- 
tween the two potential minima. A wide distribution of energy differences of the TLS potential minima and a 
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wide distribution of tunneling parameters are responsible for these transitions. As a result, there is a very wide 
range of time scales associated with the dynamics of the TLS. For example, this is manifested in the time depen- 
dence of the heat capacities of glasses [ 5 1. 

The transition energies of a solute chromophore in a glass can be shifted by the variations in the local contig- 
uration. The static distribution of solvent configurations results in a very broad inhomogeneous absorption 
spectrum. Various nonlinear spectroscopic techniques can be used to remove inhomogeneous broadening, per- 
mitting the extraction of information on dynamics and intermolecular interactions from the dephasing of elec- 
tronically excited chromophores. 

Besides the static energy shift, the transition energies of the chromophores are also modulated by the tunneling 
TLS. The dephasing of the chromophores can be affected by processes in the medium which occur over a wide 
variety of time scales. The time scales can range from extremely fast phonon-induced fluctuations to much 
slower configurational changes, and finally to totally static inhomogeneities. Depending on the relative time 
scale of the experiment, the transition frequency modulations can contribute to either the inhomogeneous 
broadening or the dephasing of the chromophores. This is because the dephasing measured in an experiment 
with a relatively long time scale is affected by slow frequency modulations that appear static to and are rephased 
in a faster experiment. It is therefore necessary to carefully consider the sensitivity of various spectroscopic 
techniques to the distribution of time scales. 

The most common spectroscopic techniques used to measure optical dephasing in glasses are fluorescence line 
narrowing [ 11, hole burning [ 11, two-pulse photon echoes [ 6 1, and accumulated grating echoes [ 7 1. It is now 
clear [ 8 ] that the first two techniques are associated with much longer time scales than the time domain echo 
techniques. Berg et al. presented a detailed theoretical and experimental study of optical dephasing of chromo- 
phores in glasses [ 81. A significant difference between the dephasing rates measured with photon echo and hole 
burning experiments was observed [ 8 1. Previously, hole burning experiments had been interpreted in terms of 
a two-time transition dipole correlation function. Berg et al. developed the appropriate four time correlation 
function description for hole burning as well as other optical line narrowing experiments. It was proven that the 
correlation function which describes the optical line narrowing experiments applied to glassy systems is the same 
as correlation function that describes the stimulated echo. The stimulated echo is a well-known magnetic reso- 
nance experiment used to measure spectral diffusion. The analysis showed that different optical line narrowing 
experiments are sensitive to dynamics on different time scales, and therefore the results from different experi- 
mental methods will, in general, not be the same. Berg et al. presented a comprehensive evaluation of the cor- 
relation functions for hole burning and two-pulse photon echo experiments using a detailed model of glasses and 
compared the results to experiments [ 81. This work provided an in depth understanding of the relationship 
between photon echo and hole burning dephasing measurements and yielded the first measurements of the 
temperature dependence of optical spectral diffusion in glasses. 

The study presented by Berg et al. focused mainly on the two-pulse photon echo and on hole burning. Recently 
there has been considerable interest in the application of the incoherent photon echo technique to study dephas- 
ing in glasses and other complex systems. The incoherent photon echo, as will be demonstrated below, is closely 
related to the accumulated grating echo. Analysis is needed to establish the nature of the observables and the 
time scales which are associated with the various echo techniques. 

A two-pulse photon echo is generated by the manipulation of the coherence between the two electronic states 
involved in the optical transition. In a two-pulse echo experiment, the second pulse is delayed from the first by 
a time r. The echo occurs at a time 2t. Any transition energy fluctuations occurring within this time frame 
contribute to the optical dephasing. The dephasing measured by a two-pulse photon echo is generally referred 
to as the homogeneous dephasing. 

The excitation scheme in an accumulated grating echo experiment is distinct from that of the two-pulse pho- 
ton echo. Like the two-pulse photon echo, pairs of pulses are applied to the sample. The difference is that the 
repetition rate of the pulse pairs is much faster in an accumulated grating echo experiment: many pairs of pulses 
are applied before the chromophores relax back to their ground states. The light source used in this kind of 
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experiments is usually a low power cw mode-locked laser. In addition to the very weak echo (generally unde- 
tectable) produced by the same mechanism as that of the two-pulse echo, each pulse pair in the stream of pulses 
generates population modulations on the inhomogeneous line [ 7 1. The modulations produce a grating in fre- 
quency space, with the period of the grating given by 1 /‘I. The excited state frequency grating decays with the 
excited state lifetime. The ground state frequency grating, however, can last until all the chromophores relax to 
their ground states. This relaxation time is often determined by the lifetime of a “bottleneck” state, e.g., a triplet 
state. Since successive pulse pairs are applied before the chromophores relax to their ground states, the depth of 
the population modulations (frequency grating) will increase as the number of the pulse pairs increases. Stim- 
ulated echoes are generated by the later pulses via scattering from the frequency grating, which is an accumulated 
result of all previous pulse pairs. Because of the accumulative effect, these stimulated echoes dominate the 
detected echo signals. The important point is that, besides the characteristic time scale of the two-pulse echo, 7, 

the accumulated grating echo is associated with a much longer time scale, i.e. the lifetime of the bottleneck state 
or the lifetime of the excited state. Any energy fluctuations occurring during this time frame can contribute to 
the optical dephasing. In systems where slow environmental fluctuations exist, such as glasses, the dephasing 
rate measured with this technique will, in general, not be the same as that measured with a two pulse photon 
echo. 

An interesting variation of the accumulated echo is the incoherent photon echo. Since first being observed in 
1983 [ 9- 111, it has been generating a great deal of interest as a new technique for the study of ultrafast optical 
dephasing phenomena [ 121. In an incoherent photon echo experiment, the laser field is purposely made to be 
non-Fourier-transform limited. The time resolution is determined by the correlation time of the light source, 7c, 

i.e. the inverse of its frequency bandwidth. Thus ultrahigh time resolution can easily be achieved by increasing 
the laser frequency bandwidth. It is often mentioned in the literature that as long as 7= is much shorter than the 
sample’s phenomenological dephasing time constant, T2, the incoherent photon echo measurement should yield 
the same dephasing time as that measured by the two-pulse photon echo using ultrashort coherent laser pulses. 

While a good deal of attention has been focused on the excellent time resolution of this new technique, little 
effort has been made to clarify what this technique actually measures when performed on complex systems. A 
central feature has been overlooked. As has been pointed out in discussing the amplitude of the signal [ 9 1, the 
incoherent echo is essentially an accumulated echo generated by an incoherent light source. Here the pulse pairs 
are composed of random modulations (coherent spikes) in the laser field. Because of its accumulative nature, 
however, the incoherent echo is inevitably associated with a long .characteristic time scale. Just as the conven- 
tional accumulated grating echo, in systems where slow environmental fluctuations exist, the incoherent photon 
echo will not measure the same optical dephasing rate as the two-pulse photon echo. 

Dephasing induced by relatively slow environmental fluctuations is usually referred to as spectral diffusion. 
The rates of these fluctuations are comparable to or slower than what is generally defined as the homogeneous 
dephasing rate, 1 / T2 [ 8 1. In crystals, spectral diffusion can be caused by spin flips in the host lattice [ 13- 16 1. 
The effects of spectral diffusion on the two pulse echo and the three pulse stimulated echo [ 13- 18 ] measure- 
ments are drastically different. Since spectral diffusion can occur in any type of condensed matter system, par- 
ticularly in disordered systems such as glasses, it is important to investigate the relationship between spectral 
diffusion and experimental observables to understand exactly what the incoherent photon echo and the accu- 
mulated grating echo measure. 

In this article, we analyze the dephasing of an ensemble of chromophores embedded in a glassy system using 
the standard TLS model [ l-41. Previous investigations have shown that in this kind of system, spectral diffu- 
sion plays an important role in optical dephasing [ 8,1 g-221. By considering the dynamic properties of the TLS 
and their interactions with the chromophores in some detail, we show that incoherent photon echo measure- 
ments and accumulated grating echo measurements, similar to hole burning experiments, generally result in an 
optical dephasing rate faster than that given by the two-pulse photon echo measurement. In some cases, the 
difference can be of major significance. It is also shown that using a carefully designed combination of these 
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techniques, one can experimentally reveal the distribution of the rates of fluctuations over a broad range of time 
scales. 

2. The formulation of the general photon echo process 

2.1. The macroscopic nonlinear polarization 

Consider the interaction between a laser field and an ensemble of chromophores embedded in a glassy system. 
At very low temperatures, the dominant environmental fluctuations are attributed to the tunneling two-level 
systems [ l-41. The phenomenological Hamiltonian for an arbitrary chromophore can be written as 

H=H,+Hinr. (2.1) 

HO is the Hamiltonian of the glassy system in the absence of the laser field. It generally contains three terms. 
The first term describes the energy levels of the chromophore, 

n 

The second describes the perturbation of the chromophore arising from interactions with the TLS, which can be 
expressed as 

HTLS-c= C C L(c~)AP,IcJJ>(~I . 
(1 j 

(2.1’) 

The chromophore is labeled with index i. &Jr,) is the coupling strength between thejth TLS and the state I a) 
of the chromophore. rij=rj-ri, where rj and ri are the locations of the TLS and the chromophore. 

&j=(P,),1-(Pj)O09 where (pi), I and (pj)m are the excited state and the ground state populations of the TLS, 
respectively. In writing this equation, we have implicitly assumed that the behavior of the TLS is not affected 
by the chromophores [ 201. In addition, we have ignored the off-diagonal interactions. These interactions are in 
the form of couplings between the chromophore’s electronic eigenstates. Because the energy separations of the 
eigenstates are usually, and as assumed in our case, much larger than the energy separations of the TLS, the 
effect of the interactions appears to be a far off-resonance E field. Therefore, the off-diagonal interactions should 
not contribute significantly to the dephasing process [ 13- 15 1. The third term in HO describes population relax- 
ation of the excited chromophore by radiative and nonradiative decay and other standard dephasing processes 
such as excited state-acoustic phonon coupling [ 23,241. At very low temperatures ( T< 4 K), only dephasing 
arising from TLS has been observed in glasses. At somewhat higher temperature, dephasing from pseudo-local 
modes has been reported [ 8 1. This third term in the Hamiltonian will not be considered explicitly. Rather, a 
phenomenological decay term for population relaxation and any non-TLS dephasing will be added at the appro- 
priate point. 

The semiclassical interaction Hamiltonian, 

H,,, = -pi*E(r,, 1) . 

describes the interaction between the laser field and the chromophore. pi is the transition dipole moment and r, 
the location of the chromophore. 

In a general four-wave-mixing experiment, the laser field consists of three input beams, 

E(r, t)= i l?,(t) exp[i(&j-r-~,t)]+c.c. 
j= I (2.2) 

The experimental observable, the intensity of the output beam, is the square of the absolute value of the induced 
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macroscopic nonlinear polarization that acts as the source in Maxwell’s equations. The polarization is given by 

g(r, t)= $C Tr{P,Pi(t)]=Pc(P(ri, t)> , 
I 

f’(ris 0 =WwAO~= [Pilnbbi(t) I&+ [Pilti[Pi(t) lab. (2.3) 

pi is the density matrix of the ith chromophore. pC is the density of the chromophores. ( ) denotes an average 
over the chromophores, which is performed over the spread of transition frequency detunings, the spatial distri- 
bution, and the projection of the E field onto the random directions of the chromophores’ transition dipole 
moment directions. The averages are performed over a volume, V, which is chosen to be macroscopically small, 
1 k- ( ri-r) 1 a: 1, so that the phase factor inside the average can be taken out, exp( ik*ri) x exp( S-r), but mic- 
roscopically large enough to include a significant number of chromophores. 

To the third order in the input field strength, the general form of the polarization can be expressed [ 25 ] as 

P(ri, 0 = C picks f) exP[i(k*ri-W) I , 
k.w. 

where k, and w, are the appropriate combinations of input laser beam wavevectors and frequencies for the 
particular nonlinear experiment under consideration. In typical echo experiments, the frequencies of the laser 
fields are degenerate and resonant with one’ of the transitions of the chromophore, ol = 0, = w3 = w, and the 
signal is detected along a direction k,= - kl + k2+ k,. Under these conditions, the nonlinear polarization that 
generates the echo signal is 

P(ri, t)=Pi(ks, t) exp[i(k,*ri-ot)]+c.c., 

Pi(ks, t) = -i Ojdr,jdf,Sd~3~i(f,,h,l,) 
0 0 0 

X exp[iw(t, -t3)]XEr(t-t3-t2-tl) Ez(t-t3-t2) E3(t-t3), (2.5) 

where Ri is the nonlinear response function of the chromophore, which is defined as a matrix element in Liou- 
ville space [ 25 ] and contains the necessary information about the chromophore-glass system. 

2.2. The four-point correlation response finction 

The chromophore is modeled as having three levels. Level a represents the ground electronic state of the 
chromophore and level b the excited electronic state which is coupled to the ground state by the radiation field. 
Level b decays to levels a and c with rates yba and yb respectively. Its total decay rate is yh= yho + yti Level c is a 
triplet or other transient intermediate state which decays to the ground state at a rate yCn. Optical transitions 
only occur between levels a and b. The transition frequency of the chromophore outside the glassy matrix is 
w,~= o. The matrix causes a shift in the transition frequency, Aw( t ), that can be split into two parts, 
Ao( t) 4(s) +d( t). The detuning d(s) results from a set of coordinates S that are static on all relevant time 
scales and can be treated as inhomogeneous broadening of the system. The time-dependent detuning A( t), how- 
ever, is caused by a set of coordinates D that fluctuate within the time scale of the experiment. In the problem 
considered here, D is an ensemble of TLS. 

With this model, the nonlinear response function can be calculated [ 25,8] (see appendix A), 

Ri(f3, t2, tl)=~4exp{i[Oah+Ai(s)l(t, -f3)-Y(~I +t3)/2)A(fz)Ci(t3, f2, ?I) 3 

A(f2)=2exp(-Yh~2)+~~c[exP(--~~~t2)-exp(-Yhf2)1 I 

(2.6) 

(2.6 1 
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13+t2+,, 

Ci(t3, t,, t,)=exp 
( J 

-i 
n+l, 0 

where y/2 = y/,/2 +r’, r’ accounts for dephasing from processes other than coupling to the TLS. As discussed in 
connection with eq. (2.1)) in glasses at low temperature, only TLS-induced dephasing has been observed. In 
this case, F ~0. &= yhc/yh is the triplet yield, and ,Ui is now the component of the transition dipole moment 
along the direction of polarization of the E field. The units are chosen such that Plan&s constant, ii, is equal to 
unity. 

After an average over the inhomogeneously broadened transition frequency distribution (this is actually part 
of the average over i), eq. (2.6) becomes 

S(t3, t2,tl)=~~~PIexp(-‘/t,)A(f2) ~ittl,t2vtl) 6(t,-t,)=Ri(t,,t2)6(t3-ttl) * (2.7) 

Here we have used the fact that the inhomogeneous absorption lines in glasses are usually extremely broad, so 
that the chromophores are uniformly distributed with a density p, over the laser frequency bandwidth. 

Substituting eq. (2.7) into eqs. (2.5) and (2.3) and integrating over t3, we have 

03 00 

.Y(r,t)=p,(P(ri,t))=-ipcp,exp(-iwt) dtl dt2exp(-yt,)A(tZ)F(tl,t2) 
I s 
0 0 

xET(t-t,-2t,) E2(t-t2-t,) E,(t-t,)+c.c., (2.8) 

F(t,,tz)=(~L4exP(ik,.ri) ci(tl,t2,tl)). (2.8’) 

Part of the average in eq. (2.8’) involves the random projections of the chromophores’ transition dipole 
moments onto the direction of polarization of the E field. Since it is independent from other random variables, 
we can perform this average separately. Denoting (& ) by p4, we have 

F(tl,tz)=~‘(exP(ik,.ri) Cittlvt2,tl)). (2.9) 

As discussed above, the averaging volume is restricted to a dimension much smaller than the field wavelength. 
The phase factor inside the average can then be taken out 

<exp(i&*r,) Ci(tl, t2, tl)>=exP(ik,.r)(Ci(t,, t2,tl)) . 

Thus the final expression for the macroscopic polarization is 

a3 P 

P(r, t)=-ipcP1p4exp[i(k,*r-ot)] dt, dt2exp( - yt,)A(t2) 
I J 
0 0 

xC(t,, tz, t,) E:(t-t,-2t,) Ez(t-t2-t,) Ex(t-tl)+c.c., 

where 

(2.10) 

c(tI, tZ* tl)=<ci(tl, t2s tl)> 5 

is a special case of the four-point correlation function defined in ref. [ 251. Eq. (2.10) is a general result for all 
types of photon echo experiments which have the phase matching scheme described above and where the envi- 
ronmental perturbations can be described by time-dependent frequency modulations. The actual form of the 
four-point correlation function, C( t,, t2, t, ), has to be derived through a detailed analysis of the time-dependent 
perturbations. 

To illustrate the significance of the four-point correlation function, we consider a stimulated photon echo. Let 
E,(t)=E(t),E2(t)=E(t-r),andE3(t)=E(t-7-&),where 
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o+ 

E(O=40 WP, 8=2~ I dtE(t) , 
O- 

and I 81 is the laser pulse flip angle (pulse area). Then eq. (2.10) becomes 

~(r,t)=-iPc~,~1(181’8/8)exp[i(k,.r-ot)] 6(t-2r-Tw)exp(-yr)A(Tw) C(r, T,.,,,r)+c.c. (2.11) 

From eq. (2.11), we see that the four-point correlation function, C( t,, f2, t, ), describes the dephasing of a 
stimulated photon echo caused by fluctuations of the TLS in the glass. In the absence of TLS fluctuations, C( t,, 
t2, t, ) is equal to unity, and the decay arises only from population relaxation and conventional phonon dephas- 
ing processes. The three times in the argument of the correlation function are actually the three time intervals 
between the four pulses in a stimulated echo. Here the first t, corresponds to the time delay, T, between the 
second and the first pulses and t2 the time delay, T,, between the third and the second pulses. The second t, is 
the time delay between the echo signal pulse and the third applied pulse of the stimulated echo sequence. The 
limit t2 = 0 gives the two-pulse photon echo correlation function, i.e. the two-pulse photon echo is equivalent to 
a stimulated echo with the second and third pulses coincident in time. 

The physical meaning of the function A ( t2) in eq. (2.6’ ) also becomes clear. It describes how the echo signal 
is affected by population decays during the waiting time period, T,. The longest waiting time is determined by 
either the triplet state lifetime, 1 /yea, or the excited state lifetime, 1 /yb, whichever is longer. In most cases, 1 / 
y== B 1 /yb, the triplet state acts like a bottleneck, and the longest waiting time is given by 1 /yea. Thus we can 
define 1 /y,, as the sample’s “memory time”. In the absence of a triplet bottleneck or other bottleneck state, the 
sample’s memory time is given by 1 /yb. 

3. Evaluation of the correlation function using the TIS model 

In refs. [ 14,15 ] a method for calculating the correlation function 

C(t,, t2, tl)=<Ci(tls t29 tl)> 

is developed to study dephasing in spin echo experiments. We will follow a similar route in our discussion 
[ 8,20,2 11. To start, we write 

C(t,,t2,f,)=(exP[-i~i(tl,f2)1), 

I?. +211 fl 

dh,tz)= &j(WzL nj(t,,f2)= I bj(t’)dt’- j&Wt’. 
i 12+t1 0 

i and j label respectively a chromophore and a TLS. 

(3.1) 

3.1. Average over the history of the frequency perturbation 

pi results from perturbations by a large number of fluctuating TLS. Each chromophore is associated with a 
different &. Thus pi has to be treated as a random variable. Following ref. [ 261, we assume that dominant part 
of (pi is induced by a number ( >/ 10) of nearby independent TLS, so that vi is approximately described by a 
Gaussian distribution. Alternatively, one can say that the time-dependent frequency detuning, d,( t’ ), under- 
goes a random process and has to be averaged over all the possible path histories. The summation of the d,( t’ ), 
di( t’ ), obeys a Gaussian distribution. Since pi( t ,, t2) is a linear combination Of di( t’ ), it will also obey a Gaus- 
sian distribution. Thus the ensemble average of Qli is equivalent to an average of the path history of di( t’ ). 
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However, it should be pointed out that the Gaussian phase distribution is a less restricted condition, for even if 
di( t’ ) is not Gaussian, y.+ can still approximated by a Gaussian variable, provided the random frequency mod- 
ulation is fast compared to the experiment. 

Averaging over the path histories, we have 

<expl-i&(tl, f2)l)H=exp[-i(dtl, t2)>HB~*(~i)/21 , 

where c is the deviation of the distribution, 

a*(X)=((GX)*)=((X-(X))2) . 

It is straightforward to how that (vi( t,, t2) ) = 0, and that 

(3.2) 

(3.3) 

(3.4) 

We should point out here that after eq. (3.2)) the subindex is used solely as a reference to the positions of the 
chromophores. 

Besides an average over the path histories, the correlation function also has to be averaged over the random 
distributions of parameters which describe the TLS. Each individual TLS has a location, r,, and some internal 
parameters, which are treated as random variables. In the standard TLS model [ l-41, these internal parameters 
are the TLS energy splitting E, and the tunneling parameter I=d(2MV/fi) I’*. d is the distance of the tunneling 
motion, M is the reduced mass of the tunneling particles, and V is the height of the TLS potential barrier. As a 
result, eq. (3.1) becomes 

(3.5) 

where rij= ri - rj, and 

( >.,=(I/V) rdrij. 
0 

In deriving eq. (3.5 ), we have assumed that both the TLS and the chromophores are uniformly distributed over 
the averaging volume, V, so that all the TLS and the chromophores can be treated identically. Omitting the 
indices and invoking the relation 

lim (1 +x/N)N=exp(x) 
rv .00 

we can rewrite eq. (3.5) as 

C(t,, t2,tl)=exp{-N(l-exp[-c2(9)/21)E.l,r1. (3.6) 

We note that now the averages are over the possible energy separations and tunneling parameters of a single 
TLS, and over the random distribution of possible distances between the TLS and an arbitrary chromophore. 

The variance of the phase perturbation by the TLS is calculated in appendix B. As a result, eq. (3.6) can be 
explicitly written as 

(3.7) 
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o(A) =sech(E/2kT) d,, , 

where A0 is the amplitude of the frequency perturbation induced by the TLS, 

A&Z&r)=&-&. 

&and&kdefmedineq. (2.1’). 

3.2. Averages over the spatial distribution and the internal parameters of the TLS 

Theoretical analysis of photon echo experiments and optical hole burning experiments in glasses, which yield 
exponential decays and Lorentzian lines, respectively, demonstrates that the amplitude of the perturbation of a 
chromophore induced by a single fluctuating TLS is proportional to the cube of the inverse of the distance 
between the chromophore and the TLS [ 1,8,20 1. This is consistent with either a strain dipole [ 18 ] or an electric 
dipole coupling mechanism. Letting A0=q/r3, we can perform the average over the random spatial distribution 
of the TLS. Eq. (3.7) then becomes 

C(tl,f2,tl)=exp{-atl(rlsech(E/2kT)flRtl,Rt2))E.~}, 

(Y= $t”‘po , 

(3.8) 

where pG = IV/ I/ is the density of TLS, and R is the relaxation rate of the TLS towards equilibrium, which is a 
function of E and Iz, and has a very broad range of values. 

In deriving eq. (3.8), we have used the relation 

m 

I 
ti [ 1 -exp( -x2)]/x2=C2. 

0 

It should be pointed out that by letting the lower limit of this integral be 0, we have implicitly assumed 

t, q sech(E/2kT)f(Rt,, Rt2) Q: V, 

i.e. the TLS outside of the averaging volume do not contribute to the dephasing of the chromophore under 
investigation. From eq. (3.4), we see that the term responsible for the dephasing is in the form of 

$ 02(pU)zj drr2(l/r6) . 

The dephasing induced by the TLS decreases quickly as the distance between the TLS and the chromophore 
increases. This argument is also consistent with the fact that our averaging volume is much smaller than the 
laser wavelength. 

To perform the averages over E and L, we assume the following. (a) The constant describing the coupling 
between the TLS and the chromophore is given by [ 11, 

where 6 is the asymmetry of the double potential wells of the TLS. With the standard TLS model, it is quite 
straightforward to show that this relation is consistent with a dipolar coupling mechanism. (b) The fluctuations 
of the TLS are only caused by resonant single phonon assisted tunneling processes [ l-41. Assuming the Debye 
approximation can be used to describe the density of states of the phonons, one finds the relaxation rate of the 
TLS (see, for example, ref. [ 17 ] ) is 

R=M;Ecoth(E/ZkT) , 



144 Y.S. Bai, M.D. Fayer /Optical dephasing in glasses 

where 8 is a collection of constants describing the coupling of the TLS to the acoustic phonons of the glass, and 
S, is the coupling between the double potential wells of the TLS, &ae-“. We note that the relaxation rate R is 
often incorrectly assumed (see, for example, refs. [ 1,8] ) to be the average of the up and down transition rates 
of the TLS. In fact, it is the sum, not the average, of the up and down transition rates of the TLS. 

The common assumption about distributions of TLS in glasses is that P( 6, A) = (P) is a constant in the range 
of 6 and 2 of interest in a study [l-4]. Recalling the relation E= (62+6i)“2, we can transform this constant 
distribution of 6 and A into a distribution of E and R, 

where E and R are in the ranges of ($,min, E,,,,,) and [ R,i, (E), R,,,(E) 1, respectively. The cutoffs, $,min and 
E max, are introduced to keep the total number of states of the TLS from diverging, and the relaxation rate limits 
are defined as 

R,i,(E)=526B,i,ECOth(E/ZkT) 3 R,,,(E)=IRE'COth(E/ZkT) . 

An extension of this model is to let (P) vary slightly with E, i.e. (P) = P,&” between Em,, Z E> Emi. 3 &.min 
[ 11. With this model, we can rewrite the average in eq. (3.8 ) as 

E;na. Hmar 

(qsech(E/2kT)f(Rtl,Rt2))Ej.=F j dEP,E’sech(E/2kT) j dRf(Rt,,Rt2)/2R, (3.9) 
.I&” Rl?li” 

where we have used the identity 6/E= [ 1 -R/R,,,,,(E) ]- If*. We see from this equation that while the energies 
of the TLS belong to a broad distribution, the relaxation rates of the TLS with a given energy are also distributed 
over a broad range. Noting that the dominant part of the integral over E is within E G 2kT and that Rmin (E) is 
insensitive to E in this range, we can replace the limits in the integral over R by 

R,in( E) +2kTS26g.,i” 3 R,,,(E) +2kTS2E2 . (3.9’ ) 

Using these new integral limits, we can easily interchange the order of the integrals. Eq. (3.8) then becomes 

Rmai(Emai) 

c(h, t2, h)=ew 
( s 

--tl dRB(R)fW,,Rt2)lR ~exp[-tl(f(Rt,,Rf2))R1, 
> 

(3.10) 
Rmin 

.cll.i 

/3(R)=a(F/2)(kT)‘+pP0 s dxx”sech(x/2), 
Xmin 

(3.10’) 

wherex=E/kT, Xmin=2[R/R,,,(2kT)11’*, andx,,,,,=E,,/kT. 
We note that eq. (3. IO) reflects a general feature of optical dephasing in the presence of spectral diffusion. 

Since f (Rt , , Rt2 ) is essentially a constant between R = ( t2 + t, ) - ’ and R = t i_ ’ (see appendix C ) , all fluctuations 
whose rates fall into this range contribute to the dephasing. For different types of physical systems, the fluctua- 
tion rate distributions can vary, and the dephasing rate may be related to the average in a different manner. It 
remains true, however, that the total optical dephasing rate is governed by a summation over a fluctuation rate 
distribution with a weight function slowly varying in the range of ( ( t2 + t, ) - ’ , t I ’ ) . 

E,,,,, is usually considered to be determined by the glass transition temperature, i.e. E,,, = kT,. In most optical 
dephasing experiments, we have Te T,. The upper limit of the integral in eq. ( 3.10’ ) can thus be set to infinity. 
The lower limit of the integral is generally a function of R. However, if the relaxation rates of interest satisfy the 
condition R c R ,.x(2kT), this lower limit can be set to zero. As a result, we find that in the range of 
Rmin < R <E: R,,,( 2kT) j?(R) is independent of R, and therefore the relaxation rate distribution function is pro- 
portional to 1 /R. Since f (Rt,, Rt2) falls to zero very quickly at Rt, >, 1 (see appendix C), we can restate our 
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conclusion as: the relaxation rate distribution function is given by 1 /R only if R,,(ZltT) B l/t,. Physically, 
this means that if the dominant part of the optical dephasing is induced by those TLS whose energy separations 
fall in the range of [Emin/ (R,i,tl ), 2kT], the relaxation distribution function will appear to be proportional to 
1 /R in the range of (Rmin, 1 /t, ) . It has been determined that in fused silica glass, R,,, (2kT) is on the order of 
10” Hz at Tz 2 K [ 18 1. Experimental data shows that the 1 /R behavior of the distribution function extends to 
t, = 10 ps in some organic glasses [ 8 1, indicating a R,,, ( 2kT) on the order of 3 1 O’* Hz. This seems reasonable 
because R is inversely proportional to the fifth power of the velocity of the sound [ 181, which is slower in the 
softer organic glasses. 

Since the distribution function is a constant in the In(R) scale, we can evaluate the integral over R simply by 
examining the behavior of the functionf(Rtl, Rt2) in this scale. For t 2 = 0, C( tl, 0, tl ) describes the dephasing 
of the two-pulse photon echo. In this casef(Rt,, 0) is a narrowly peaked function centered about ln(Rtl ) =O. 
Analysis of experimental results [ 8,221 suggests that the lower limit of the integral, R,i,, is less than lo5 Hz. In 
a typical system, the time scale measured by a two-pulse photon echo is in the range of p&seconds to nanoseG 
onds. Thus the entire peak of f( Rt,, 0) lies within the range (R,i,, R,,). We can safely change the integral 
limits to (0, ao) and perform the integration. As a result, the two-pulse photon echo correlation function be- 
comes an exponentially decaying function, 

C(t,,O,tl)=exp(-Bet,), 
00 

(3.11) 

8= s dxf(x, 0)/x= 3.6. 
0 

Experimentally, it is found that two-pulse photon echo signal decays exponentially in the glasses that have been 
studied [ 8,201. This indicates that in these systems, the relaxation distribution function is indeed in the form 
of 1 /R for R 3 R,in, which is consistent with our earlier discussions. 

In general, we can write 

C(tlrt2,t1)=C(fl,O,tl)C1(fl,t2,tl)=exp(-8et1)Cl(tl,f2,fl), (3.12) 

where C, is the correlation function which describes the dephasing arising from spectral diffision [ 81. To a 
good approximation, the functionf( Rt, , Rt2) -f( Rt, , 0 ) can be replaced by a step function (see appendix C ), 

f(Rt,,Rtz)-f(Rt,,O)~:H[R-R,I(t, +t2)lW31/4 -RI, (3.13) 

where B, is a constant of order of unity. Using this approximation and assuming that R,,, > 1 /t ,, we can carry 
out the integral in eq. ( 3.10) with limits (0, o ) . The correlation function Cl then becomes 

C1(tl,t2,fl)k:exp[-Bfl WMl)l, 

t,=min(t, +tz, l/R,in) . 

(3.14) 

Thus the final expression for the four-point correlation function becomes 

C(tl,~2,tl)=exp[-B~l(e+ln(~,lf,)l. (3.15) 

It should be pointed out that our choice of using a Gaussian stochastic process to evaluate the four-point 
correlation function is mainly for mathematical simplicity. The real process is probably better described by a 
“sudden jump” model [ 15 1. The actual form of the weight functionf(Rt,, Rt2) derived using this model differs 
from that derived here. In particular, the sudden jump model predicts that f( Rt,, Rtz ) falls to zero at a faster 
rate at the edge R ( t2 + t, ) < 1 [ 14,15 1. Except for this, the overall behaviors of the weight functions derived 
from these two models are very similar [ 15 1. This is because of two reasons. For Rt, B 1, the TLS can flip many 
times during the time intervals [ 0, tl ] and [ t, + t2, 2t, + t2], making the accumulated phase errors converge to a 
Gaussian distribution. For Rt, z+ 1, the Markofftan process, which itself is a result of the sudden jumps between 
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the two levels (see appendix B), ensures that the total phase error is independent of ft. As a result, the weight 
function is flat in the region 1 /T> R > 1 / Tw. If the distribution function of the relaxation rate were a 6 function, 
6( R - W) , as assumed in refs. [ 14,15 1, and W( tz + t, ) < 1, these two models would yield different results. How- 
ever, as seen from our discussion, the distribution function spans a very wide range, and it is the integral of 
f( Rt,, Rt2) that counts. The error introduced by different falling edges is negligible. This is also consistent with 
the step function approximation used in eq. (3.13). 

4. Application to accumulated grating echo experiments 

In this section, we apply our results to the accumulated grating echo experiment. To simplify the notation, we 
rewrite eq. (2.11) as 

9(r, t)=P(k, t) exp[i(k,*r-ot)]+c.c., 

co cw 

(4.1) 

P(k,,t)=-i dt, ~dt,R(t,,l,)EY(t-I,-2t,)E,(t-t*-t,)E,(t-I,), 
s 
0 0 

R(tl,tz)=PcP,~4exp(-yt,)A(t,)C(t,,tl,t,). 

Only unsaturated accumulated grating echoes will be considered. This is consistent with our perturbative cal- 
culation of the nonlinear polarization. 

4.1. Conventional accumulatedgrating echoes 

Consider a common configuration of the accumulated grating echo experiment. A cw mode-locked laser beam, 
consisting of a stream of pulses typically separated by about 10 ns, is split into two beams which are subsequently 
crossed in the sample. The second beam is delayed from the first by a time interval, r, so that E, (t) = E( t), 
E2(t) =E3(t) =E( t-r), andk,+#k,. Under these conditions, the echo polarization becomes 

00 03 

P(k,, t; z) = -i 
s s 

dt, dt, R(t,, tz) E*(t-t,-2t,) E(t-ttz-t, -z) E(t-t, -T) . 

0 0 

(4.2) 

The laser pulse duration is usually much shorter than the time delay, r, and the optical dephasing time. Thus we 
can write 

E(t)= f S(t-nT,)O/2p, (4.3) 
PI=0 

where TR is the repetition time and 1191 is the flip angle of the laser pulse. Eq. (4.2) then becomes 

P(k,, t; r) = -i g C R((n*-n,)TR+t, (ns-n,)TR)&t-(n3+nz-n,)TR-27)) 
n, sn2.m 

(4.4) 

where njcorrespond toEj(t), j= 1,2, 3. 
An echo signal occurs after each pulse pair. After the iVth pulse pair, the time of occurrence of the echo signal 

is given by 

P(k, t; r)arJ(t-NTR-2T) . 

Using the substitution 
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we rewrite eq. (4.4) as 

P(k,, t; 7) = -i $Y, R( (N- ns)TR+7,An2TR)G(t-NTR-27)) 

where An = n3 - n2. 
If the dephasing time of the sample, TdP, is much shorter than laser pulse repetition time, then 

P(k,, t; 7) = -i 32 R(7,An,T,)G(t-NT,-27) 

=-ipepIp(~f3~*f?/8) G(t-NT,-27) exp(-yr) iA(An,T,) C(7,An2TR,7). 
An 

(4.5) 

(4.8) 

Letting N+co gives the steady state value of the echo polarization. In those systems in which the echo signal 
accumulates, A(AnTR) and C( 7, AnTR, 7) are slowly varying functions compared with TR. Thus we can replace 
the summation by an integral and rewrite eq. (4.6) as 

N7-R 

B(R,, t; 7)= -b&p( 181*8/8) G(t-NT,-27) exp( -v) TR’ s dr2A(t2) C(7, t2, 7) . (4.7) 
0 

The physical interpretation of eq. (4.7) is straightforward: the accumulated photon echo is the sum of a series 
of stimulated photon echoes with a constant tzl = 7, and variable t3*, 0 < tS2 < tmax, where t,, is given either by 
NT, or by the memory time of the sample. 

We note that in the absence of TLSinduced fluctuations, the four-point correlation function derived here is 
equal to unity. Eq. (4.6) then yields identical results as those given in ref. [ 71. Only in this case, i.e. in systems 
without spectral diffusion arising from TLS or other mechanisms, will the accumulated grating echo measure 
the same dephasing time as the two-pulse photon echo. 

In those cases where the condition T,, < TR is not satisfied, one will have to calculate the double summation 
in eq. (4.5 ) . However, if there is a phase fluctuation between the pulse pairs, there will be an extra phase factor, 
exp [i (&,, + Qn2 - @,,, ) 1, in eq. (4.4). When the phase fluctuations are so large that the pulse pairs are completely 
uncorrelated, the ensemble average of the phase fluctuations will force n, - - n2, which leads to an identical result 
as eq. (4.6). As will be seen below, this is exactly the case which occurs if one uses a broad band incoherent light 
source rather than the mode-locked laser discussed in this section. 

4.2. Accumulatedphoton echoes using incoherent light sources 

Consider an incoherent photon echo experiment with the same beam configuration as that discussed above. 
Thus we can start from eq. (4.2). In order to resolve the optical dephasing of the sample, one has to make the 
laser field a much faster varying function of time than the response function so that 

IW7cI 3 IWh, h)l&l, IdWt,, t2)b-K I , 

where 7, is the correlation time of the laser field. This relation implies I dE( t2) / (E dt2) I s I dR( 4, t2) / (Rdfz) I. 
Thus we can write the integral over t2 as 
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Co (n+l )A12 

s dtl R(t,, t2) E*(t-tl-2t,) E(t-tz-t, -7) = 2 R(t,,nAtl) j. dtzE*(t-tz-2t,)E(t-tz-t, -7) 
PISO 

0 #IA12 

= E At,R(t,,nAt,)(F(t-f2-2tl)E(t-tz-ttl-7))A,,, (4.8) 
tl=O 

where ( ) denotes an average over a time interval, At,. The time interval is chosen in such a way that: (a) it is 
small enough that R(t,, t2) does not vary much within the time interval; and (b) it is much larger than the 
correlation time of the laser field, 7,. The second requirement allows us, according to the ergodic theorem, to 
replace the time average by an ensemble average, 

=g(t, -7)<IE(t-tz--t,)I’)ensemb,er (4.9) 

where g is the first-order correlation function of the laser field and ( I E( t- t2- 2t, ) I ‘) is the slowly varying 
laser intensity envelope. Experimentally, the measurement is usually repeated many times. The second require- 
ment is then relaxed to At, > T,, and N> 1, where N is the total number of measurements. In a transient experi- 
ment, where the laser pulse duration is much shorter than the memory time, N is the total number of the pulses 
averaged in the experiment. In a steady state experiment, N is the ratio of the instrumental response time, such 
as the RC constant of a lock-in amplifier, and the sample’s memory time. 

Since I dR( t,, &)/dt, I e ) R/7, I, we can further replace g( t, - 7) by 7,&t, - 7). Eq. (4.2) then becomes 

a, 

P(k,, t; 7) = -ir,E(t-27) 
s 

dtz ( IE(t-tz-2r)(*)R(7, tz) 
0 

=-ip4p,p,7,E(t-27)exp(-yr) dt, (IE(t-t,-2r)1*)A(tz) C(7,t2,7). 
I 
0 

(4.10) 

By comparing eq. (4.10) with eq. (4.7 ), we see immediately the accumulative nature of the incoherent photon 
echo. In the absence of TLS-induced dephasing, C( 7, t2, 7) is equal to unity, and the incoherent photon echo 
will give the same result as a two-photon echo experiment. In glasses, or other systems which have spectral 
diffusion, however, the results of the incoherent echo can be substantially different from the two-pulse echo 
because of the integral which contains the four-point correlation function. 

To illustrate the differences between accumulated echo experiments, both the conventional ones using mode- 
locked lasers and those using incoherent light sources, and two-pulse photon echo experiments, consider the 
following concrete examples. 

Case I: /3@= (2 ps) - ‘; the accumulated photon echo experiment is performed using a broad band laser with 
7c GZ 2 ps, and a pulse duration fd= 10 ns, 1 /td> R,i,, y, y_; the detected echo signal is integrated over the laser 
pulse. In this case, a two-pulse echo measurement yields a homogeneous dephasing rate, 1 / T2 z/36/2. Using the 
four-point correlation function derived in section 3, 

C(7, tz, z)=exp[-_7(8+ln(l+tJ7)] , (4.11) 

we find that in addition to the exponential decay function measured by the two-pulse photon echo, there is 
another dephasing term in the accumulated echo polarization, 

P(k,, t; r)ccexp( -y7-jW7) D(t; 7) , 

~(t;7)={[l+(t-27)/7]‘-87-l}7/(l-~7), 

(4.12) 



where 27~ t < t,, + 27. For a fixed 7, eq. (4.12) describes the nature of the incoherent echo if it is observed at a 
particular time, t, during the laser pulse. We note that different parts of the laser pulse measure different de- 
phasing rates. In our example, however, the observation is the integrated intensity of the incoherent echo signal 
as a function of the delay time, 7. The normalized decay function is given by 

s(td; 7)=&PE(7) SI (fd; 7) , (4.13) 

S&r)=exp[ -2(~+P)71 , 

a+27 t.i+zr -1 

&(td; ‘I)= s ID(t;0)]2dt 
> 

. (4.13’) 
27 27 

Because of the accumulative effect, the dominant part of the signal is generated by the end portion of the laser 
pulse. We can write the normalized decay function as 

s(td; 7)=&E(7) ID(td; 7)/D(fd; 0)i2=exp[-2(y+8@)71 exp{-2[~7~(7d/7)-ln(l-~7)1}. (4.14) 

One may notice that eq. ( 4.14) does not describe an exponential decay. As can be seen in fig. 1, however, a plot 
of eq. (4.14) appears approximately exponential. Given signal-to-noise ratio considerations in experiments, it 
is unlikely that a measurement of eq. (4.13) could be distinguished from an exponential decay in an actual 
experiment. Fig. 1 also displays a plot of the two-pulse photon echo decay for the case 1 example. The major 
difference in dephasing times measured by the two-pulse photon echo and incoherent echo experiments is clear. 

Writing S, ( t& 7) = exp ( - 4r, 7)) and replacing 7 with 1 /Be, we calculate that the ratio of the dephasing rate 
measured by the incoherent photon echo and the dephasing rate measured by the two-pulse photon echo is 
approximately 

[@+ln(t&e)-1]/8%3. 

This value differs from the numerically calculated value (integration over the pulse was performed, see discus- 
sions below) by only a few percent. 

Case 2: B&r= ( 1 ns) -I, and the bottleneck state lifetime l/y ea = 50 p < 1 /&in; the accumulated photon 
echo is performed using a mode-locked laser that produces a constant stream of short pulses (steady state mea- 

Fig. 1. Normalized signal intensities versus the delay time, T, as 
measured by an incoherent echo (lower curve) and by a two- 
pulse photon echo (upper curve). The incoherent echo signal is 
plotted using eq. (4.14). Although this curve is not exactly ex- 
ponential, given signal-to-noise considerations in an experiment, 
it is unlikely that the non-exponential nature of the decay could 
be observed. The parameters for both curves are those given in 

I case 1 (see text). This tigure illustrates the significant differences 
4 which can be observed with an incoherent echo and a two-pulse 

photon echo in systems which undergo spectral diffusion. 
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surement). Since in low-temperature glasses the pure dephasing arises almost entirely from TLS-induced flue- 
tuations, we have y= Ye. Following the same procedure as in case 1, we find that the additional dephasing term 
is given by 

The ratio of the pure dephasing rates measured by the accumulated photon echo and by the two-pulse photon 
echo is approximately 

{@+ln[ (r+~Wlr,,l- 11/8x4. 

We note that the two examples given here use parameters similar to those found in real systems (see, for 
example, refs. [ 27,8] ). 

As can be seen from these examples, both the incoherent and the conventional accumulated photon echoes 
are sensitive to time scales (typically) much longer than the measured dephasing times. By defining a time 
variable, t,,,, to be the shorter of the laser irradiation duration and the sample’s memory time, we can state our 
general results as follows. For t,,, < 1 /R,;,, an accumulated photon echo experiment always measures a de- 
phasing rate faster than that measured in a two-pulse photon echo experiment by a factor of In [ ( j?@+ r)t,,,]. 
For t,,, > 1 /R,i,, the factor is given by In [ (PO+ y) /R,i,] . The exact details of these predictions are based on 
the assumption of a constant tunneling parameter distribution in the TLS model. Analogous results will be 
obtained for other forms of the TLS distribution functions. 

The results given above suggest that the distribution of relaxation relates in a complex system such as a glass 
can be mapped out by performing a series of experiments on different time scales. As an illustration, we consider 
an accumulated echo experiment in which the laser irradiation time is continuously variable from 1 ns to 1 ms. 
One can accomplish this by electro-optically or acousto-optically chopping out a pulse from a quasi-continuous 
broad band laser source to perform incoherent echo experiments on relatively fast time scales. For long laser 
irradiation times ( rd> 100 ns), the quasi-continuous broad band laser source can be replaced by a mode-locked 
laser. The detected echo signal is integrated over the laser irradiation time. We will use the same parameters as 
in the case 1 and case 2 examples discussed above, except that now the bottleneck state lifetime is taken to be 
much longer than 1 ms. If the inverse of the minimum relaxation rate of the TLS is longer than the maximum 
laser irradiation time used in the experiment, l/R,,,,> (td)max, the measured decay function is given by eq. 
(4.13), which is a function of both the temporal separation of the two laser beams, T, and the laser irradiation 
time duration, td. Writing S, ( t,,; 7) = exp ( - 4r,7), and replacing 7 with ( y+ @9) - ‘, we numerically calculated 
the integrals in eq. (4.13’ ), and hence the extra dephasing rate, r, . In fig. 2 we plot, as a function tdr the ratio of 
the pure dephasing rate measured by the accumulated echo experiment and that measured by a two-pulse echo 
experiment, 

Il4GBIrTPE = (8@+2r! )lP - 

In both cases, the ratios increase almost linearly with ln( td) for the larger valves of td. 
Fig. 2 illustrates the nature of measurements over a range of time scales. The plots demonstrate that the 

dephasing rates measured by the accumulated echo techniques are the same as that measured by the two-pulse 
photon echo when td is comparable to or shorter than the homogeneous dephasing time. However, for such a id, 
the accumulative effect becomes very small, and one can achieve a much better signal-to-noise ratio using the 
two-pulse photon echo technique. The plots also demonstrate that this type of measurement, combined with a 
two-pulse photon echo measurement, can be used to obtain information on the distributions of relaxation rates 
in glasses and in other types of disordered systems, such as complex crystals [ 16 ] and proteins [ 28 1. In glasses, 
the distribution function of relaxation rates is determined by the TLS parameter distribution functions, herce 
further information about the TLS can also be obtained from these measurements. 

Specifically, one can examine the dephasing behavior of the chromophore-glass system around td z 1 /R,i,. 
In real physical systems, the relaxation rate distribution may slowly approach zero rather than having a sharp 
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Fig. 2. Calculated ratio of the pure dephasing rate measured by 
an accumulated echo and that measured by a two pulse-photon 
echo as a function of the laser irradiation duration, td, used in the 
accumulated echo experiment. The parameters used in the cal- 
culations are those given in case 1 and case 2 (see text), except 
here we have let the bottleneck state lifetime, 1 /y_> (b),. This 
figure demonstrates that results from experiments analogous to 
these calculations can be used to map out the distribution of re- 
laxation rates in a system. The curves also demonstrate that, in a 
system such as a glass which has spectral diffusion, an accumu- 
lated echo experiment only measures the same dephasing time as 
a two-pulse photon echo in the limit that the laser irradiation 
time used in the accumulated echo experiment is short relative 
to the homogeneous dephasing time (which is measured by the 
two-pulse photon echo). 

cut off at &in. If the falling slope is slower than the falling edge of the functionf(Rr, Rt,), one should be able 
to map out the relaxation rate distribution in the region about R,,,, and the tunneling parameter distribution 
in the region about I,,,. This is due to the fact that as ta is increased, the ratio of the dephasing rate will even- 
tually reach a saturation point at t d z 1 /Rmine This can be seen from the definition of our four-point correlation 
function in eq. (3.15 ). The integral variable t in eq. (4.13’ ) should be replaced by t’ =min( t, 1 /R,i,). The 
behavior of eq. (4.13) around t ,, a 1 /R,i, should reveal the behavior of the falling edge of the tunneling param- 
eter distribution function. On very long time scales, it may be preferable to make this type of long time scale 
measurement using time-dependent optical hole burning experiments rather than accumulated photon echo 
techniques. The relationship between the time scale of a hole burning experiment and the observed dephasing 
time is analogous to that described here for accumulated echo experiments [ 81. In a similar manner, one could 
reveal the behavior of the relaxation rate distribution function around R,,, by measuring the two-pulse echo 
dephasing on a very short time scale, r< l/R,,,, with ultrashort laser pulses. In this case, one should see the 
echo signal decay rate changes from slow to fast as the pulse separation T increases and passes the point of 1 / 
R lllBX* 

We would like to point out that the relation between the exponential decay ofthe two pulse echo in glasses 
and 1 /R fluctuation rate distributions was first recognized by Maynard et al. [ 291. Their derivation used the 
sudden jump model developed in ref. [ 15 1, hence gives a more accurate two-pulse echo decay rate. The corre- 
sponding two-pulse echo decay constant 8 is found to be 2.6, instead of 3.6 used in ref. [ 81 and in this work. If 
the value 2.6 is used, the ratios of the decay rates evaluated above in the two examples should be 4 and 5, instead 
of 3 and 4 as in the text. 
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Appendii A 

Following ref. [ 25 1, we write the nonlinear response function as a matrix element in the Liouville space, 

R(t3, t2, t,)=Clab((buIG(fg+t2+t,, t2+tl)UG(tz+t,,t,)UG(t,,O)UIaa)) . (A.11 
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For simplicity, we have omitted the index i. The double bracket in the equation denotes an average in the 
Liouville space. 1 a$)) is short hand for 11 a) (/II )) . The perturbation operator U is defined as WA= - [P, A], 
where A is an arbitrary linear operator. The evolution operator of the unperturbed system between times I, and 
tz is G(t,, tz) =exp[ -iL( tl, t,)], where the Liouville operator L is defined as LA= [HO, A]. And we have 
assumed that the chromophore is initially in the ground state, p( -co) = I a) (a ( . 

The derivation of R is essentially the same as calculating the time evolution of the density matrix, p. The two 
methods are readily related by pcy,= (( a$Ip)) . In our case, the coherence propagation is along a path, 

L’ G’ L’ G c.: G 

a.u-ab---+aa,bb-+-+ba~, 

where the letter above each arrow indicates the operator responsible for the propagation. Thus we can write 

R(t3rtZ,f,)=~~ah(baIG(t3+tz+tl,t2+t,)Iba))(baI 

The relevant matrix elements of U ( - [ p, ] ) are given by 

(abl vIaa>> =parh > (aal Ulab>= <bal ulaa>> =clhn, (bbl~lab))=((baIUIbb~)=-~~,,. 

The off-diagonal term of G is given by 

12 

((ablG(t*, t,)Iub))=exp 
I 

Aa dt’-y(t,-t,)/2 , 
> 1, 

(A.3) 

(A.4) 

where Ao( t’ ) d(s) +A( t’ ), and y/2 = yb/2 +P, P accounts for dephasing from processes other than coupling 
to the TLS. The diagonal terms are found by solving the rate equations for the populations. Taking y/HIB~L.L2 
gives 

(aaIG(tz,t,)Iaa>=l, 

(~aIG(t2rtl)Ibb))=~~,(1-exp[-~~(t2-t~)l}+~~,(1-exp[-~~~(t:!-t~)l) , 

<(bblG(t,, t,) laa>> =O, 

where h = YJ,&+,, and &= Y~c/Y~. 

(A.51 

Substitutingeqs. (A.3)-(A.5) to eq. (A.2), denoting I paoh by p, and retrieving the index i, we find 

R.(t3, t2, tl)=~4exp(i[w,t,+d,(sl)l(t, -t3)-Y(tl +t3)/2)A(b) CAt3, t2, tl), 

A(t2)=2exp(-Y~t2)+~~c[exP(-y~~t~)-exp(-_y~t2)lv 
t,+**+,, 

Ci(t3, tz, t,)=exp -i 
( 1 IZ +o 

Ai(t’) dt’+i %Ai(t’) dt’). 

Appendix B 

(A.61 

The variance of the phase perturbation from the TLS can be explicitly written in terms of frequency perturbation 
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12 +211 II 2 

a2(cp)= 
U 

U(f) dt’- j g&t’) dt’ 
fZ+fl 0 

t2+11 12+211 

=2 (t, -t’)g(t’) dt’- (t’-f2)g(f’) dt’- (t2+2t, -t’)g(t’) dt’ 0.1) 

12 t2+11 

Here we have assumed that the fluctuations of the TLS are not affected be the chromophore’s behavior, hence 
they can be taken as a stationary stochastic process. This implies that the covariance of the perturbation, g( t, 
t’)=(&l(t) &l(t’)), is in the form g(t, t’)=g(t’-t)=g(t-t’). &l(t) is defined as d(t)-(d(t)), and is 
proportional to the population fluctuation of the TLS relative to its equilibrium. 

We reason that the covariance, ( 6d ( t ) &l ( t’ ) ) , should obey a Markoffian process, 

(&l(t;E,A) &l(t’;E,A))=( [6d(t;E,A)]2) exp(-R(E,A)]t-t’]), 

( [6d(t;E,1)]2) =a2(Ll). 

(B.2) 

The argument is as follows. We recall the phenomenological interaction Hamiltonian in eq. (2.1’ ). d(t) is 
directly related to the population difference of the TLS by A( t; E, A) a Ap( t; E, 2). Solving the equation of motion 
of the TLS, we have 

~(t’;E,I)-~(eq;E,L)=[~(t;E,I)-~(eq;E,IZ)l exp[-WZ~)(f-Ol, 

where t’ > 2. Eq. (B.2) is a direct result of this relation. 

(B-3) 

Since the actual tunneling process of the TLS takes place in a much shorter time than the relaxation time 1 / 
R, it can be modeled as a sudden “jump” between its levels. Thus A(t) takes discrete values: + A0 for excited 
state and - A0 for the ground state. Following eq. (2.1’ ), A0 is defined as the amplitude of the coupling strength 
between the TLS and the chromophore, A,=&-&=A,(E, 2, r). This bistable nature suggests that A(t) has a 
meanvalue (A(t))=Ao[2p,,(eq)-1] andavariance 

a2(A)=4p,,(eq)[l-p,,(eq)lA~, (B-4) 

where p, , (eq) is the probability at equilibrium of finding the TLS in its excited state 

P,,(eq)=exp(-EIkT)I[1+exp(-EIkT)l. 

Thus the variance of A( 2) can be explicitly written as 

a2(A)=sech2(E/2kT)Ai. 

Substituting eqs. (B.2) and (B.5 ) to eq. (B. 1 ), after some manipulation, we have 

~‘(Q))=~[Q(A)~,~(R~,,R~z)I’, 

f(Rt,,Rt2)=(~/Rt,){exp(-Rt,)-(1-Rt,)-exp[-R(t~+t,)][cosh(Rt,)-l1]“2. 

(B.5) 

(B.6) 

Appendix C 

In the In(R) scale, the relaxation distribution function is a constant in the region (R,i,, R,,,). One can 
evaluate the average of the function 

f(Rt,,Rt2)=(~/Rt,){exp(-Rt,)-(1-Rt,)-exp[-R(t2+t,)][cosh(Rt,)-l1}“2 (C-1) 

by examining its behavior in the In(R) scale. In fig. 3, we plot the functionsf(Rt,, O),f(Rt,, R~z), andf(Rt,, 
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Fig. 3. Functions/plotted against a ln(Rt, ) scale. The ratio of 
the two characteristic time scales is set to be f2/fl = 106. 

Fig. 4. Parametric integral F( tz/t, ) and the relative error AF/F 
versusln( 1 +f2/f,). 

Rtz) -f(Rt,, 0) in the scale ofln(Rt,). Ifthe ratio t2/tl islarge,f(Rt,, Rt2) -f(Rt,, 0) can be approximated by 
a step function 

f(Rt, ,Rtz)-f(Rt,,O)xH(R-B,lt,)H(B,lt,-R), (C.2) 

where B, and B2 are constants on the order of unity. As tJt, increases, the contributions of the edges to the 
integral become negligible. Thus this is quite a good approximation for large tJt,. Note that this equation is 
equivalent to eq. (50) in ref. [ 81; however, due to an algebraic error, the latter is off by a factor of fi. 

To extend this approximation to small tJt,, we write 

f(Rt,,Rt,)-f(Rt,,O)xH(R-B,lr,)H[B;I(t,+t,) -RI. (C.3) 

Since we are mainly interested in the integral of this function over In(R), we will only evaluate the error in the 
integral introduced by this approximation. The integral of the right side of eq. (C.3) over In(R) is given by 
ln(1+t2/tI)+ln(B,/B~).Theleftsideofeq. (C.3)givesaparametricintegral 

F(W=j dRCf(Rt,,Rtz)-f(Rt,,O))lR, 
0 

(C.4) 

which can be performed numerically. Both integrals should be equal to zero for t2=0. Thus we conclude that 
B; = B, . In fig. 4, we plot the parametric integral F( t2/tl ) versus ln( 1 +f2/tl ). The relative error introduced by 
this approximation, [F( t2/tl ) -ln( 1 + t2/tl ) ] /F(t,/t, ), is also plotted. As can be seen, the error is never larger 
than 8% for t2/t, > 10. 
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