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Electron transfer from an optically excited donor to randomly distributed acceptors followed
by electron back transfer is treated theoretically for donors and acceptors in a rigid solution.
The forward electron transfer process is described in terms of the excited state population
probabilityP,, (¢) of the donor molecules, while the electron back transfer from the radical
anion to the radical cation is characterized by P,, (), the donor cation state population
probability. Exact expressions for the ensemble averages (P., (#)) and (P, (¢)) are derived.
Numerical calulations are presented for the cation probabilities, the average cation—anion
separation distance (R (#)), and the average cation existence time (7(R)), using parameters
which characterize the forward and back transfer distance dependent rates. Relationships
among (P, (1)), (P, (#)) and the intermolecular interaction parameters provide detailed
insights into the distance and time dependence of the flow of electron probability in an
ensemble of donors and acceptors. The theoretical expressions can be used to calculate
experimental observables. In particular, picosecond transient grating experiments are analyzed,
and it is shown that by combining grating experiments (or other ground state recovery
experiments) with fluorescence experiments it is possible to obtain the intermolecular
interaction parameters for both forward and back transfer and a detailed description of the
dynamics. The calculations presented here for rigid solutions are the precursor to the inclusion
of diffusive motion of donors and acceptors to describe the dynamics of coupled electron

transfer and back transfer in liquid solutions.

I. INTRODUCTION

In a system in which there are donors (low concentra-
tion) and acceptors (high concentration) randomly distrib-
uted in a solid solution, optical excitation of a donor can be
followed by transfer of an electron to an acceptor.' Once
electron transfer has occurred, there exists a ground state
radical cation (D*) near a ground state radical anion
(A7), Since the thermodynamically stable state is the neu-
tral ground state D and A, back transfer will occur. In liquid
solution, back transfer competes with separation by diffu-
sion. Separated ions are extremely reactive and can go on to
do useful chemistry.?

There has been considerable interest in the process of
electron transfer with eventual recombination. A number of
investigations of photosynthetic electron transfer pathways,
both time resolved and steady state, have been reported.'™
In photosynthesis, the complex structure of the system of a
donor and a sequence of acceptors inhibits back transfer, and
efficient charge separation takes place. There have also been
studies of transfer and recombination in liquid solutions.’~'°
Because of the complexity of the problem of coupled forward
and back transfer in a system undergoing molecular diffu-
sion, a detailed statistical mechanical theory describing the
dynamics is lacking. Here the focus is on a system of donors
and acceptors which are in fixed positions. This permits the
ensemble averaged dynamics of the coupled forward and
back transfer processes to be isolated from the influence of
molecular diffusion. In a subsequent publication, we will
present an extension of this work to include diffusion in lig-
uid solutions. '
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A great deal of effort has been devoted to modeling the
microscopic electron transfer rate."?'>'> It has been
shown'®"'® that a transfer rate which is exponentially depen-
dent on distance works well for electron transfer over a con-
siderable range of distances. We employ this form of the
microscopic electron transfer rate to describe both the for-
ward and back electron transfer for a particular donor—ac-
ceptor pair.

The forward transfer process is relatively straightfor-
ward to model.'®!"1%2! The forward transfer process in-
volves the interaction of a donor with acceptors which are
randomly distributed in space. For a donor-acceptor elec-
tron transfer rate which falls off exponentially with distance,
Inokuti and Hirayama®® have developed a statistical me-
chanics theory describing the time dependence of the ensem-
ble averaged forward transfer.

The back transfer problem is more complex. The distri-
bution of distances between the ions D* and A~ is not ran-
dom. It is determined by the details of the forward transfer
process. The distribution will be strongly biased toward
small separations. After electron transfer the system consists
of a cation near an anion. Transfer from the anion to a neu-
tral acceptor is not included since there is no net driving
force for the transfer and barriers for electron tunneling are
generally large.? Transfer from the anion to a cation which
was not the original source of the electron is not included
because the concentration of donors is assumed to be low
and the concentration of donor cations is even lower. The
statistical mechanical theory presented below is an exact so-
lution to the model problem outlined above. The theory cal-
culates the time dependent probabilities that the donor is an
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excited singlet, is a cation, or is a neutral in its ground elec-
tronic state. From these results the average ion-pair separa-
tion as a function of time and the average time for ion-pair
existence as a function of distance are calculated. The effect a
particular acceptor has on the ion-pair probability, with the
influence of the other acceptors properly accounted for, as a
function of time and distance are also calculated. The results
provide an excellent picture of the dynamics of an ensemble
of electron transfer systems.

The theory presented here, when used with a ground
state time dependent recovery experiment, gives the param-
eters characterizing the back transfer distance dependent
dynamics. The results obtained from experiment will give
the microscopic electron transfer rate. The observables
(state probabilities), not the rates, are properly averaged
over the nonrandom distribution of distances. The theory is
used to calculate the experimental observable in a picose-
cond transient grating experiment. A brief account of experi-
mental results has been presented,?? and a detailed account
will be given elsewhere.?® For a particular molecular system,
the use of this theory in conjunction with experiment pro-
vides a comprehensive description of electron transfer and
recombination dynamics.

Il. THEORETICAL DEVELOPMENT

In this section we derive the donor excited state popula-
tion function P, (¢), and the donor cation state population
function P,, (). The exact expression for the ensemble aver-
aged (P, (#)) and (P, (t)) are given. In the model, low
concentration donors and high concentration acceptors are
randomly distributed and held fixed in a rigid matrix. It is
assumed that the donor has only one accessible electronic
excited state, and the acceptor has only one acceptor state.
All states are singlets. The concentration of donor molecules
is low enough that donor—donor electronic excitation trans-
fer does not occur. Because the thermodynamic lowest ener-
gy state of the system is a neutral donor and a neutral accep-
tor and spatial diffusion of the molecules does not occur in
the solid solution, back transfer is geminate. Thus, following
electron transfer from the excited neutral donor to an accep-
tor, the anionic acceptor will not transfer the electron to a
neutral acceptor, but only back to the cationic donor. The
fast time dependent structural relaxation upon ion forma-
tion is not included in the model, although it could influence
the time dependence at very short times. The transfer
rates'®"'? are exponentially decaying functions of distance.

At time ¢ = 0 an ensemble of dilute donors is optically
excited. In the absence of acceptors, the probability of find-
ing the donor still excited at time ¢, P,, (¢), decays exponen-
tially with the excited state lifetime 7, ie., P, (?)

= exp( — # /7). When acceptors are present the probability
decreases more rapidly due to the addition of the electron
transfer pathway for quenching the electronic excited state.
Electron transfer creates a ground state radical cation (D)
near a ground state radical anion (A ™). Since the thermody-
namically stable state consists of the neutral ground state of
D and A, electron back transfer will occur. A diagrammatic
representation of these processes is shown in Fig. 1.

3
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FIG. 1. (A) A diagrammatic representation of electron transfer with re-
combination. The solid lines represent actual transfer events. The dashed
lines show other possible paths. (B) Energy level diagram. The diagram
shows only one of the # acceptors.

The three processes, excited state decay, forward elec-
tron transfer, and electron back transfer have the following
rate constants:

k= 1/7 excited state decay, (1a)

K = L exp(u) forward transfer, (1b)
1 R,—R

K, = —exp| ——— | back transfer, (1c)

where R is the donor—accepfor separation. R, and R, are
used to parametrize the distance scales of forward and back
transfer.'”'>?° a, and a,, characterize the fall off of the elec-
tronic wave function overlap of the neutral donor and accep-
tor states, and the ionic states, respectively.!”'*?° 7 is the
donor fluorescence lifetime.

The differential equations describing the processes for a
donor and n acceptors having a fixed configuration of do-
nor-acceptor separations given by the set of distances R; ina
volume V are:

dP,, (t n
P _ [k+ S KR, |Po (), @)
dt i=1
dP‘ct(t) i :
— = KARIPL (O — K, (RIPL (D), (=1,
(3)

where each R, is the distance from the donor to the ith accep-
tor. P,, () is the probability of finding the donor in its excit-
ed state. P., (#) is the probability of finding the donor in its
cation state with the ith acceptor in its anion state. The

"_PL (1) describes the total probability of finding the do-
nor in its cation state. The terms multiplying P,, (¢) in Eq.
(2) accounts for processes which remove the donor mole-
cule from its excited state. In Eq. (3) the factor
K. (R)P, (1) describes electron transfer which takes the
donor to its cationic staté. Similarly the term
— K, (R,)P, (1) accounts for electron back transfer from
the ith acceptor (anion) to the donor (cation), returning the
donor cation to its neutral ground state.

In the forward transfer process, donor molecules can
transfer an electron to any acceptor with the transfer rate
determined by the D-A separation. Back transfer is distinct-
ly different. The anion can back transfer the electron only to
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the original donor molecule (now a cation). For an ensem-
ble of initially excited donors, the distribution of anion—ca-
tion separations produced by forward electron transfer is not
random but is dependent on the details of the forward trans-
fer. The ensemble average of Eq. (3) properly accounts for
this time dependent distribution.

The solution of Eq. (2) is straightforward:

P. () =e_’“exp[ - i Kf(R,-)t]. 4)

i=1

The decay described by P,, (t) depends on the particular
acceptor configuration considered. Of significance is the en-
semble average (P., (#)) over all possible configurations. Up
to moderate concentration {P,, (¢)) is given by Inokuti and
Hirayama (IH). The IH theory does not include excluded
volume effects. In the Appendix, the theory presented below
will be reanalyzed taking into account excluded volume, and
excluded volume effects are discussed in Sec. 111 D. Here the
molecules are considered to be point particles, and excluded
volume does not come into play. The analysis of the Appen-
dix shows that this is a reasonable approximation up to mod-
erate concentration. The IH result is

(P, (1)) =e "exp] — (C/Co)y g(e’t /)], (5)

where C is the acceptor concentration and C, is given by
Co=3/(4mR}), vis Ry/a, with

2(2) =3f [1 — exp( — Ze~ )15 dy. 6)
0

Instead of directly solving Eq. (3) for P, (), then per-
forming the ensemble average of P’ (¢) and passing to the
thermodynamic limit, we first perform the ensemble average
over all possible spatial configurations of » — 1 acceptors in
a volume ¥V for each term of Eq. (3):

dP; (1)
<T>n_l = <Kf(Ri)Pex (1‘)>"‘l

—<Kb(Ri)Pit(t)>n~1) (7)

where ( ),_, denotes an average over all spatial coordi-
nates except the ith spatial coordinate. (P’ (¢)),_, is the
averaged probability of finding the donor in its cation state
with an acceptor at R; in its anion state. Since the spatial
distribution of acceptors at different points is uncorrelated
and the ensemble averaging procedure is independent of the
time derivative, Eq. (7) can be rewritten as

%(Pzt(R,-,t»n‘. = K, (R)(Po (D))
— Ky (RY(PL (RO, 1. (8)

Casting the problem in the form of Eq. (8) has an im-
portant advantage. It reduces the many particle problem in
Eq. (3) to a two particle problem. This is the key step which
makes the solution of this problem tractable.

The solution of the differential equation (8) is now
straightforward:

(P'ct (Ri)t)>n—l

t
=f K (RYe™ S ®¢="0p (1), dt'. (9)
0

Equation (9) is an exact expression for the probability
of a donor molecule being a cation with an anion at position
R,.K,(R,){P.,(¢")),_, [under the integration sign in Eq.
(9)1] is the rate of an excited donor transferring an electron
at time = t’, i.e., the cation creation probability, and the ex-
ponential term exp ( — K, (R, ) (¢ — t")) reflects the proba-
bility that a cation was created at time = ¢ and still survives
at a later time . Hence the total probability of finding a
cation at time ¢ with the anion at R, is the product of the
cation creation probability and cation survival probability,
integrated over all the times from zero to ¢. Equation (9) was
obtained for the initial condition that at ¢z = 0 all the mole-
cules are neutral, i.e.,, (P (R;,0)),_, =0.

The explicit expression for (P, (¢)},_, is obtained by
averaging Eq. (4) over all acceptor coordinates except the
ith acceptor coordinate. The result is

<Pex(t))n—1

=e~ e MR 1 — 3 (RY/R,) gt /7)),
(10)

where R} = 3V /(4w), V is the volume in which the accep-
tors are distributed.

We can now substitute Eq. (10) into Eq. (9) which
gives

<P::! (Ri’t)>n—l
=K/ (R,)e™ "%

xf exp{ — [1/7+ K/(R,) — K, (R,)]¢'}
(]

X[1— (Ry/R,¥)’g(e"t'/T)]" " \dt". (11)

The total time dependent probability of a donor mole-
cule being a cation is found by averaging over all possible
spatial positions of R;, and summing over all / acceptors:

n R,
Py =3 —4’—’/’- (PL(RuD))u_ R2dR,. (12)
(1]

i=1
Each term in the sum is identical thus

Rl,
(P (1)) =4—’;”—J (PL(R,D),_R}dR,.  (13)
0

At this point we pass to the thermodynamic limit, i.e.,
we take the limit as the number of acceptors n and the vol-
ume V go to infinity while keeping their ratio constant. In
this limit, n/¥ becomes the concentration of acceptors C.
The result gives the total probability that the donor is a ca-
tion:
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(P (1)) = 47CJ°O Kf(R,.)e_K”(R")'f exp{ — [K,(R,) — K, (R) ]t} Xe """ exp[ - (
0 0

— ||dt’ R? dR,
7,’;C0 g e r 3 !

= 477ch K,(R,.)e*"h“‘f”f exp{ — [K,(R,) — K, (R)]t'}
0 (4]

Xe~ "7 exp( - 41rCJ‘ (1—e "M®)R? dR,) dt' R2dR,.
0

The last integral in Eq. (14) is the g(Z) function [Eq. (6)]
written explicitly with y = R /a,.

Equation (14), which involves a double integral over
space and time, can be readily evaluated numerically. The
function inside the integral has an upper bound when K(R)
and K, (R) have the form given Egs. (1b) and (1c). In the
next section we shall discuss the physical properties of

(P, ().

IIl. RESULTS AND DISCUSSION

In the previous section we obtained expressions for the
time dependent probabilities that a donor is in its excited
state or in its cationic state. Having the expressions for
(P ()) and (P, (1)), the ensemble averaged probability
that a donor is in its neutral ground state, (P,(?)), is
(P, (1)) =1— (P, (1)) — (P, (). From these probabili-
ty functions, it is possible to calculate a number of interesting
time dependent properties that are characteristic of electron
transfer and back transfer in an ensemble of donors and ac-
ceptors randomly distributed in a rigid solution. These are
discussed in the following sections.

A. The many particle nature of the problem

The electron transfer rates in Egs. (1b) and (lc) de-
pend exponentially on distance. Therefore electron transfer
is a relatively short range process. The distance scale is on
the order of R, and R,. The short range nature of the trans-
fer rates has led some to believe that only the single nearest
acceptor is important in determining the dynamics of elec-
tron transfer and recombination. '¢ In this sense the problem
would reduce to a one acceptor calculation. Using the results
of Sec. II, it is possible to address the question of the many
particle nature of this problem.

Prior to passing to the thermodynamic limit, the prob-
lem is cast in terms of a finite number of acceptors. Equation
(14) gives the cation probability for an ensemble having an
infinite number of acceptors and concentration, C. Equation
(13) can be used to obtain the same quantity for any finite
number of acceptors # in a volume ¥ such that the ratio is C.
Thus Eq. (13) gives the probability that the donor is a cation
as a function of time and the number of acceptors.

In Fig. 2 we show the time dependent cation probability
for 1, 2, 3, 4, 8, and an infinite number of acceptors. The
parameters used in the calculation are given in the figure
caption. In Fig. 2(A), the concentration is relatively low,
ie., C=0.05 M. While the curves have the same general
shape, even at low concentration the one acceptor calcula-
tion is significantly different from the infinite acceptor re-

(14)

—

sult. Although the two acceptor calculation is substantially
better, the other curves show that convergence is quite slow.
Figure 2(B) shows a calculation for a relatively high con-
centration, C = 0.5 M. Here the one acceptor result is very
inaccurate, and again the convergence is slow. The results
presented in Fig. 2 demonstrate the many particle nature of
this problem. It is clearly insufficient to consider a single
acceptor or a small number of acceptors.
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FIG. 2. 1,2, 3, 4, 8, and infinite particle calculations for the probability that
the donor is a cation. As the number of particles increases the result ap-
proaches the thermodynamic limit. The fact that the 8 particle result has
not yet converged demonstates the need to consider this as a many particle
problem. In (A) the concentrationis C = 0.05M, and (B) C =0.5M. The
other parameters are R, = R, = 10 A, a,=a,=1 A, and 7= 16ns.
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B. Cation probabilities

Calculations of the ensemble averaged time evolution of
the cation probability (P, (#)) are presented in Fig. 3 for
various electron transfer parameters R,, R,, a,, and a,. For
these calculations, the concentration is 0.1 M, and the excit-
ed state lifetime is 16 ns. The other parameters are given in
the figure caption for each curve. One observes that (P_, (¢))
rises rapidly within the first nanosecond, reaches its maxi-
mum value, and then slowly decays to zero. At ¢t =0, the
donor molecules are in the excited state, and no radical pairs
exist. Hence (P., (0)) = 0. After excitation, a fraction of the
systems in the ensemble will fluoresce and a fraction will
undergo forward electron transfer. As a result of electron
transfer, the cation state population builds up. The onset of
radical pair formation marks the beginning of the recombi-
nation process. The competition between the probabilities of
forward electron transfer and recombination deterimines the
detailed shape of (P, (¢)). Curves A, B, and E in Fig. 3
demonstrate that the maximum cation probability increases
as forward transfer parameter R increases, and decreases as
back transfer parameter R, increases. Even for the relatively
small changes in the R parameters the influence on the ca-
tion probability is dramatic. In going from curve B to curve
C, it is seen that reducing both R, and R, the same amount
reduces the maximum cation probability and shifts the maxi-
mum to longer time. Comparison of curves B and D shows
that reducing the magnitudes of a, and a, reduces the time
to reach a maximum in ion pair probability but diminishes
the maximum probability. In the next subsection it will be
shown that short times correspond to short distance transfer
events, while the long time behavior is dominated by the
formation and recombination of ion pairs with large ion sep-
arations.

The time dependent cation probability can be looked at

0.2 T T T T T T T
A
3
z
E o1 | .
2
o
o B
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B
0o C__1 1 1 I I I 5
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Time|nsec]

FIG. 3. The ensemble averaged cation probability for various parameters.
Each curve shows an abrupt rise at short times and then a long decay
C=0.1 M and 7= 16 ns in all curves. (A) % =a, =104, R, =13 A,
R,=10A. (B) a,=a,=10 A, R,=13 A, R, =13A. (C) a,=a,
=104, Ry=10 A, R, =10 A. (D) a;,=a, =05 A, R,=13 A,
R,=13A.(E)a,=a,=10A,R,=10A,R, =13 A.

in several ways. For a system of randomly distributed donors
and acceptors, it is possible to look at the influence of a par-
ticular acceptor on the cation probability as a function of
time and the donor-acceptor separation. To investigate the
effect of the ith acceptor, it is necessary to average over the
positions of all other acceptors, since they in part determine
the rate of electron transfer to the ith acceptor when it is at
location R;. The expression for this conditional probability
(PL(R,1)) is given by Eq. (11). In the thermodynamic
limit the expression is

(PL(R,D) = K, (R)e” Ky(R)!

xj exp{ — [K/(R,) — K,(R,)]t'}
0

xexp| — £~ (S )e(er )|
° (15)

It is informative to plot cross sections of this two-dimension-
al surface as functions of time at constant distance and dis-
tance at constant time. These plots are shown in Figs. 4
and 5.

(PL (R,,1)) vs distance for a unit volume element about
R, is displayed in Fig. 4 for the time ¢ varying from 0.01 to
100 ns. The electron transfer parameters are a, = 1.0 A, a,
=1.0A,R,=10.04,and R, = 10.0 A, and the concentra-
tion of acceptors is 0.1 M. The excited state lifetime is 16 ns.
These are the same parameters used to calculate curve C in
Fig. 3. For a given time, the curves show the probability of
having ion pairs with various ion separation distances. Con-
sider one of the curves for a particular time . If each point on
the curve is multiplied by 47CR ? and the curve is integrated,
the resulting value corresponds to the value of curve C in
Fig. 3 at the time ¢.

In Fig. 4, for each time, there is a most probable cation—
anion separation, and this distance increases as ¢ increases.

05 T T T

04 —
O.1ns

0.01ns

)

(Pi(

R(A)

FIG. 4. The probability that the ith acceptor is an anion as a function of
distance at particular times. At short times the anion lies close to the cation.
At longer times the anion—cation separation moves out. C=0.1 M, 7= 16
ns, R, =R, =104,anda, =a, =1 A.
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FIG. 5. The probability that the ith acceptor is an anion as a function of time
at particular distances. This illustrates that short distance forward transfer
and recombination occurs rapidly and long distance events are slower.
C=0.1M,7=16ns, R,=R, =104, anda, =a, = 1 A.

At short times, most ion pairs that are created have very
small ion separations. These pairs are created quickly, but
because of the small separations, recombination is very rap-
id. Thus the pairs created at short time with small ion separa-
tions do not survive for very long. As time increases, the
distribution of ion separation distances becomes larger. As
can be seen from the figure, it is as if the distribution of
separations moves out as a wave. Pairs with small separa-
tions are created and vanish. Then pairs with larger separa-
tions are created and vanish. It can also be seen from the
figure that for a given set of parameters, there is an effective
maximum separation. This arises because of the excited state
lifetime which acts to cut off very slow, long range transfer
events.

Figure 5 exhibits the dependence of (P, (R;,?)) on the
time for distances R, varying from 5 to 15 A. The parameters
used in the calculation are the same as those in Fig. 4 and for
curve C of Fig. 3. The curves in Fig. 5 are analogous to those
in Fig. 4. For a given ¢, if the value for a particular distance is
multiplied by 47CR ? and then integration over all distance
is carried out, the resulting number is the value of curve Cin
Fig. 3 at time ¢. Like Fig. 4, these curves give a feel for the
partitioning of ion pair separations by time intervals. For
example, at 5 ns, pairs separated by 5.0 A have been created
and recombined. Pairs with 7.0 A separations have almost
disappeared. There are still a significant number of pairs
with 8.0 A separations, but they are rapidly vanishing, while
the probability of finding pairs with 9.0 A separation is just
reaching a maximum. The widths of the curves increase with
increasing separation distance. The larger the separation be-
tween the cation and anion, the longer the radical pair sur-
vives.

C. lon separations and existence times

In this section, the average separation between ions
which make up a pair, (R (#)), and the average cation exis-

tence time (7(R)), are calculated. For pairs of ions, the
average ion separation (R(?)) is defined as

4rfg (P (R,1))R} dR,
4rfe(PL(R,D)R? AR,

where (P! (R;,t)) [Eq. (15)] is the ensemble averaged
probability of finding an ion pair at time 7 with separation R;.
The integral in the denominator is a normalization factor.
Figure 6 plots the average ion separation as a function of
time for various sets of electron transfer parameters. The
concentration is 0.1 M, and the donor lifetime is 16 ns. The
other parameters are also the same as those used in Fig. 3.
For these sets of parameters an abrupt change is observed in
the first nanosecond of each curve. The curves then become
relatively flat. Consider curve C, this uses the same param-
eters as curve C of Fig. 3. Figure 3 displays the probability
that a cation (ion pair) exists. The rapid increase in ion sepa-
ration corresponds to the rapid increase in the cation proba-
bility. The ion pairs created at short time have small separa-
tions and recombine rapidly. The pairs which are created at
longer time have larger separations and survive for much
longer, giving rise to an increase in the average separation.
Comparing curves A and C, and curves B and E, it is
seen that increasing R, increases the average ion separation,
i.e., increasing the range of the forward transfer increases the
average separation. While this is not surprising, it is less ob-
vious that increasing R, also increases the average separa-
tion. This can be seen by comparing curves A and B, and
curves C and E. The increase in average separation is at the
expense of total ion population as can be seen from the popu-
lation curves in Fig. 3 for the same parameters. Figure 6 also
shows the effect of changing a, and a,,. Comparing curves B
and D, it is seen that decreasing a, and @, causes the average
separation to be relatively larger at short time but relatively
smaller at long time. Equations (1b) and (1c) show that

(R(t)) = (16)

15 T I i T !

Time|[nsec]

FIG. 6. The average ion separation as a function of time. The ion pairs with
small separations recombine rapidly and are removed from the average over
distance. The result is the fast increase in separation at short times. The
parameters are the same as those used in Fig. 3.
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reducing either a, or a, is equivalent to rescaling R, — R or
R, — R, respectively. The result is to make the transfer rate
faster for R<R,(R<R,) and slower for R>R,(R>R,).
Therefore reducing a, and a, increases the short time aver-
age separation but decreases the long time separation.

The average cation existence time is defined as
SEt(PL(R,1))dt
S§CPL (R0
where ¢ = 0 is the time at which the ensemble of donors is
excited. It is important to note that (7(R;)) is not the aver-
age lifetime of the ion pairs, since the ion pairs are created at
various times. Therefore, for a.given ion separation the aver-
age existence time is a function of when the pairs are created
and when back electron transfer returns the molecules to
their neutral ground states. (r(R,;)) reflects the time at
which ion pairs, with a particular ion separation, are likely to
exist.

Figure 7 displays (7(R;)) for various sets of electron
transfer parameters. The parameters are the same as those
used in Fig. 3. Consider curve C in Fig. 7. This corresponds
to the cation probability curve C of Fig. 3. At 10 A, the
average existence time is 25 ns. At this time the cation proba-
bility is still substantial but tailing off. At 11.5 A the exis-
tence time has increased to 100 ns. Figure 7 shows that the
smallest distance scale one can probe in the electron transfer
experiment is limited by the time resolution of the instru-
mentation. Again, considering curve C, with an experiment
having 10 ns time resolution, the dynamics of ion pairs hav-
ing separations of 9 A or greater are probed. If the time
resolution is reduced to 1 ns, distances on the order of 7 A
and greater are probed. It is clear that for the parameters of
curve C, picosecond time resolution will be required to ex-
amine the creation and recombination of pairs with very
small ion separations.

(r(R))) = a7n

D. Excluded volume effects

In the theory presented in Sec. II and used to perform
the calculations presented above, the donor and acceptor

50 T

30

(r(R)

20

IOF

R(A)

FIG. 7. The average ion existence time as a function of distance. At short
distances ions will recombine rapidly while at larger distances ions will have
longer existence times. The parameters are the same as those used in Fig. 3.

molecules were taken to be point particles in an infinite con-
tinuum. However, in real systems, molecules occupy finite
volumes. Therefore, some of the spatial configurations
which arise in the ensemble averages for point particles
should be excluded. Two acceptor molecules, or acceptor
and donor molecules, cannot have overlapping occupied vol-
umes. At low concentrations, the number of configurations
which are over counted is negligible and no correction for
excluded volume is necessary to give an accurate result.

In the Appendix, the problem of electron transfer and
back transfer is again considered, and excluded volume is
incorporated in detail into the calculation. The full deriva-
tion is given in the Appendix. The final result is

(P, (1)) = 417wa Kf(R,.)e—Kbm,azJ exp{ — [K,(R,) — K, (R,)]#"}
R, [

@

X
=k Jr

Xe"//’exp(—4fn'a"3 i L

where d is the diameter of the acceptor excluded volume and
pis Cd>. R,, is the sum of the radii of donor and acceptor
excluded volumes. The first term in & of this result is Eq.
(14). In the limit of low concentration or small acceptor size
the higher order terms become insignificant and Eq. (18)
reduces to Eq. (14), the point particle result. At high con-
centrations terms are calculated in Eq. (18) until conver-
gence is reached.

Figures 8 and 9 display calculations of cation probabili-

(1—e "MR)kR2 de)dt'R 2dR,,

(18)

I

ties as a function of time as in Fig. 3. The concentrations of
the acceptors vary from 0.1 to 1.0 M, and other electron
transfer parameters are listed in the figure captions. In these
calculations the molecules occupy volumes which corre-
sponds to spheres of diameter 6 A. This volume is compara-
ble to a common acceptor molecule, benzoquinone. For each
concentration, three curves are plotted, one without ex-
cluded volume (CN), which is given by Eq. (14), one with
only donor—acceptor excluded volume (CC), and one with
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FIG. 8. The cation probability with excluded volume effects. Three types of
curves are plotted. The curves labeled CN do not include excluded volume
effects. The curves labeled CC include donor-acceptor excluded volume
only. The curves labeled CX are the full excluded volume calculations, i.e.,
they have donor-acceptor and acceptor—acceptor effects included. The pa-
rametersare: R, = R, = 10 A, a=a,=1 A, 7= 16ns and the concentra-

tions are C = 0.1, 0.4, and 1.0 M.

both donor—acceptor and acceptor-acceptor excluded vol-
ume (CX), which is given by Eq. (18). The inclusion of only
donor—acceptor excluded volume in the calculation of the
cation probability is obtained by using a cutoff R, in the
lower limit of the integration in Eq. (14).

The concentration at which excluded volume can no
longer be ignored depends not only on the excluded volumes
but also on the system’s electron transfer parameters. R,,,
which accounts for donor-acceptor excluded volume, is ef-
fectively a rate cutoff. R, and R,, which have been defined in
Sec. I1, are the distances at which the forward and back
transfer rates respectively, are equal to the rate of fluores-
cence, 1/7. At distances shorter than R, and R, the rates of
forward and back transfer are faster than 1/7. At longer
distances the transfer rates are slower than 1/7. If R, is very
small compared to R, and R, then the effect of donor—accep-
tor excluded volume is negligible. If R, is some significant
fraction of R,and R, and if the concentration is sufficiently
high to give a reasonable probability of finding an acceptor in
a volume with radius R,,, then the averages will be different
from the point particle case. The cutoff will exclude many of
the fast transfer contributors from the averages.

The acceptor—acceptor excluded volume cannot be in-
cluded by a simple cutoff (see the Appendix). The correc-
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FIG. 9. The cation probability with excluded volume effects for a different
set of parameters. CN, CC, and CX have the same meaning as in Fig. 8. The
parameters are: Ry, =R, =13 A, a=a,=10 A, 7= 16 ns and the con-
centrations are C = 0.1, 0.4, and 1.0 M.

tion for acceptor-acceptor excluded volume eliminates the
configurations from the calculations in which two acceptors
have overlapping volumes. These are included in the point
particle calculations.

As concentration becomes high, in Figs. 8 and 9, the
curves CC, CX, and CN become increasingly different. At
concentrations less than 0.1 M the effect of excluded volume
is negligible for the given parameters and the three types of
curves are essentially the same. For increasingly high con-
centrations, the differences between CC, CX, and CN grow.
The C = 0.1 M curves in both Figs. 8 and 9 show that the
first change arises from donor-acceptor excluded volume.
The CC and CX curves are indistinguishable and somewhat
above the CN curves. The C = 0.4 M curves display larger
differences. The CC and CX calculations are no longer the
same. The full excluded volume calculation CX curves, are
above the CN curves but below the CC curves. This is also
true of the C = 1.0 M curves, and is true in general. Includ-
ing only donor-acceptor excluded volume (CC) over esti-
mates the excluded volume effect. The acceptor-acceptor
excluded volume acts in opposition to the donor-acceptor
excluded volume.

The calculations presented in the previous sections used
an acceptor concentration of 0.1 M. Figures 8 and 9 show
that at this concentration the difference between the point
particle model and full excluded volume calculation is small.
When analyzing experimental data, the results of Sec. Il and
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the Appendix can be used to determine the magnitude of
excluded volume effects.

IV. EXPERIMENTAL OBSERVABLES

The dynamics of electron transfer and back transfer are
determined by five molecular parameters and the concentra-
tion of the acceptors in the sample. In addition to the donor
excited state lifetime, there are four parameters, a, and R,
(forward transfer parameters), and a, and R, (backward
transfer parameters). The forward transfer parameters can
be determined by a combination of concentration dependent
steady state fluorescence quenching and time resolved flu-
orescence quenching experiments.’>** With knowledge of
these parameters, the backward parameters can be obtained
from a ground state recovery experiment. The most common
ground state recovery method is a probe pulse experiment.
Probe pulse experiments, however, generally have problems
with dynamic range because it is necessary to measure a
small change in a large signal. Here we will discuss another
technique, a transient grating experiment. This is a zero
background technique which helps avoid a variety of arti-
facts which can occur in a probe pulse experiment.>* The two
types of experiments are closely related, and an expression
for the probe pulse experiment is given below.

In a transient grating experiment, two excitation pulses,
tuned to the donor absorption wavelength, are crossed at a
small angle in the sample. The optical interference between
the two coherently related pulses generates alternating re-
gions of light and dark, i.e., an interference pattern. In the
peaks of the pattern (light regions) absorption by donors
occurs. In the nulls (dark regions) no absorption takes
place. Electron transfer will occur in the peaks of the pat-
tern. The peaks which have excited states and ion pairs have
a different index of refraction than the nulls where there are
only ground state molecules. Thus there is a spatially period-
ic variation in the samples complex index of refraction. This
acts as a Bragg diffraction grating for a variably delayed
probe pulse brought into the sample at an angle to meet the
Bragg condition for the grating. A fourth beam of light, the
part of the probe pulse diffracted from the grating, is the
signal. It leaves the sample in a unique direction determined
by the Bragg condition. This provides the zero background
signal. As the excited states decay and the ion pairs recom-
bine, the grating decays. As the grating decays, the intensity
of the diffracted signal decreases. Thus, monitoring the de-
cay of the diffracted light as a function of the delay of the
probe pulse measures the decay of excited states and the
recombination of ion pairs.

The transient grating signal S(¢) is proportional to the
square of the peak-null difference in the complex index of
refraction of the medium.*’ For the treatment outlined here,
it is assumed that the probe pulse is tuned to the peak of the
donor absorption and that this wavelength is not absorbed
by donor excited states or by the ions. Thus the grating is due
to ground state depletion. Other possible contributions to
the signal, e.g., excited state gratings, ion absorption grat-
ings, or triplet gratings (arising from intersystem crossing)
can be added when warranted by experimental conditions.

S(2) is given by
S(t) =A(n, — i, ), (19)

where 7, and 7, are the complex indices of refraction at
grating peaks and nulls, respectively, and

Aoy =n,, +ik,,. (20)
Combining Egs. (19) and (20) gives
S(t) =B,(n, —n,)* + By(k, — k,)* 21)

The first term in Eq. (21) accounts for the phase grating
(real part of the index) diffraction, and the second term
accounts for the amplitude grating (imaginary part of the
index) diffraction. For a probe wavelength tuned to the peak
of the donor absorption, the contribution from the phase
grating becomes negligible. Thus,

S(t) = By(k, — k,)?, (22)

k, and k, are the imaginary contributions to the index of
refraction at grating peaks and nulls, respectively.

The k ’s are related to the optical densities D at the probe
wavelength by

D= 4rrlk ’
2.34
where / is the sample thickness and A is the probe wave-
length. Collecting constants,
S(t) =Q(D, — D)% (24)

Thus the signal is proportional to the peak—null difference in
the optical density. Since D = €lC, where € is the donor ex-
tinction coefficient at the probe wavelength and C'is the con-
centration,

(23)

S(1) = Qe’l*(C, — C,)%. (25)
C, is the concentration of ground state neutral donor mole-
cules in the grating nulls. Since there are no excited states or
ion pairs produced in the nulls, C, is the concentration of
donors in the sample, C. C, is the concentration of ground
state neutral donors in the grating peaks. It is less than C
because of the existence of donor excited states and ion pairs.

Cp=C[1_<Pex(t)>_<Pct(t)>]' (26)
Substituting, the transient grating signal is
S(1) = Qe'I’C? [(Po (1)) + (P ()] (27)

Equation (27) shows that the transient grating signal is pro-
portional to the square of number of donor molecules not in
their neutral ground state, i.e., the number of donors which
are electronically excited or which are cations. The time de-
pendence of the transient grating signal is the square of the
time dependent signal in a probe pulse experiment. If the
probe wavelength is not tuned to the maximum of the donor
absorption, there will also be a phase grating contribution.
This is proportional to the amplitude grating contribution,
so the time dependent signal given in Eq. (27) is indepen-
dent of the probe wavelength as long as the only probe ab-
sorption is due to ground state neutral donor molecules. If
there are excited state or ionic absorptions, terms are added
to account for the additional amplitude and phase grating
diffraction. It is straightforward to test for other absorptions
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by tuning the probe wavelength within the donor absorption
peak. If the time dependence is independent of probe wave-
length, only donor absorption is contributing to the signal.

Equation (27) displays the direct connection between
the transient grating signal and the electron transfer param-
eters. Since the forward electron transfer parameters, which
come into the determination of (P, (#)), can be indepen-
dently measured with fluorescence quenching experiments,
the two unknown parameters, the electron back transfer pa-
rameters @, and R, which enter into (P, ()}, can be deter-
mined from the grating measurements. Initial experiments
of this kind have been reported recently.>? A detailed com-
parison between the theory presented in Sec. II and the Ap-
pendix and experiment will be given in a subsequent publica-
tion.”?
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APPENDIX: (P_,(f)) WITH EXCLUDED VOLUME

The theory developed in Sec. II used a model of point
particles distributed randomly in a solid solution. In a real
molecular system, the donor and acceptor molecules occupy
finite volumes. In performing the averages over all spatial
configurations which led to Eq. (14), configurations were
included which are not possible for particles with finite vol-
umes. In this appendix, the problem of electron transfer and
back transfer is reconsidered taking into account excluded
volume. The final result is Eq. (A 13) also given in Sec. III D
as Eq. (18).

The ensemble average over a continuum with considera-
tion of donor—acceptor and acceptor-acceptor excluded vol-
ume is a mathematically formidable task. In order to avoid
complicated multidimensional integrals which take into ac-
count acceptor-acceptor excluded volume, we first attack
the problem using a discrete lattice model. We will derive,
without acceptor-acceptor excluded volume, the cation
probability (P,, (#)) on a lattice. The inclusion of the donor-
acceptor and acceptor—acceptor excluded volume effects in a
lattice calculation of forward transfer [ (P,, (¢))] has been
derived by others.?>?® We will use it to calculate the cation
probability that includes excluded volume effects. The com-
parison betwen these two lattice models allows us to isolate
the contribution of excluded volume. Finally by going to the
continuum limit we obtain a quantitative description of the
cation probability with excluded volume.

The derivation of the cation probability in the lattice
model, without acceptor-acceptor excluded volume, begins
with Eq. (9):

<Pét (Ri’t)>n— LN

=f K (R)exp[ —K,(R)(t—1")]
0

X <Pex (Riﬁtl)>n_ ],th,.
(A1)

This is the probability that the ith acceptor is an anion in the
presence of n — 1 other acceptors occupying N lattice sites.
The average over the n — 1 acceptors reduces the problem to
one acceptor in the presence of the averaged effect of the
other acceptors. In the one acceptor case, acceptor-acceptor
excluded volume does not play a role because the single ac-
ceptor can be located anywhere in space. Thus, the average
over the ith acceptor may be done as in the continuuum:

4 Rv .
(Po (D) =270 f (PL(R)),_  wR?dR,.
Rl”

vV
(A2)

In the prefactor, ¥ is the volume. R,, accounts for the finite
size of the donor and acceptor.
Substituting Eq. (A1) into Eq. (A2) gives

R, pt )
<PCl(t))n,N=i1)1J. fo(Ri)e_Kb(Ri)(l—r)
V Jr, Jo

X{Po (R;t")),_,ndt' R?dR,,
(A3)

where R, = [3V /(41)]"3. (A3)
To obtain the observable, it is necessary to pass to the
thermodynamic limit:

<Pct(t)= lim (Pct(t))n,N (A4)

nN—

Substituting Eq. (A3) into Eq. (A4) gives

<Pct(t)>=4ﬁCJ JKI(Ri)e“Kb(Ri)(I—I’)
R, JO

X lim (Pex(RHt,))n-—l,N dt’ande'

nN— o

(A5)

The factor inside the brackets has been evaluated for a
continuum without donor excluded volume in Sec. I1. For a
cubic lattice the derivation begins with Eq. (4):

P.(D) :e—k:exp[ -3 K,(R,.)t]. (4)

i=1
Performing the average over n — 1 acceptors on N lattice
sites gives

N n—
(Pex (Ri’t))n—l,N = 'k’eij(R')t(l Z e_KJ(Rj)')
N &~
(A6)

Here the sumis over the V lattice sites rather than an integral
over the volume. Taking the thermodynamic limit gives

<Pex (R,)t)>

N
ki — KAR . 1
= e~ ke KR Him (— Y e

"
— K](Rj)t)
nN— o Nj=1

= e""e_K’(R")'exp[ - cd? i (1— e#K’(R")')],
=1
’ (A7)
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where V' = Nd® and d is the lattice constant. This equation
does not take into account acceptor—acceptor excluded vol-
ume. Here any number of acceptors may occupy a single
lattice site. Acceptors are not allowed to occupy the origin

J

(Pct (t)) =47TCJ‘°°J‘ Kf(Ri)e—Kb(Ri)(t-—t')e—K/(R,')t'exp[ _ktl - Cd3 i(l _e—K/(Rj)l')]R?dRi dt'.
R,, JO ;

(the donor site) maintaining an excluded volume around the
donor equal tod *. Substituting Eq. (A7) into Eq. (A5) gives
the cation probability for donors on a cubic lattice with ac-
ceptors:

(A8)

j=1

The lattice sum in Eq. (A8) for a cubic lattice is given explicitly by

i{l —exp [ —KAR))]1} = 2(6{1 —exp [ — K(jd)t ]} +8{1 —exp [ — K,(\3jd)t ]}

j=1 =1

+12 i {1 —exp[ - K,(JF+K%d)t |}(2—6,,)
k=1

+24 i jil{l —exp[ —

I=1k=1

(A9)

K(FHT TR ]3).

The inclusion of acceptor-acceptor excluded volume in the derivation of the factor in brackets in Eq. (A5) has been

derived by others.?®?” The result is

(Pex (Rl’t)> - exp{ - [k+ Kf(Rl)]t}ﬁ [1 —p +pe_K/(Ri)’]

j=1

= exp{ — [k + K (R)]A [ [1— Cd* + Ca%e™ %],

j=1

(A10)

where the product is over the lattice sites. Substituting this result into Eq. (A5) gives the cation probability for acceptors on a

cubic lattice with acceptor—acceptor excluded volume:

<Pct(t)> =41TCf f Kf (Ri)e_Kb(Ri)(r_'l)e—K/(Ri)"e—kt'
R,, JO

ﬁ [1—p+pe ™®"1R2dR, dr".

i—1

(All)

The system we are interested in is a continuum. It is possible to extend Eq. (A 10) to a continuum?”?* by changing the
product in Eq. (A 10) to an exponential of a lattice sum, then taking the logarithm, and replacing the sum by an integral. The

result is

© k o
(P (R,1)) = exp{ — [k + K (R) ]2} exp( —4md = 5 ‘-”; L (1—e” ") R? dR,-)-

(Al12)

Substituting this into Eq. (A5) gives the cation probability for a continuum with donor-acceptor and acceptor—acceptor

excluded volume:

o0 t
(P, (1)) = 417Cf f K,(R)e~ KRy (=11, — KARD:
R,, J0

0 k * ’
Xewr'/fexp[-47rd_3 > Ek—f (1—e_'K’(Rj))kade]R?dRi dt’,
k=1 R,,

(A13)

where R, is the sum of the radii of the donor and acceptor volumes, and d is the diameter of the acceptor volume. Equation

(A13) is discussed in Sec. III D.
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