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A detailed theoretical analysis of optical dephasing measurements performed on complex sys-
tems, e.g., glasses, proteins, or complex crystals, is presented. Unlike simple crystals, such systems
undergo dynamical processes which have a very broad rate distribution. Dynamics can occur on a
variety of time scales ranging from subpicoseconds to seconds, or longer. The formalism is based on
a four-point correlation-function description of line-narrowing experiments. The results of optical
dephasing measurements (time domain) or linewidth measurements (frequency domain) depend on a
time T, which defines the time scale associated with the particular experimental technique. De-
tailed information about the rate distribution of the system’s dynamics is obtained from the change
in the optical dephasing rate as the experimental time scale is changed, not from the dephasing rate
measured in any individual experiment. A fundamental result, which is independent of the nature
of the rate distribution or the coupling to the optical center, is proven; i.e., the derivative of the op-
tical dephasing rate with respect to Ty, the experimental time scale, is directly proportional to the
Laplace transform of the fluctuation rate distribution. As examples, the formal results are applied
to two types of systems, optical centers in a glass and in a complex crystal. For the crystalline sys-
tem Pr**:CaF,, T -dependent optical dephasing data from the literature are analyzed quantitative-
ly, where previously only a qualitative description was possible.
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I. INTRODUCTION

In this paper we will develop a basic and general spec-
troscopic approach to the investigation of materials with
complex dynamics. In systems other than simple crys-
tals, e.g., a glass, dynamical processes can occur on times
scales that range from subpicosecond to literally hun-
dreds of years. In a simple crystal, dynamics involves
fast-phonon-induced fluctuations about an equilibrium
structure. In an amorphous material, in addition to fast-
phonon fluctuations about a local structural
configuration, evolution of the local structure can take
place over a vast range of time scales. In a complex crys-
tal, nonphonon degrees of freedom, such as the local
magnetic spin state, can undergo fluctuations at much
slower rates than the phonon fluctuations. Macro-
molecules, such as proteins, have an extensive number of
structural conformations separated by a wide variety of
potential barriers. Conformational dynamics occur on
many time scales. While it is well known that the dynam-
ics of the local environment influence the dephasing pro-
cess of the optical centers embedded in complex materi-
als, a detailed connection between dephasing measure-
ments in these systems and system dynamics has been
lacking.

The dephasing of optical centers is induced by time-
dependent perturbations of the energy levels involved in
the optical transition. In simple crystals, the dephasing is
induced by phonons, and the emphasis has been on un-
derstanding the nature of the intermolecular interactions
that couple the optical center to the phonon bath. This is
because the distribution of fluctuation rates associated
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with the phonon bath is known. For example,
McCumber and Sturge studied the temperature-
dependent optical dephasing of Cr’" in ruby.! Their
theoretical analysis and the more recent infinite-order
theoretical treatment of the data by Skinner and Hsu? fo-
cused on the strength of the coupling to the acoustic pho-
nons. The fluctuation-rate distribution was included in
the calculation through the Debye density of states that
describes the acoustic phonons. This study and others
(see, e.g., references in Ref. 2) have produced extensive
information on the interactions between optical centers
and phonons.

In complex systems, the problem is fundamentally
different. In addition to phonon-induced dephasing, opti-
cal dephasing can be caused by fluctuations of localized
perturbers, such as the electric and magnetic moments of
the host matrices. The fluctuation-rate distribution of

_ these perturbers is unknown. The problem is to extract

information on the dynamics occurring in the medium
through the influence of dynamics on the dephasing of
the embedded optical centers.

Experimentally, a variety of line-narrowing techniques
have been used to measure optical dephasing. These in-
clude two-pulse photon echoes,’® fluorescence line narrow-
ing,* phosphorescence line narrowing, accumulated grat-
ing echoes,’ incoherent echoes,® saturation optical hole
burning,” and permanent optical hole burning.® In simple
crystals, all of these experiments would be expected to
measure the same optical dephasing rate, referred to as
the homogeneous dephasing rate, 1/7,. It has been as-
sumed by many that all of these techniques will measure
the same optical dephasing rate in complex systems. Re-
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cently, optical dephasing experiments on complex crys-
tals’ and experiments'®!! and detailed theory''? on
glasses have proven that the various techniques, when ap-
plied to the same sample, do not measure the same opti-
cal dephasing rate.

The key is the differences in time scales associated with
the various techniques. Complex systems have dynamics
occurring on many time scales. Techniques operating on
different times scales are sensitive to different aspects of
the dynamics. Utilizing this fact quantitatively can un-
lock a door into the details of the distribution of rates of
dynamical processes.

In a two-pulse photon-echo experiment, where the two
pulses are separated by an temporal interval 7, the de-
phasing of the optical polarization is predominantly
caused by the perturbers whose fluctuation rates are com-
parable to 1/7. If the fluctuation of the perturbers is
much faster than 7, the induced phase error in the optical
polarization tends to be averaged out, resulting in
‘“motional narrowing.”13 If, on the other hand, the fluc-
tuation is much slower than 7, a significant portion of the
perturbers remain static during the measurement. As a
result, the induced transition frequency detuning of the
optical center appears to be static inhomogeneous
broadening and is rephased by the echo pulse sequence.
Thus the characteristic time scale of the measurement is
determined by the temporal separation between the two
pulses, 7, which is usually on the order of the measured
dephasing time itself. At low temperature (<5 K) this is
typically picoseconds to nanoseconds for organic materi-
als and nanoseconds to microseconds for inorganic ma-
terials.

In contrast, techniques such as stimulated echoes!* and
hole burning involve two time scales. Besides a short
time scale 7, analogous to that in the two-pulse echo,
there is a relatively long time scale, T),. Ty is either the
waiting time between the third pulse and the second pulse
in a stimulated echo experiment or the waiting time be-
tween the reading pulse and the burning pulse in a hole-
burning experiment. In the latter case, Ty is typically on
the order of minutes, many orders of magnitude longer
than 7. Like the two-pulse—echo case, the dephasing
rates measured with these techniques arise predominantly
from the contributions of the perturbers with fluctuation
rates that fall into a certain range. The important
difference is that now the range is given by (1/7T,, 1/7),
instead of being around 1/7 as in the two-pulse—echo
case. This makes these measurements, -particularly hole
burning, sensitive to slow fluctuations. If the fluctuation
rates R of most perturbers fall in the range
1/Ty <R <1/, the optical dephasing rates measured
with hole burning, stimulated echoes, or other line-
narrowing techniques can differ significantly from that
measured with the two-pulse echo.

Thus the term “homogeneous linewidth,” which is gen-
erally taken to be the dephasing rate measured in any
line-narrowing experiment, is not well defined in complex
systems. Because the two-pulse photon echo is the only
optical line-narrowing experiment with 7'y, =0, it should
measure the slowest dephasing rate. The dephasing rate
measured by the two-pulse echo has been used as the

11 067

operational definition of the homogeneous linewidth.!!

Due to the variety of local environments associated
with the perturbers, the fluctuation rates are often distri-
buted over a broad range. This is particularly true in
disordered systems such as glasses. In contrast to the
coupling strength, which is a property that belongs to
both the perturbers and the optical center, the
fluctuation-rate distribution is usually intrinsic to the per-
turbers themselves, and hence an intrinsic property of the
host sample. In principle, with proper combination of
different dephasing-measurement techniques, the distri-
bution can be mapped out. Thus information about an
intrinsic physical property of the sample can be extracted
by measuring an extrinsic property, i.e., the dephasing
behavior of doped optical centers.

As just discussed, the time scale associated with the
two-pulse photon echo is typically on the order of pi-
coseconds to nanoseconds for organic systems and
nanoseconds to microseconds for inorganic systems,
whereas the waiting time T, in a hole-burning experi-
ment is typically on the order of minutes. In most cases,
however, a major part of the distribution falls into the
temporal range between the echo and hole-burning time
scales. To map out the fluctuation-rate distribution re-
quires information within this range. This can be accom-
plished with several existing experimental techniques
such as stimulated echoes, accumulated echoes,”® and
transient hole burning,”!* where the waiting time T}, can
be varied continuously through this range.

We previously addressed the issue of using waiting-
time-dependent dephasing measurements to probe the
fluctuation-rate distributions in a special case of the stan-
dard two-level-system (TLS) model of glasses.!? There,
for mathematical simplicity, the fluctuation was treated
as a Gaussian-Markoffian stochastic process.'® In this
paper we will present a systematic investigation of the use
of line-narrowing techniques to probe the fluctuation-rate
distributions in complex systems. In many real systems
the localized perturbers can be reasonably modeled as
two-level systems. For example, in the TLS model of
glasses!” or spin flips of spin-1 nuclei in complex crys-
tals,’ the fluctuations correspond to the transitions be-
tween the two levels. Thus we will use a “sudden-jump”
model,'®!° which gives a more realistic description of the
fluctuations. A more general discussion, which is in-
dependent of the model of the fluctuations, is supplied in
Appendix B.

It will be shown that waiting-time-dependent dephas-
ing measurements can indeed be used to reveal the
fluctuation-rate distributions, and hence the dynamics in
complex systems. A general relation between a waiting-
time-dependent dephasing measurement, viz., the stimu-
lated echo, and the fluctuation-rate distribution function
of a complex system, regardless of the details of the cou-
pling to the optical center or the spatial distribution of
the perturbers, is found to be

dIn(I

)
3T, « [dR P,(R)exp(—RTy) . (1.1)

That is, the derivative of the echo-decay function is
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directly proportional to the Laplace transform of the
fluctuation-rate distribution function. This result is of
central importance. We will demonstrate that analogous
relationships for other models of the fluctuations, e.g.,
Gaussian fluctuations, can also be obtained.

For other waiting-time-dependent dephasing measure-
ments, such as transient hole burning, fluorescence line
narrowing, and accumulated echoes, similar relations can
readily be established. For example, transient hole burn-
ing, the frequency domain equivalent of the stimulated
echo, is related to the stimulated-echo decay function
through Fourier transform.!! One can relate the result of
a waiting-time-dependent hole-burning measurement to
the fluctuation-rate distribution by simply replacing I in
Eq. (1.1) with the inverse Fourier transform of the hole
shapes. Relationships between the results of other exper-
iments and the fluctuation-rate distribution can be estab-
lished in a similar manner.

II. GENERAL FORMULATION
OF THE STIMULATED-ECHO-DECAY
FUNCTION

It has been proven previously that coherent nonlinear-
optical measurements in disordered systems involving
two or three input laser fields can be described in terms of
four-point correlation functions.?® It has also been prov-
en that for optical dephasing measurements, such as
two-pulse echoes, accumulated echoes,'”!> hole burn-
ing,!! and fluorescence line narrowing,!! the appropriate
four-point correlation functions are just variations of the
four-point correlation function that describes the stimu-
lated echo. Thus, by developing a proper four-point
correlation function for the stimulated echo, we will be
able to describe all line-narrowing experiments that are
currently in use. This four-point correlation function has
been discussed in another context, where it is known as
the decay function of the stimulated echo.! 131921

Consider a stimulated-echo experiment where the time
delay between the second and first pulse is 7, and the de-
lay between the third and second pulse is 7,. The decay
of the echo signal is governed by the four-point correla-
tion function!!> 12161821

C(T,TW,T)=<exp > , (2.1

N
iy @i, Ty)
j

r Ty +27
¢)(rTw)=[ Aa)j(t)dt~—fT:+T Aw;(n)dt , (2.1a)

where N is the number of the perturbers in the averaging
volume ¥ and ( ) denotes averages over both the distri-
bution of the perturbers and the history path of the per-
turbation Aw;(¢). The latter average is the result of an
ensemble average of optical centers.

Many of the aspects of the derivation that involve the
sudden-jump model are given in Refs. 18 and 19. Those
aspects will only be briefly repeated here.

Assume that the time-dependent frequency modulation
Aw;(t) originates from sudden jumps between the two
levels of the perturbers. The phase perturbation can then
be rewritten as'®
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27
. h(tde |, (2.1b)

- Ty +
0,(r, Ty)=Ao, [foh(t)dt—fTW+
where / (¢) is a random telegram function that only takes
on values of +1 and —1. The perturbers are taken to be
very weakly coupled with each other, and hence to be sta-
tistically independent. The total number of perturbers is
considered to be large, N >>1. Under these conditions,
the correlation function becomes'®

C(7,Ty,7)=exp{ —N{1—explig(t,Ty) Dy} . (2.2)

The averages in the exponent are over the random history
path H, the spatial distribution 7, and the internal param-
eters of the perturbers, A. We have dropped the subindex
J since the average over the spatial distribution implys
that all perturbers are equivalent.

To describe the dynamic behavior of a sudden-jump
two-level perturber, two internal parameters are needed:
the energy separation between the levels and the coupling
strength to the environment that acts as a heat bath. It is
this coupling that causes the sudden jumps between the
two levels, which in turn induce the optical dephasing.
In most cases the details of the coupling of the perturber
to the heat bath can be conveniently replaced by a phe-
nomenological parameter R, the relaxation rate between
the two levels towards equilibrium. In simple systems, as
considered in Refs. 18 and 19, both the energy separation
and the relaxation rate are constant for all perturbers. In
complex systems, however, the distributions of both pa-
rameters usually span broad ranges.

The averages over space and history have been carried
out in Ref. 19. The average over space was carried out
first with the assumptions of a uniform spatial distribu-
tion of perturbers and a dipole-dipole coupling mecha-
nism between the perturbers and the optical center. It is
advantageous to change the sequence of the averages, i.e.,
to average over history first. This avoids the necessity of
imposing the two assumptions and makes the treatment
more generally applicable.

Following the procedure employed in Ref. 19, we
derive the Laplace transform of the history average,

f0w<1—exp(i¢)),{e_”fd¢
=[1+W,/(c+2W )+ W, /(0c+2W,)]
X A{1/k*—1/[k>+(A0)*]} ,

oo +2W,+2W,)

kK*=(oc+W,+W,)*
oWt W) W o2y

2, W, (o+W, +W,)?
(W +W,)? (0 +2W )0 +2W,)

X (AW, +W,)+o{l—exp[—(W,+W,)Ty1}) .
(2.3b)

W, (W,) is the transition rate from the lower (upper) to
the upper (lower) state. The transition rates are related
to the relaxation rate towards equilibrium by
W,+W,=R, subject to the restriction W,/W,
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=exp(—E /kT), E being the energy separation between
the two levels.

The inverse Laplace transform of Eq. (2.3) is generally
of the form

(1—expli@)) g =F(R7,Aw T;x)
+Fy,(R7,Ao 1;x)[1—exp(—RTy)],
x=E/2kT , (2.4)

where F| and F, are integral functions. In the limit of
Ty =0, only the first term on the right-hand side of the
equation, F|, remains nonzero. Thus this term describes
the dephasing of the two-pulse echo. It can readily be
verified that F| goes to zero at R >>1/7 and R <<1/7.
This means the two-pulse—echo decay is induced mainly
by perturbers whose fluctuation rates are comparable to
the measured optical dephasing rate R ~1/7, which is
consistent with the qualitative discussion in Sec. I (since,
in the two-pulse—echo experiment, the measured dephas-
ing time is of the same order of magnitude as the pulse
separation, 7). The temporal behavior of the two-
pulse—echo decay is determined by the type of coupling of
the optical center to the perturbers, Aw(r), and the spa-
tial and the relaxation-rate distributions of the per-
turbers.

The second term of the right-hand side of Eq. (2.4) de-
scribes the additional dephasing introduced by the finite
waiting time in the stimulated-echo experiment or in oth-
er experiments such as hole burning. This additional
waiting-time-dependent dephasing term is conventionally
referred to as “spectral diffusion.”!®!81%21 Tt is caused
by slow processes that appear static on the time scale of 7
and contribute little to the two-pulse—echo decay. We
should point out that for systems in which the inverse of
the fluctuation rates continuously span from the two-
pulse—echo time scale to considerably slower time scales,
the distinction between the two terms is just bookkeep-
ing. There will be rates that contribute to both terms.

The function F, is independent of T',. It determines
only the functional form of the stimulated-echo decay
arising from spectral diffusion (line shape in a hole-
burning experiment), whereas the rate of the echo decay
(linewidth) is determined by the factor 1—exp(—RTy,).
As discussed in Refs. 16, 18, and 19, when the line shape
is Lorentzian and the distribution of relaxation rates is a
8 function, 8(R —R,), the linewidth is linearly propor-
tional to the factor 1—exp(—RyTy ) in the long-
waiting-time limit Ty, >>7. When the line shape is not
Lorentzian, the linewidth is related to the factor
1—exp(—RT),) in a more complicated manner.

As a function of the relaxation rate R, F, is drastically
different from F,. While falling sharply to zero at
R ~1/7, the function F,(R7,Aw 7;x) becomes indepen-
dent of R at R <<1/7, i.e., it approaches a constant in
the slow-rate limit. On the other hand, the factor
1—exp(—RTy,) becomes significant only when Ty, =1/
R. Thus the term F,(R7,Ao1;x)[1—exp(—RTy )]
is a constant in the region 1/7>R >1/Ty, and
it falls quickly to zero at the two limits. This means spec-
tral diffusion is induced mainly by perturbers having in-
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verse fluctuation rates falling in the temporal range be-
tween the two-pulse—echo measured dephasing time and
the waiting time, 7<1/R <Ty,. In complex systems the
fluctuation rates usually span a broad range. Thus, in the
long-waiting-time limit T’y >>7, the measured dephasing
rate can be totally dominated by spectral diffusion.

The windowlike behavior of the term F,(RT7,AwT;
x)[1—exp(—RTy)] provides us with a fundamentally
new, potentially powerful, way of doing spectroscopy. As
we have seen, the falling edge at the slow-rate end is
governed by the factor 1 —exp(—RTy,). Simply by vary-
ing Ty we can experimentally vary the number of the
perturbers that contribute to the optical dephasing ac-
cording to their fluctuation rates. Hence we can map out
the fluctuation-rate distribution in the sample. We
should observe that the dephasing becomes faster
(linewidth becomes broader) as the waiting time is in-
creased.

To make the discussion more quantitative, we need to
calculate the exact form of the function F, in the long-
waiting-time limit. From the definition of the Laplace
transform, we see that the condition 1/7>>R,1/Ty, is
equivalent to o >>R,1/Ty,. In this limit the Laplace
transform in Eq. (2.3) becomes

{(1/0—0 /[0*+(2 Aw)*]} /2 sech*(x)[ 1 —exp(—RTy )] .

The inverse transform is found to be

(1—explip)) g =sin*(Aw 7) sech’(x)[1—exp(—RTy)] ,
(2.5)

which implies

F,(R7,Aw ;x)=sin*(Aw 7) sech®(x), 7<< Tw,1/R .

(2.5a)

Analysis of the functional behavior of F, shows that Eq.

(2.5) is an accurate approximation for 1/R ~ T} = 107.

We note that this result can also be derived from a simple
two-level rate-equation calculation (see Appendix A).

Thus the four-point correlation function for the long-

waiting-time limit is

C (1, Ty,7)=exp{ — N (sin’(Aw 7) sech*(E /2kT)

X[1—exp(—RTy)1) 1} -
(2.6)

The equation gives a complete description of the decay
behavior of a stimulated echo if and only if the time delay
between the first two pulses, 7, is much shorter than both
the inverse of the fluctuation rates of a large number of
perturbers, 1/R, and the waiting time between the third
pulse and the second pulse, T, . Since, as discussed ear-
lier, all other optical line-narrowing experiments can be
described in terms of the correlation function of the
stimulated echo, this equation provides a general descrip-
tion of optical dephasing measured by all techniques that
involve a waiting time relatively long compared to the de-
phasing time measured by the two-pulse echo.

It is clear that Eq. (2.6) becomes invalid if the fluctua-
tion rates of all the perturbers fall in the range of
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R 21/7. In this case the exact form of the correlation
function is required. A derivation of the exact correla-
tion function, limited to the dipole-dipole coupling and
the uniform spatial distribution, can be found in Refs. 18
and 19.

In most complex systems, however, the fluctuation
rates of a large portion of the perturbers are in the range
R <1/7. To map out the rate distribution, i.e., to mea-
sure the waiting-time dependence of the dephasing rate,
one need only focus on the region of R ~1/Ty,. Thus, if
the condition Ty, = 107 is satisfied, we can safely use the
limiting form of the four-point correlation function, Eq.
(2.6). The total amount of optical dephasing induced by
perturbers with relatively fast fluctuation rates can be
evaluated by extending the validity of Eq. (2.5) to
R 21/107 by employing a step function that goes to zero
at R =1/7. When using Eq. (2.6), one should also bear in
mind that there is another residual dephasing term that
originates from the function F;(R7,Aw 7;x) (and from
other fast-fluctuation processes such as phonon perturba-
tions). These residual dephasing terms constitute the
background of the waiting-time-dependent dephasing-
rate measurements. As will be seen, however, this back-
ground can be eliminated further by a differential detec-
tion scheme.

Derivation of a more explicit form of the correlation
function from Eq. (2.6) for specific systems requires
knowledge about the form of the coupling between the
optical center and the perturbers, and the spatial and
internal parameter distributions of the perturbers. Exam-
ples of specific systems will be discussed in Sec. IV. In
Sec. III we develop a general relation between the
waiting-time-dependent dephasing measurements and the
fluctuation-rate distribution of the perturbers.

III. PROBING THE FLUCTUATION-RATE
DISTRIBUTION

A. Definition of the fluctuation-rate distribution
In general, the average in Eq. (2.6) is in the form of
(sin*(Awt) sech®(E /2kT)[1—exp(—RTy)]1),,
= [drdE dR P(r,E,R)sin¥(Aw )
Xsech?(E /2kT)[1—exp(—RTy)] , (3.1

where P(r,E,R) is the probability density of finding a
two-level perturber with energy separation E and relaxa-
tion rate R at position r. We define the fluctuation rate
distribution to be

P(R)=A [ drdE P(1,E,R)sinXAw 7)sechX(E /2kT) ,
(3.1a)

where A4 is a normalization factor. Thus the average can
be rewritten as

(sin’(Ao 7) sechX(E /2kT)[1—exp(—RTy)1) .5

« [dR P(R)[1—exp(—RTy)]. (3.1b)
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The physical meaning of the fluctuation-rate distribu-
tion P(R) can be interpreted as follows. When the back
interaction of the optical center is weak compared with
that of the heat bath coupled to the perturbers, the ex-
istence of the optical centers has little effect on the dy-
namics of perturbers, hence internal parameters are in-
dependent of r. The average over r can then be carried
out separately and Eq. (3.1) becomes

(sin*(Aw 7) sech’(E /2kT)[1—exp(—R Ty )] -
« [dE dR P(E,R)

XsechX(E /2kT)[1—exp(—RTy)] . (3.2)

Here we have assumed Aw is only a function of r. We
note that both functions sech®( E/2kT) and
1 —exp(—RT)y,) act as cutoffs, the former restricting E to
the range E <2kT and the latter restricting R to the
range R <1/Ty. In other words, the optical dephasing
is induced only by those perturbers with E <2kT and
R <1/Ty. In conventional temperature-dependence
studies, the dephasing rate is measured as a function of
temperature at a fixed T,. This effectively maps out the
energy distributions of those perturbers whose relaxation
rates are larger than 1/Ty,. Similarly, in our context the
fluctuation-rate distribution

P(R)=4 [ dE P(E,R)sech®(E /2kT) (3.22)

is defined such that it is the average relaxation-rate distri-
bution of those thermally accessible perturbers, i.e., the
rate distribution of the fluctuating perturbers. In this
case, P(R) describes the bulk fluctuations in the sample.

When the back interaction of the optical center is
strong, all three variables, r, E, and R, can be correlated.
Because the coupling usually is strongly dependent on the
distance, the dynamics of the perturbers near an optical
center can significantly differ from those of the “distant”
perturbers. If the analytic form of the correlation be-
tween the spatial positions r and the other two parame-
ters is known, the spatial average can, in principle, be
carried out. If the analytic form of the correlation is un-
known, one can still divide the perturbers into finite spa-
tial domains, and consider the perturbers in each domain
to be distinct species, with their own fluctuation-rate dis-
tribution

Pi(R)= 4 [ dE P,(E,R)sechXE /2kT) . (3.32)

The optical dephasing is determined by
[ drR [2 N, {(sinX(Aw 7)),P;(R) |[1—exp(—RTy)],

(3.3b)

where N; is the number of perturbers in each domain.
The fluctuation-rate distribution, P(R), defined in Eq.
(3.1a) now is given by the whole expression inside the
large parentheses in Eq. (3.3b). Further discussion about
the domain treatment of the correlation between the re-
laxation rates and the coupling strengths will be given in
Sec. IV B. Clearly in this strong-coupling case P(R) only
describes the fluctuations actually “seen” by the optical
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centers; P(R) can be significantly different from the bulk
fluctuations in the sample.

B. Probing the fluctuation-rate distribution

Consider a stimulated echo measured at a series of
different waiting times T',. For each T, the echo signal
is recorded as a function of the delay time between the
second and first pulse, 7. The echo signal I¢(7; Ty ),
which will be the central focus in the discussion, is pro-
portional to the four-point correlation function of the
stimulated echo (or the stimulated-echo—decay function)
developed in Sec. II. We will frequently refer to it simply
as the echo-decay function. Since the Fourier transform
of the hole spectrum in a hole-burning experiment is pro-
portional to the echo-decay function, in discussing
Is(7; Ty ) we are also discussing the Fourier transform of
the hole spectrum.

In view of our previous discussion, the echo signal
I4(7; Ty ) varies with the waiting time 7', according to

In(Ig) —fO‘”dR P(R)[1—exp(—RTy)]+ - ,

(3.4)

where the ellipsis represents contribution of fast fluctua-
tions. Here the fast fluctuations refer to both fluctuations
from localized perturbers with R = 1/7 and other pertur-
bations such as coupling to phonons. The population re-
laxation, i.e., the longitudinal relaxation (7';) process,
has been ignored. An important implication of this equa-
tion is that the temporal shape of the decay function does
not change with the waiting time if the echo decay is
dominated by slow fluctuations.

The derivative of the logarithm of the echo-decay func-
tion with respect to Ty, which is a measure of the in-
crease in dephasing rate with increasing waiting time, is
given by

aln(Is)

3T, — [ dR P(R)R exp(—RTy)

=— [dR P,(R)exp(—RTy) . 3.5)

From Eq. (3.5) it can be seen that the derivative of the
echo-decay function with respect to Ty, is insensitive to
the background of fast fluctuations. Equation (3.5) also
shows a very simple relation between the derivative of the
stimulated-echo-decay function and the function P;(R),
namely, the derivative of the natural logarithm of the
echo-decay function with respect to T, is proportional
to the Laplace transform of P, (R).

It is worth noting that the substitute function P(R) is
the distribution function of the fluctuation rates on a
In(R) scale,

P(R)d(InR)=P(R)dR .

In disordered systems, the fluctuation spectra of macro-
scopic observables are often of the form 1/f, over a
broad range of frequencies f. This implies that the
fluctuation-rate distributions are of the form of 1/R (see,
for example, Ref. 22). This universal feature can be attri-
buted to the fact that fluctuation rates in disordered sys-

tems are related to microscopic variables o by R cce ™.
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Even a moderately broad distribution of ¢ will result in a
fluctuation-rate distribution of the form of 1/R over
several orders of magnitude. The fluctuation-rate distri-
bution on the In(R) scale, P,(R), is directly proportional
to the distributions of the underlying microscopic vari-
ables. When the fluctuation rate is not related to a mi-
croscopic variable in such a manner, the use of P;(R)
should not complicate the mathematical treatment. In
the following discussion, we will only consider P(R).

If all the nonzero parts of P;(R) fall within the scan
range of Ty, one can, in principle, map out the distribu-
tion function by performing an inverse Laplace transform
on the derivative of the logarithm of the echo signal with
respect to Ty, In a hole-burning experiment, if the hole
shape is Lorentzian, the equivalent procedure is to in-
verse transform the derivative of the hole width with
respect to Ty,. In those cases where the entire range of
P,(R) cannot be covered, one can select a trial distribu-
tion function, perform the Laplace transform, and com-
pare it to the data.

To extend our discussion to the cases other than
sudden-jump two-level perturbers, we consider an alter-
native form of Eq. (3.5),

3In(Iy)
s -« — [ d(InR)P(R)RTy exp(—RTy) .

o (3.6)

Letting ¥ =InR and v =In(1/Ty,), we can further reduce
Eq. (3.6) to

dIn(Iy)

Ony) « —fdu Pe")YW(u—v),

AIn(Ty) G.6a)
.6a

W (u)=exp(u —e") .

Here again we have a very simple relation between the
derivative of the stimulated-echo-decay function and the
distribution function P;(R): the derivative of the natural
logarithm of the echo-decay function with respect to
In(Ty, ) is proportional to the convolution of P;(R) and a
single-peaked function W (u).

It is interesting to note that W (u) acts in a manner
equivalent to an instrument resolution function; in any
kind of measurement, the measured signal is always a
convolution of the real signal and the resolution of the in-
strument. For example, the temporal shape of a signal
measured by a scanning boxcar integrator is the convolu-
tion between the actual temporal shape and the gate
width of the boxcar. In analogy, we define W(u) as the
“gate function.” Clearly, if the variation of distribution
function P;(e*) is slower than the “gate width,” Eq.
(3.6a) simply gives

aln(Is)

WW‘PI(I/TW) .

(3.7

Equation (3.6a) is not limited to sudden-jump two-level
perturbers. Rather, it can be applied to arbitrary per-
turbers. The exact form of the gate function differs for
different perturbers. In Appendix B we calculate the gate
function for perturbers undergoing quasicontinuous
motion that can be described by a Gaussian-Markoffian
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stochastic process. For dipole-dipole coupling and uni-
form spatial distribution, the gate function is given by

W(u)=exp(u —e*)/[1—exp(—e*)]"/? . (3.8)

We see that this gate function has the same characteris-
tics as that in Eq. (3.6a); both are single peaked about
u =v, and both have a width Au ~In(1/T),). Since the
sudden jump and the Gaussian processes represent two
extreme cases of the nature of the fluctuations of the per-
turbers, we anticipate that these two common features
are universal properties of the gate functions for arbitrary
forms of the fluctuations (see Appendix B).

Thus the procedure for obtaining information about
the fluctuation-rate distribution is as follows. First, mea-
sure the stimulated-echo-decay curve I¢(7;Ty ) at a
series of waiting times T'y,. Then take the derivative with
respect to InT',. If the nature of the perturbers is known,
one can use the corresponding gate function to decon-
volve Eq. (3.6a) to get the rate distribution. In particular,
if the perturbers are two level in nature, the rate distribu-
tion function is simply the inverse Laplace transform of
Eq. (3.5). If the nature of the perturbers is unknown, a
plot of the derivative as a function of In(1/Ty ) should
give the approximate shape of the distribution function.
If the distribution function is varying slowly compared to
the width of the gate function, the plot is an accurate rep-
resentation of the distribution function. In Sec. IV we
will illustrate the procedures with some concrete exam-
ples.

IV. APPLICATIONS

To apply the technique described in Sec. III we need to
further develop the correlation function in Eq. (2.6). For
a particular system, this requires knowledge of the spatial
and the internal parameter distributions of the perturbers
and the form of the coupling between the optical center
and the perturbers. The two most common cases in the
condensed-matter systems, i.e., glasses that can be treated
as continuous media and complex crystals that consist of
discrete lattices, are considered. Other complex systems,
such as proteins, could be handled in an analogous
manner.

At low temperatures, in both glass and complex crystal
systems, optical dephasing is induced predominantly by
the slow fluctuations. In glasses, the fluctuations are
caused by the varying local structural configurations,
which are generally described by the two-level-system
model.'”?3 This model has been successful in elucidating
physical properties of glasses, such as their low-
temperature heat capacities.'”?* The fluctuation-rate dis-
tribution varies continuously over a broad range. Mea-
surements on chromophores in glasses have found that
the results of spectral hole-burning and two-pulse
photon-echo . experiments differ significantly.!®!!  Until
recently, the spectrum of the hole was considered to be
the Fourier transform of the echo decay. In fact, the de-
phasing rates obtained from the widths of the holes are
found to be significantly larger than those measured with
the photon echo. In light of the developments given in
the preceding sections, this is as expected. The authors
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of Ref. 11 analyzed both experiments and presented a
correct description of the fundamental difference between
these two experiments, and other line-narrowing experi-
ments, based on the dependence of the experimental ob-
servables on Tp. Using the simplest TLS model of
glasses [P(R)=1/R for all R], they were able to explain
the observed differences between the hole burning and
echo experiments semiquantitatively.

In crystals with paramagnetic optical centers, the fluc-
tuations can be caused by the flipping of electronic or nu-
clear spins of the host lattice (or of the depant, if the con-
centration is sufficiently high).>?*> When the coupling be-
tween the optical center and the surrounding spins is
weak, the flip rate is usually a constant, i.e., the distribu-
tion is a 8 function (several 8 functions if more than one
species of spins exist). In this case, the flip rate is just a
property of the pure host lattice. The flip rate can be
severely affected, however, by an external field. Thus the
free bulk flip rate may not be readily measured with stan-
dard spin-resonance techniques.

When the coupling between the optical center and the
host spins is strong, the dynamics of the spins is affected
by the existence of the optical center.” The strong cou-
pling detunes the spins from the bulk resonance frequen-
cy and hence slows down their flip rates. The greater the
coupling strength, the slower the flip rate. Since the cou-
pling strength is dependent on the distance between a
spin and the optical center, the flip rates are distributed
over a broad range. In this case, the distribution is in the
form of many peaks, because of the discrete nature of the
system. As in glasses, two-pulse—echo and hole-burning
dephasing measurements have been observed to differ
significantly in such complex crystals.’

We note that the fluctuation-rate distribution in com-
plex crystals is extrinsic, i.e., it is introduced by the opti-
cal center. In contrast, the fluctuation-rate distribution
in a glass is essentially intrinsic. It is a bulk property of
the glass, although recent experiments suggest that the
rate distribution may also be modified by the perturbers’
coupling to the optical center.2®

A. Stimulated-echo—-decay function in glasses

In glasses, it is reasonable to assume that the per-
turbers are uniformly distributed over space, i.e.,

P(r)dr=dV/V ,

where r is the position relative to the optical center. The
interaction between a perturber and an optical center has
been proposed to be dipole-dipole in nature. The cou-
pling could be of an electric dipole of a localized per-
turber to the permanent electric dipoles of the ground
and excited states of the optical center, or it could be an
“elastic dipole” induced by the perturber that produces a
strain field at the optical center which couples to the elec-
tronic states of the center.”»?” The dipolar coupling
mechanism is consistent with the TLS model. It has sup-
port from a variety of experiments.?> Therefore, we will
assume the interaction has the form of dipole-dipole cou-
pling, Ao=7/r>.

For simplicity, we also assume that the backinteraction
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of the optical center can be ignored. Thus the internal
parameters of a TLS are considered to be uncorrelated
with its distance to or its coupling strength with the opti-
cal center. Using these assumptions and making the sub-
stitution 77/ r3=x, we can perform the spatial average in
Eq. (2.6). The four-point correlation function then be-
comes

C (1, Ty, 7)=exp{ —ar{7sech¥E /2kT)
X[1—exp(—RTy)1),} ,

a=Q2m*/3)(N/V), 4.1)
where 7 is the coupling constant averaged over the rela-
tive orientations of the perturbers,

7=Clnl)e .

The relation

I sin’(x)dx _ 7
0 x2 2

is also used in the derivation. We note that this result is
essentially identical to that given in Ref. 28.

From Eq. (4.1) we see that the decay function of the
stimulated echo at long waiting time Ty, >>7 is always
exponential. The finite waiting time adds a waiting-time-
dependent factor 1 —exp(—RTy,) to the echo-decay rate,
i.e., spectral diffusion increases the decay rate (increases
the linewidth) according to {1—exp(—RTy)),. Note
that we are working in the limit T, >>7. The spectral
diffusion contribution is not governed by this factor for
very short waiting times.

We emphasize that the exponential decay is solely a re-
sult of a uniform distribution of dipolelike perturbers, in-
dependent of the details of the internal parameter distri-
butions of the perturbers. Since the four-point correla-
tion function that describes the hole-burning signal is just
the Fourier transform of the stimulated-echo four-point
correlation function,!! the fact that all the hole shapes so
far observed in glasses are Lorentzian is very convincing
evidence that the interaction between the perturbers and
the chromophores in glasses is dipole-dipole.??

That a Lorentzian line shape is related to uniformly
distributed dipolelike perturbers was first realized in the
analysis of spin-resonance experiments (see, e.g., Refs. 16,
18, 19, and 21). It has been applied to the analysis of op-
tical dephasing measurements by many authors (see, e.g.,
Refs. 11 and 27). However, it should be pointed out that
this conclusion only applies to line shapes measured in
the long-waiting-time limit Ty >>7. Without detailed
knowledge about the internal parameter distributions of
the perturbers, one cannot reach any conclusion about
the functional form of the decay of a two-pulse echo.
The observed exponential decays in two-pulse-echo ex-
periments, which correspond to Lorentzian line shapes,
require a fluctuation-rate distribution proportional to
1/R for rates on the order of 1/7 in addition to the uni-
form spatial distribution of dipolelike perturbers,!!12:2°
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B. Probing the fluctuation-rate distribution in glasses

At low temperature (T ~1 K) it is found that two-
pulse photon-echo signals decay exponentially in the tem-
poral range from ~ 10 ps to a few nanoseconds in some
organic glasses,'"!? and from ns to us in an inorganic
glass.’® These experimental results can be related to a
fluctuation-rate distribution that is inversely proportional
to the rate itself, P(R)~1/R, or alternatively,
P (R)=const, for rates that are on the order of the in-
verse of these temporal ranges. The behavior of P;(R) at
slower rates, R < ‘us_l, is unclear, but it is logical to be-
lieve that P;(R) should fall to zero at some minimum
rate R;,; otherwise the total power of the fluctuations
would become infinite.

In recent experiments performed on resorufin in etha-
nol and d-ethanol glasses,'® 126 it was found that dephas-
ing rate measured with hole burning is a factor of 6 larger
than that measured with two-pulse-echo experiments.
Analysis of the data using the standard tunneling TLS
model indicates R ,;, to be on the order of ms ™! in these
systems.'>2® Thus, if an experiment is performed as de-
scribed above, with the waiting time T’ scanned in the
range of milliseconds, it should be possible to map out
the falling edge of the rate distribution in these glasses.

The behavior of P;(R) at R >(10 ps)~! is unknown.
However, our discussion is not affected by this detail, for
the derivative of the stimulated-echo—decay function is
independent of the fast fluctuations. Thus it is sufficient
to assume that the distribution goes to zero at some max-
imum cutoff rate R ,, >>1/Ty,.

Following the analysis in Sec. III we rewrite Eq. (4.1)
as

C(7,Ty,7)=exp -—Brfd(lnR)Pl(R)

X[1—exp(—RTy)] |, (4.2)
where B is the product of a and a collection of constants
that arise from the energy average. The actual form of
the distribution is determined by the nature of the per-
turbers.

Assume the perturbers can be described by the tunnel-
ing TLS model. Using the same procedure as that in Ref.
12, we find

BocalkT)!TH (4.2a)

and

Py(R)« [ 7 dx x*sech¥(x /2) (4.2b)
in the range R >R ,;,, where x_;, =2[R /R ,,,,(2kT)]'"?,
R i, is determined by maximum possible value of the
tunneling * parameter, and, as we discussed above,
R,.,(2kT)> (10 ps)~'. In this model the distribution of
energy separations is assumed to be P(E)«x E"* with a
cutoff at E=E , >>kT. Experimental results suggest
that the exponent u takes on a value between 0 and 1.23
From Eq. (4.2b) it can be seen that for slow fluctuation
rates, R <<R_,..(2kT), P;(R) is essentially independent
of R. Thus in the range we are interested in, from us™!
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to ms !, the distribution can be taken to be a constant.
It is unlikely, however, that P,(R) falls to zero instan-
taneously at R ;.. In reality, the nature of P,(R) near
R i, could behave in various ways. Using waiting-time-
dependent dephasing measurements, it should be possible
to probe the actual behavior of the distribution.

Consider some examples.

(1) The distribution suddenly goes to zero at R

P(R)=AH(R,,,—R)H(R —R_; ),

(4.3)

where A is a normalization factor, 4 =In(R,, /R i, )-
The derivative of the stimulated-echo—decay function on
a logarithmic scale, according to Eq. (3.3), is found to be
proportional to

d1In(I)

m— (4.3a)

« Aexp(—R_ i, Tw) .
One can indeed derive a distribution function by per-
forming an inverse Laplace transform of Eq. (4.3a). The
result is

P,(R)=AH(R —R,;,) . (4.3b)

The first step function, H (R, —R), does not appear in
Eq. (4.3b). This is not surprising because it was assumed
that R, >>1/T),, which is equivalent to letting R
be infinite.

(2) The distribution falls to zero as a Gaussian func-
tion,

P(R)=A(H(R,,,—R)H(R —R,)
+H(Ry—R)exp{—[In(R/Ry)/c]*}),
(4.4)

max

where Ry >R and o is given by

o=2/VT)In(Ry/R ) -

All the parameters have the same values as that in Eq.
(4.3). o and R, are chosen in such a way that the total
area covered by this distribution is the same as that
covered by the step-function distribution in Eq. (4.3). We
note that the Gaussian here refers to a Gaussian function
on the InR scale. The derivative of the decay function is
found to be proportional to

% o« %—f—fowdu uexp[—RoTye “—(u/0)?],
(4.4a)
where u = —In(R /R,).
(3) The distribution falls to zero exponentially,
P (R)=A{H(R,,,—R)H(R —R,)
+H(Ry—R)exp[In(R/Ry)/0]} , (4.5)

where 0 =In(R,/R ;,), and all other parameters have
the same values as that in Eq. (4.4). With these parame-
ters, the area covered by this distribution is the same as
in cases 1 and 2. The derivative of the corresponding de-
cay function is given by
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d1n(Iy)

ST, (4.6)

o —aA—fowdu exp(—RoTye “—u/o).

All three distribution functions are plotted in Fig. 1.
The parameters used in the plot are R, =10'' s,
R, i»=10°s7! and R;=10°s"!. As a reference, we also
plot the function 1—exp(—RTy ) and the gate function
RTy exp(—RTy) at fixed waiting times T, =10 us,
showing the effect of scanning 7j,. The time delay be-
tween the first two pulses is assumed to satisfy the condi-
tion Ty /7>>1. The echo-signal-decay rate is propor-
tional to the area under the function, 1—exp(—RTy ).
At a particular Ty, the rate of increase with T, of the
echo-signal-decay rate is proportional to the area under
the gate function.

In Fig. 2(a) the value of {1—exp(—RT},))y, which is
proportional to the decay rate of the echo signal, is plot-
ted as a function of T'y,. It can be seen from the plot that
in the short-waiting-time limit T <<1/R_;,,
(1—exp(—RTy)) g, the echo-decay rate, increases in
proportion to the logarithmic time scale. In the long-
waiting-time limit T, >>1/R ., {1—exp(—RTy))x
approaches a constant value, regardless of the functional
form of P|(R) near R_;,. Thus if one measures the de-
phasing rate in the long-waiting-time limit, as is the case
in most persistent hole-burning experiments, the mea-
sured dephasing rate is determined by the total area
covered by the distribution function and does not reflect
the details of the fluctuation-rate distribution. Further-

l—exp(-RTw)

1
'/N

RT, exp (- R’I‘w)
N 3

. N

o T T T T T T T T o

10 10 10 10° 1o’ 10
R (sh)
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FIG. 1. Model fluctuation-rate distributions P,(R) for a glass
(left-hand scale). The cutoffs at the low fluctuation rates are as-
sumed to be 1, a step function; 2, a Gaussian function; and 3, an
exponential function (see text). The parameters used in the plot
are R, =10"s" L, R .. =10°s"! and R,=10°s~"'. As a refer-
ence, we also plot the function 1—exp(—RT) ) and the gate
function RTy exp(—RTy ) at fixed waiting times Ty =10 us,
showing the effect of scanning T (right-hand scale). The
echo-signal-decay rate is proportional to the area under the
function, 1—exp(—RT}y ). At a particular Ty, the rate of in-
crease with Ty, of the echo-signal-decay rate is proportional to
the area under the gate function.
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more, if Ty is varied, but always kept in the constant. At long waiting time Ty, >>1/R,;,, the
Ty >>1/R;, range, the measured dephasing rate will be change in the dephasing rate becomes zero. As T, is
independent of Ty . scanned through the region (1/R,, 1/R ), a transition
In Fig. 2(b) the derivative with respect to InT), of the between these two limiting values occurs. The functional
average of the function 1—exp(—RT}y,), i.e., the convo- form of the transition is determined by the nature of the
lution of the distributions with the gate function, distribution function. The results for the three different
(RTy exp(—RTy ), is plotted as a function of T'. distributions are clearly distinguishable.
This plot is the change of the measured dephasing rate In Fig. 2(c), Fig. 2(b) is replotted using a 1/7T, scale.
versus waiting time 7T,. The manifestations of the With this scale, the derivatives of the echo-decay rates
differences in the distributions are much clearer than in closely resemble the corresponding fluctuation-rate distri-
Fig. 2(a). In all three cases, at short waiting time butions. If the rate distribution falls off relatively slowly,
Ty <<1/R;,, the change of the echo dephasing rateisa  as in curves 2 and 3, the data are essentially the
0.5 0.1
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FIG. 2. (a) Plot of {1—exp(—RT}y ) as a function of Ty,. The distribution functions used in the averages are those plotted in
Fig. 1. This plot is equivalent to the dephasing rate measured by the stimulated echo (or hole burning) vs the waiting time T}, .
Curve 1: step-function distribution. Curve 2: Gaussian distribution. Curve 3: exponential distribution. (b) Plot of
(RTy exp(—RTy))y as a function of Ty. This plot is equivalent to the derivative of the stimulated-echo—decay rate (derivative of
the hole width) vs the waiting time T. The influence of the different distributions on the echo signal is much clearer. When T}y is
short, the derivative of the decay rate is a constant. When T, is in the region of the cutoff in the rate distribution, the derivative is
changing rapidly. When Ty, is long, the derivative goes to zero, i.e., the echo-decay rate (hole width) no longer changes with increas-
ing Ty. (c) (b) is replotted on a 1/Ty scale. Note the similarity between this plot and the corresponding fluctuation-rate distribu-
tions in Fig. 1. If the rate distribution falls off relatively slowly, the data are essentially the fluctuation-rate distribution. Only curve
1, the step-function distribution, shows appreciable modification of the underlying rate distribution function.
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fluctuation-rate distribution. Only curve 1, the step-
function distribution, shows appreciable modification of
the underlying rate distribution function.

Besides the functional behavior of the fluctuation-rate
distribution, the technique can reveal the temperature
dependence of the cutoff rate R ;,. Using the standard
TLS model, we find that the cutoff fluctuation rate is
given by'?

R in =2kTQ(Ag pin)? 4.7

where A, is the coupling strength, or the tunneling rate,
between the two potential wells of the TLS, and Q is a
collection of constants describing the coupling between
the TLS and the acoustic-phonon heat bath.?* Thus one
would expect R, to be linearly related to the tempera-
ture. There are factors, however, which could make the
temperature dependence more complicated.

One obvious factor would be the breakdown of the
TLS model. This is beyond the scope of the current dis-
cussion. Within the framework of the TLS model, it is
still possible for the cutoff rate to display a nonlinear
temperature dependence. For example, Eq. (4.7) is de-
rived with the Debye approximation, i.e., the phonon
density of states is proportional to the square of the fre-
quency. It is believed that this is an accurate approxima-
tion at T <1 K.!7"?* There is no experimental evidence,
however, showing that this approximation is still valid
above 1 K. Thus it should be possible to gain significant
insight into the dynamics in glasses by measuring the
temperature dependence of R ;..

Furthermore, there is a one-to-one correspondence be-
tween the experimental variables [ T, T, ] and the internal
parameters of the TLS [E,R]. If the relaxation mecha-
nism of the TLS is known, e.g., single-acoustic-phonon
absorption and emission, [E,R] can be expressed in the
two-dimensional space of the tunneling rate and the
asymmetry of the TLS, [A,, A]. Therefore, in principle, it
should be possible to map out the distributions of both
the tunneling rates and the asymmetries of the TLS by
doing waiting-time-dependent dephasing measurements
at different temperatures.

We should point out that the experimental approach
discussed here is related in spirit to the time-dependent
specific-heat measurements originally proposed by Black
et al.?® The idea behind the time-dependent specific-heat
measurement is that those TLS’s with relaxation rates
slower than the time scale of the measurement do not
contribute to the measured specific heat. Thus the
specific heat of an amorphous material should increase
with time. Several experimental studies have been pub-
lished on this subject.’! 73 Because of intrinsic problems
related to the specific-heat measurements, such as nonun-
iform heating and finite thermal diffusion rates, however,
the time scale of the experiments are limited to tens of
milliseconds or longer. The results at shorter times are
inconclusive.

C. Stimulated-echo—decay function in complex crystals

In crystals, the perturbers are restricted to points on
the host lattice. The spatial distribution function is
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P(r)=(1/N) 3 8(r—r1;) ,
j

where 1; is a possible position of a perturber relative to
the optical center. The r; are determined by the crystal
lattice structure.

If the correlation between the coupling strength of the
optical center to the host perturbers and the perturbers’
jump rates can be ignored, the four-point correlation

function becomes

C(1,Ty,r)=exp [— 3 sin’[Ao(r;)7]
J

X {sech®(E /2kT)
X[1—exp(—RTy)1), | .

(4.8)

This situation would be encountered in the limit of weak
coupling.

If the coupling is so weak that Aa)(rj )T <<1, i.e., the
modulation frequencies of all the perturbers are smaller
than the optical dephasing rate, Eq. (4.8) yields a Gauss-
ian decay function. This conclusion only requires the
condition of weak coupling. It does not rely on the as-
sumption of a Gaussian stochastic process, as has been
suggested by many authors. We also see that the
broadening of the linewidth (increase in the dephasing
rate over that measured with a two-pulse echo) goes as
[1—exp(—RTy )12 This is in contrast to the results
obtained for glasses discussed above.

If the coupling of the perturbers to the optical center is
strong and the correlation between the coupling strength
and the jump rate cannot be ignored, one can, in princi-
ple, follow the argument in Sec. III A to decouple the
correlation. As will be seen, however, it is often sufficient
to use a few discrete rates assigned to certain groups of
perturbers in a practical calculation.

In Sec. IV D experimental results from a complex crys-
tal are analyzed. The perturbers are spin-I F nuclear
spins and the fluctuations involve spin flips. Since data
are available and spin dynamics are relatively well under-
stood, this example provides a concrete demonstration of
the theory.

D. Analysis of Pr’*:CaF, transient
hole-burning measurements

In this subsection we consider a set of elegant low-
temperature (T ~2 K) optical dephasing measurements
performed on a Pr’*:CaF, crystals by Shelby and
MacFarlane.” The experiment was performed on the
'D,-*H, (594.1 nm) optical transition of the Pr’" ions. It
was found that the two-pulse photon echo measures a de-
phasing rate that corresponds to a homogeneous width of
370 kHz, whereas persistent hole burning measures a
hole width of 9 MHz.° Shelby and MacFarlane pointed
out that the difference is caused by spectral diffusion in-
duced by the relatively slow (compared to the optical de-
phasing time) spin flips of F~ nuclei. In bulk LaF; crys-
tals the flip rate is (170 us)~'.3* Because of similarities
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between LaF; and CaF, crystals, it is believed that the
spin-flip rate in bulk CaF, should be of the same order,
i.e., about several kHz.

To support the qualitative explanation of spectral
diffusion as the source of the difference between the echo
and hole-burning results, Shelby and MacFarlane per-
formed a transient hole-burning experiment using the
technique of delayed optical free-induction decay (FID).
In the experiment, a narrow saturation hole is generated

in the inhomogeneously broadened optical line by a laser

pulse having a duration of a few microseconds. After a
delay time Ty, a short probe pulse ( ~50-100 ns) is ap-
plied to induce the optical FID. The signal is heterodyne
detected, i.e., the E field generated by the decaying FID
macroscopic polarization is detected. It is found that de-
phasing rate of the delayed FID signal, which is related
to the width of the hole, increases with the delay time T
from 1 MHz at Ty,=1 us to 6 MHz at Ty, =5 ms. Al-
though not interpreted quantitatively, these measure-
ments give very strong support to the proposed spectral
diffusion model of the hole broadening.

Using the theoretical technique developed in the
preceding sections, we analyze the experiment more
quantitatively as follows. Let the preparation (burning)
pulse be a square pulse with a duration At, and the probe
(reading) pulse be a & function &(7), where
7=t —(Ty + At) is the time relative to the probe pulse.
Neglecting radiative decay of the excited state, we find
that the FID signal decays as a function of 7 according to
(see, for example, Ref. 12)

Ty +At—1

I, dt,C(1,ty,7)—C (1, Ty, ), Ty >>At,1
w

4.9)

This is the same four-point correlation function that de-
scribes the decay of the stimulated echo.

The dominant part of the time-dependent perturbation
responsible for optical dephasing is from the magnetic
dipole-dipole coupling between the nuclear spins of sur-
rounding F~ ions and the strong ground-state magnetic
moment (g =5.45 MHz/G) of the Pr3+ ion.>* The
excited-state magnetic moment of the Pr>* ion is 3 orders
of magnitude weaker.

The flipping of a F~ nuclear spin is induced by cross
relaxations’® with neighboring F~ nuclear spins. If F~
spins are aligned with the strong local field produced by
the Pr3" ion, the coupling strength Aw(r;), is given by
the point dipole-dipole interaction

Ao(r)=p;| g4 —3c,(m 41)) /P /7] (4.10)
where p; and p, are the magnetic moments of the F~
nuclear spin and the ground state of the Pr*™" ion, respec-
tively.

Thus, if the four-point correlation function given by
Eq. (4.8) is strictly applicable, we would be led to a
straightforward result. In this case, however, the situa-
tion is more complex. The complication is caused by the
strong ground-state magnetlc moment of the Pr’* ion.

When a Pr®* ion is in the excited state, the nuclear

spins of all the surrounding F~ ions flip freely at a single
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rate R, of several kHz, i.e., the F~ nuclear spins flip at
the same rate as in the bulk crystal and have a rate distri-
bution of (R —R,). When a Pr*" ion is in the ground
state, however, its magnetic moment generates a large lo-
cal field that detunes the nuclear spins of nearby F~ ions
from the bulk F~ nuclear-spin resonance. This drastical-
ly reduces the flipping rate of the closest spins and gen-
erates what has been called a “frozen core.”®* In other
words, when a Pr’% ions is in the ground state the fluc-
tuation rates of the surrounding F~ nuclear spins are
correlated with the coupling strength: the weaker the
coupling, the larger the rate. Therefore, the fluctuation
rates are correlated with the positions of the F~ ions rela-
tive to the Pr3™" ion, since the relative positions determine
the coupling strength.

In addition to the differences in the fluctuation-rate
distributions when Pr®' is in its ground and excited
states, the coupling strengths are also different. If a Pr®*
ion is the ground state, the surrounding F~ spins are
aligned with the strong local field generated by the Pr**
large magnetic moment. If a Pr®” ion is the excited state,
the surrounding F~ spins are oriented randomly. Ran-
don orientation produces, on average, weaker coupling.

Equation (4.8) was written with the assumption that
there is no correlation between the flip rate and the cou-
pling strength. The physical factors discussed above indi-
cate that Eq. (4.8) is not a complete description for the
Pr**:CaF, situation.

We tackle this problem by noting that the delayed FID
signal actually originates from two groups of P3* ions:
those that form a “hole” in the ground state and those
that form an “antihole” in the excited state. First consid-
er the limit of Ty, << T, where T, =509 us is the lifetime
of the excited state. With Ty, << T, the P** ions do not
change their states during the waiting time. From the
above discussion, we see that the four-point correlation
function should be divided into two parts,

C(7,Ty,7)=Cg(7,Ty,7)+Cg(7,Ty,7) , (4.11)
where Cg;(7, Ty, 7) describes the dephasing of the Pt
ions in the ground state and Cg(r,Ty,7) describes the
dephasing of the Pr** ions in the excited state.

In the long-waiting-time limit Ty, >>T,, most excited-
state Pr’" ions have returned to the ground state through
radiative decay. If Cg(7,Ty,7) and Cg(7,Ty,7) were
identical, the antihole in the excited state would fill the
hole in the ground state as the excited states decay, and
the FID signal would disappear. Because the ﬂ1p rates of
the surrounding spins are much faster when a Pr3? ion is
in the excited state, and, therefore, the antihole is being
broadened much faster than the hole, most excited-state
Pr’" ions relax to the wings of the hole. This leaves a
persistent hole in the ground-state population. Thus the
persistent hole observed in this system is a combined
effect of the time evolutions of both states.

In the time-domain description, the signal generated by
the Pr*™" ions that were in the excited state and have re-
turned to the ground state destructively interferes with
the signal generated by those ions that remained in the
ground state. If all of the ions in the excited state sud-
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denly returned to the ground state at a single time Ty, the
correlation function describing the FID signal for times
longer than T is given by

C(T’ TWyT):CG(T, TW’T)—CEG(T’ Tw,’r; TO) , 4.12)

where Cgg (7, Ty,7) describes the dephasing of the Pr’*
ions that were originally in the excited state and returned
to the ground state at T,.

Combining Egs. (4.12) and (4.11), and including the ex-
ponential decay of the excited-state population, the gen-
eral form of the correlation function for arbitrary waiting
time Ty, is
|

Cg(1, Ty, T)=exp [- S sin’(Aw;7)[1—exp(—R;Ty)1] ,

J

Ci(7,Ty,7)=exp

J

+ {sin(2Aw;7)/2A0;7—[sin(Aw;7) /A0 ;T’}Ro Ty exp( =R, Ty) | ,

Crg(r, Ty,7t)=exp

J

In deriving Eq. (4.13), we have set sech?(E/2kT)=1,
since the energy separations of the F~ nuclear spins are
orders of magnitude smaller than the thermal energy at
the experimental temperature 7 ~2 K. It was also as-
sumed that the local field at each spin site is dominated
by the dipole field induced by the Pr’* ion when the
latter is in the ground state, but points in a random direc-
tion when the Pr’* ion is in the excited state. The cou-
pling strength in Eq. (4.13b) has been averaged over the
random orientations of the spins with respect to the
direction of the dipole field.

In the excited-state correlation function Cg(7, Ty, 7),
the fluctuation of the spins is described by the single bulk
spin-flip rate, i.e., the fluctuation-rate distribution of the
spins is a 8 function, P(R)=6(R —R,). In the correla-
tion functions C;(7, Ty, 7) and Cgg(7, Ty, 7;t) a fluctua-
tion rate R; is associated with each spin since the fluctua-
tion rates of spins surrounding a ground-state Pr’* ion
are correlated to the spin positions.

In principle, R; should span quasicontinuously from
the fastest bulk rate R, to some slowest rate associated
with those F~ spins that are coupled most strongly to the
Pr37 ion, i.e., the interstitial or the nearest-neighbor F~
spins. Experimentally, the flip rate of the nearest-
neighbor spins is found to be on the order of s ~1.° It has
been proposed that these slow flips are responsible for the
persistent hole burning.®3?

Because the form of the correlation between the flip
rate R; and the coupling strength is unknown, we divide
the spins into three groups to make the calculation
manageable. When the Pr3" ion is in its ground state,
the flip rates of the spins within each group can be ap-

—Zsinz(ijT){1-—exp[—R0t+Rj(TW-t)]} .
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C(’T, Tw,T):CG(T, Tw,T)+eXp( —TW/TO )CE(T, Tw,T)
1 rTw
_—f;~f0 dtexp(_t/To)CEG(T,Tw,T;t) .

(4.13)

The first term in Eq. (4.13) represents the contribution to
the FID from ground-state ions that were never excited.
The second term is the contribution from excited-state
ions. The contribution from this term decays exponen-
tially at rate 1/7, as the ions return to the ground state.
The third term arises from ions that have returned to the
ground state after being excited.

Using a rate-equation calculation (see Appendix C), we
find that the four-point correlation functions correspond-
ing to the three different groups of Pr3™ ions are

(4.13a)

__;_ 2 [1—sin(2Aw;7)/2Aw;T][1—exp(—R Ty )]

(4.13b)

(4.13¢)

[
proximated by a single rate. (1) The interstitial and the
nearest-neighbor F~ spins’ flip rates are taken to be zero,
because the maximum waiting time in the experiment, 5
ms, is several orders of magnitude shorter than the in-
verse of these flip rate [ ~(s)™!]. (2) The F~ spins far
away from the Pr’*-ion flip rates are taken to be the
same as the free bulk rate R, [~(ms)~!]. (3) The F~
spins at intermediate distances flip rates are slower than
R, but still significant on the experimental time scale.
Because of the limited amount of data and for simplicity,
we assume that the flip rates of this group can be re-
placed by a single rate R;. We set the close-in boundary
of this last group of spins to be the second-nearest neigh-
bors. The outer boundary is found in the fitting process
to be somewhere between the fourth- and seventh-nearest
neighbors.

When the Pr3" ion is in the excited state, all the spins
are assumed to have the bulk flip rate Ry. Thus in this
model, the rate distribution is composed of two & func-
tions, the rates R, and R,. Fitting the data yields the
values of these two rates.

In Fig. 3, Eq. (4.13) was fitted to the raw experimental
results provided to us by the authors of Ref. 9. In analo-
gy to the conventional definition of 2/#T, as the hole
width in the absence of localized fluctuations, the vertical
axis is chosen to be 1/77,, where 7, is the time at which
the FID signal has decayed to the 1/e point (note that
the dephasing time T, is defined to be T,=27,). The
horizontal axis is the waiting time T',.

The fitting procedure is as follows. First, we notice
that in the data the hole width increases steadily with
waiting time in the range T, <0.1 ms. This increase
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arises from the free spin flips at R, that cause excited-
state spectral diffusion and, to some extent, ground-state
spectral diffusion. The contribution of the spin flips at
the slower rate R is negligible at short times. Around
Ty =0.5 ms, there is a bump in the data. In view of the
qualitative discussion given above, this is the result of the
competition between line broadening and population de-
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FIG. 3. Fit of Eq. (4.13) to the delayed FID experimental
data (Ref. 9) from Pr’*:CaF, crystals. The vertical axis is
1/mr,, where 7, is the 1/e point of the FID signal. The fluctua-
tion rate distributions are modeled as two & functions (see text),
and the rates are varied to fit the data. (a) Preliminary calcula-
tion. The rates are set at Ro=5.0 ms™ ' and R; =0.0 ms™!; the
boundary of the cutoff for the “intermediate-distance” spins is
varied in the four calculated curves. From top to bottom: (1)
fourth-nearest neighbors; (2) fifth-nearest neighbors; (3) sixth-
nearest neighbors; (4) seventh-nearest neighbors. (b) Fit of the
data using the full calculation. Upper curve: R,=5.0 ms™!
and R; =0.35 ms ™!, and the cutoff is the sixth-nearest neighbor.
Lower curve: replot of curve 3 in (a) as a comparison. All other
parameters used in the calculation are experimentally measured
values. The agreement between theory and the data is very
good, and the fit provides the fluctuation rates R, and R ;.
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cay of the excited Pr3" ions since the lifetime is 7Ty =509
us.
Setting R;=0 we fit the early part of the curve
(Ty <0.1 ms) and the center of the bump by varying the
value of R, and, for the ground-state Pr’t ions, the
boundary of the cutoff between the intermediate distance
and the “distant” spins. It is found that the center is
essentially only sensitive to the value of R, whereas the
curvature is most sensitive to the choice of the boundary.
In Fig. 3(a) the results of some of the calculations using
Eq. (4.13) and the data are shown. In these calculations,
R, is 5.0 ms !, and the boundaries are set at the fourth-
nearest neighbors for curve 1, the fifth for curve 2, the
sixth for curve 3, and the seventh for curve 4. The curves
become essentially invariant when the boundaries are far-
ther than the seventh-nearest neighbors.

We choose the sixth-nearest neighbors as the boundary
of the cutoff between the intermediate distance and the
distant spins because it gives the overall best fit. The
physical justification for this boundary is that the cou-
pling between the Pr** ion and the distant spins is weak-
er than the spins’ “homogeneous linewidth,” Av,,, and
hence these spins flip at the free bulk rate.’® The
linewidth, Avg, of the CaF, crystal was reported in some
early NMR studies. The HWHM is found to be
Av,,=18.4 kHz when a strong static magnetic field is ap-
plied along the [100] crystal axis.}” Without the applied
field, this value would be about factor of 2 larger,®
which implies that the linewidth under consideration is
about 60 kHz. Using Eq. (4.10), one can easily find that
the coupling strengths for the individual spins farther
than the seventh-nearest neighbors are less than 60 kHz.
Thus the choice is also consistent with previous work.

After Ty, =T, the signal is mainly from the persistent
hole in the ground state, and the further increase of the
hole width is dominated by spins flipping at R;. Having
set Ry=5.0 ms~! and the boundary to be the sixth-
nearest neighbor, i.e., having set spin group 3 to include
the second- through the sixth-nearest neighbors, we vary
R, to fit the data for Ty, >0.5 ms. R;=0.35 ms™! gives
the best overall result. The final calculated curve, which
results from the fitting procedure, is shown in Fig. 3(b).
(Some additional details and considerations in the fitting
procedure are discussed in Appendix D.) Considering
the simplifications used to describe the rate distribution
function, the agreement between the data and the calcu-
lation is quite good. By dividing the spins into more sub-
groups, a better fit was obtained. This requires a large
number of free parameters and obscures the basic physics
of the problem.

V. CONCLUSIONS

We have demonstrated that waiting-time-dependent
dephasing measurements can be used to reveal the
fluctuation-rate distributions and, hence, the dynamics, in
complex systems. Using a sudden-jump model of the
fluctuations, we found a general relationship between
waiting-time-dependent dephasing measurements and the
fluctuation-rate distribution function of a complex sys-
tem, regardless of the details of the coupling form and the
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spatial distributions of the perturbers. For the most gen-
eral waiting-time-dependent dephasing measurement, i.e.,
the stimulated echo, the relation is found to be

d1n(Ig)
7, © JdR P(R)exp(—RTy,) ,

i.e., the derivative of the echo-decay function is directly
proportional to the Laplace transform of the fluctuation-
rate distribution function.

Similar relationships for other waiting-time-dependent
phasing measurements, such as transient hole burning,
fluorescence line narrowing, or accumulated echoes, can
readily be established. We also demonstrated that for
any model of the fluctuations, e.g., Gaussian fluctuations,
analogous relationships can be obtained. The Gaussian
fluctuation problem was solved explicitly.

We applied the formal results to the problem of the de-
phasing of optical centers in a glassy system. Three
different fluctuation-rate distributions for the glass were
considered as examples. It was shown that the
differences between the linewidths measured by two-
pulse—echo and persistent hole-burning experiments can
be explained. It was demonstrated that the shapes of the
three distributions can indeed be distinguished by con-
ducting waiting-time-dependent optical dephasing mea-
surements. Furthermore, by conducting such experi-

ments as a function of temperature, information on the °

energy-level distribution and tunneling-parameter distri-
bution associated with the glass’s two-level systems can
be revealed.

The method was also applied to the analysis of optical
dephasing measurements in a complex crystal. With a
simple model of a two-5-function rate distribution, the
calculations successfully interpreted the time-dependent
behavior of the spectral diffusion observed in the system.
The agreement between the calculation and the experi-
mental data is very good. Application of the general ap-
proach to other disordered systems, such as proteins,
should be analogous.

The results provided in this paper represent a new ap-
proach to extracting dynamical information from optical
line-narrowing experiments performed on complex sys-
tems. The theory also provides a unifying description of
optical line-narrowing experiments and shows how exper-
iments that operate on different time scales will provide
distinct views of the same system. Finally, it is important
to point out that the formalism presented here applies to
magnetic resonance experiments as well as optical de-
phasing experiments.
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APPENDIX A: DEPHASING INDUCED
BY A SINGLE TWO-LEVEL PERTURBER:
RATE-EQUATION DERIVATION

Consider the motion of a localized perturber undergo-
ing sudden jumps between two levels. The rate equations
describing the jumps can be written as

dp
dt =—p+4Ry_+p__R_,,
Al)
dp_ _ (
dt =p++Ry_—p__R_,,

where p, . (p__) is the population in the upper (lower)
state, and R _, (R, _) is the up (down) transition rate.
The equations can be readily solved as

Ap(t)—Apleq)=[Ap(0)—Ap(eq)] exp(—R1?) ,

Ap=p,,—p__, R=R,_+R_,, (A2
where Ap(eq) is the population difference at equilbrium.
The equation describes the regression of the population
fluctuation. :

From Eq. (2.1) it is seen that the phase error induced
by the perturber consists of two parts: that accumulated
between ¢ =0 and ¢t =7, and that accumulated between
t=Ty+71and t =Ty +27. In the limit of r<<T),,1/R,
the probability that the perturber undergoes a change of
state within these two intervals is very small. The phase
error @ can only be introduced in two ways: (1)
@=2 Ao 7 if the perturber is initially in the upper state at
t =7 and ends up in the lower state at t =7+ T},; (2)
@= —2 Aw 7 if the perturber is initially in the lower state
at t =7 and ends up in the upper state at t =7+ T),.
2 Aw is the change in the transition frequency of the opti-
cal center (the coupling strength) induced by the state
change of the perturber.

A mathematically equivalent, physically more realistic,
view of this dephasing process is that the optical center
under consideration is initially on resonance with the
laser frequency and none of the perturbers flipped during
0<t <7, and there is no phase error introduced during
this time period. A phase error of 2 Aw 7 is induced in
the time period [Ty, +7, Ty +27] only if the perturbers
flipped between 7 and Ty, +, i.e., the value of the phase
error is only determined by the state of the perturber at
t =Ty,. We will use this description in the future.

Using Eq. (A2), one finds the probabilities for the per-
turber to follow these two history paths:

Pi_=Plp,  (0)=1)P(p__(Ty)lpL(0)=1)

=p,ileqlp__(eq)[1—exp(—RTy)],
(A3a)
P+ D+—

where P(p_ _(Ty )|p4 +(0)=1) is the conditional proba-
bility of finding the perturber in its lower state at Ty
given a condition p, ,(0)=1. The probabilities of the
other two history paths can be calculated in the same
manner. The results are
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P++=p++(eq)—pi_,
p——=p-_(eq)—p4_ .

(A3b)

The latter two paths do not contribute to the dephasing
process. It can be verified that the sum of these probabil-
ities is equal to unity. Thus the history average becomes

(1—expli@)) y=p4+_[1—exp(2i Aw T)]
+p_[1—exp(—2i Aw 7)]
=sech(E /2kT)sin (Ao T)
X[1—exp(—RTy)], (A4)

which is identical to Eq. (2.5).

We should point out that the procedure used here is a
more flexible approach than that used in the main text.
It can be directly applied to nonexponential population
relaxations. For a population relaxation of arbitrary
form

Ap(t)—Apleq)=[Ap(0)—Ap(eq)]f(R?),
we find the corresponding history average to be
(1—expli@)) y=sechX(E /2kT)sin(Aw 7)[1—f(R1)] .

(A6)

(A5)

This formula may be used for more general cases.

APPENDIX B: GATE FUNCTION
FOR THE GAUSSIAN RANDOM PROCESS

For a multilevel perturber, in the limit of 7<<T,,1/R
for at least some of the R in the distribution, the history
average can be calculated in a manner similar to that dis-
cussed in Appendix A. Note that here R is the average
rate for the perturber to change its state. In this case, the
history average is a sum over all possible initial and final
states of the perturber,

(1—expli@)) y =3 P(Aw;(Ty), Aw;(0))
ij

X {l1—exp[i(Aw;—Aw;)7]} , (B1)

where Aw,; is the coupling strength between the perturber
in its ith state and the optical center, with respect to an
average coupling strength, i.e., (Aw)=0. The joint
probability can also be written as

P(Aw;(Ty), Aw;(0)=P(Aw;(0))P(Aw,(Ty)|Aw,(0)) .
(B2)

If the total number of the levels is large ( = 10) and the
coupling strength does not vary much among the adja-
cent levels, |Aw,,,—Aw;|T<<1, the perturber can be
taken to undergo a diffusive motion on an energy surface
(Fokker-Planck approximation). In this case, the motion
of Aw;(¢) can be described approximately by a Gaussian-
Markoffian process (see, for example, Ref. 38). This type
of perturbation might arise from the quasicontinuous an-
gular fluctuation of a dipole or the Brownian motion of a
localized defect. The calculation of the history average

11 081
for a Gaussian-Markoffian process is straightforward.
The result is
(1—explip))y=1—exp[—oXp)/2],
o¥(@)=([Aw(Ty)—Aw(0)]*)7
=2(Aw?)[1—exp(—RTy )17,

(B3)

where the steady-state condition
([Aa(Ty) ) =([8(0)]*) =(Aw?)
and the relation
(Ao(Ty )Aw(0)) ={Aw?) exp(—RTy,)

have been used.
By definition, the gate function is simply proportional
to the derivative of Eq. (B3),

3{1—explip)) g
dInTy,

< RTy exp(—RTy)
Xexp{ —(Aw?)7?[1—exp(—RTy)]} .

(B4)

In this equation, however, R is coupled with Aw.

To derive a gate function that only varies with R and
Ty, we need first to carry out the spatial average by as-
suming a specific spatial distribution of the perturbers
and a specific coupling form Aw(r). For a uniform spa-
tial distribution and a coupling Aw=m7/r", we have

( A{1—explip))y >r

olnTy

w AP,

X[1—exp(—RTy) "> "'RTyexp(—RTy) ,

4 (BS)
A =—7T—fdx x173mexp(—x?),

n

where x2=(Aw?)7[1—exp(—RTy)]. Following the
discussion in Sec. III, we find that the gate function is

)]3/2n—1 . (B6a)

W(u)=exp(u —e*)[1—exp(—e*
For the particular case of dipole-dipole coupling, n =3.
We have

W (u)=exp(u —e*)/[1—exp(—e*)]'/%. (B6b)

We reason that the general form of the gate function is
a function with a single peak about u ~v, with a
Au ~v =In(1/Ty,). The argument is as follows.

For an arbitrary perturber, in the limit of
7<<Ty,1/R, the history average is given by Eq. (B1). If
RTy >>1, Aw(Ty ) and Aw(0) become completely un-
correlated, i.e.,

P(Aw;(Ty), Aw;(0))=P(Aw;)P(Aw;), RTyp>>1.

As a result,
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(1—explip))y=1— 3 P(Aw;) expli Aw;T) 2
J

is independent of R. On the other hand, if RTy <<1,
Aw(Ty,) remains in its initial value, Aw(Ty )~Aw(0),
and the probability becomes

ji?
which yields (1—exp(i@))y=0. Clearly, the transition
between these two constant values occurs at R ~1/T,.
The behavior of {1—exp(i@))y in the transition region
is determined by the correlation functions (all orders) of
Aw(Ty). Thus we conclude that the gate function
W (u —v), which is proportional to the derivative of the
history average, is a function with a single peak about
u ~v, with a width Au ~v =In(1/Ty,).

Note that in the above discussion we assumed that R is
the same for all the levels of a perturber. The distribu-
tion in R is from an ensemble of perturbers. In reality, R
differs for different levels even in a single perturber. The
distribution in R actually incorporates this difference.

APPENDIX C: FOUR-POINT CORRELATION
FUNCTION FOR THE Pr’**:CaF, CRYSTAL

In general, the dynamics of the perturbers can be
influenced by the optical center. As a result, both the
coupling strength Aw and the flip rate R of a perturber
are correlated to the state of the optical center. A typical
example is the Pr®*:CaF, crystal discussed in the text.

In this case, the dephasing of a single Pr®* ion is
dependent on its state during the waiting time T,. If the
Pr** jon is in the ground state during the entire waiting
time, the surrounding spins will stay aligned with the
magnetic field B produced by its magnetic moment. The
dephasing is described by Eq. (A4). Aw can be calculated
with Eq. (4.10), and R is the flip rate of the individual
spin under consideration.

If the Pr®" ion stays in the excited state after the
preparation laser pulse, its strong magnetic moment no
longer exists. The surrounding spins will start to evolve
to come into alignment with the new local field. Because
the field is weak, the precession frequencies of the spins
|
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are slower than (or comparable to) the flip rate R,. Note
that R is the free bulk flip rate that applies to all the
spins. The evolution can be described as sudden jumps;
each “kick” sends a spin from its old orientation to a new
quantized direction. Assuming E <<kT, we can write the
rate equations as

dp, 4

dt =—p++Ry,
dp_ _

ar  P—Re>

(C1)

dpy . 2 2
7—(—p22+p11)R0/2+(p++ sin‘a+p__ cos’a)R, ,
d
_:i)‘tI—I-:(Pzz_Pn)Ro/2+(P++ cos’a+p__sin’a)R, ,

where 2a is the angle between B(¢ <0) and B(¢ >0), and
P22 (p11) is the population of the upper (lower) level along
the new axis. The general solution of Eq. (C1) is

P++()=p, (0)exp(—Ryt),
p—_(t)=p__(0)exp(—R,t),
[p2a(t)+p () ]=[p1(0)+p;;(0)]
+Ips 4 (0)F+p__(0)]
X[1—exp(—Ry1)],
[p22() = p11(1)]=[p2,(0) —p;,(0) ] exp( — R 2)
+p+4+(0)—p__(0)]
Xcos(2a)Ryexp(—Ryt) .

(C2)

We can readily obtain the specific solution by setting
p++(0)+p__(0)=1 and p,,(0)=p,,(2)=0.

If, at t =T, the ion is still in the excited state, we can
set t =Ty, and calculate the history average using the
same procedure as that in Appendix A. When the spin
flips to align with the new axis, however, the phase errors
are given by =(1xcos2a)Aw 7, instead of +2Aw 7. After
an average over the random orientation, 2a, we find

(1—explip)) g =[1—sin(2 Ao 7) /2 Aw 7][1—exp( — R Ty)1/2

+{sin(2 Ao 7)/2 A o 7—[sin(Aw 7) /Ao T} Ry Ty exp( —R Ty ) /2 .

If the waiting time is comparable to or longer than the
excited state time Ty, = T, most of the initially excited
Pr’" ions will have relaxed to the ground state. Upon re-
laxing to the ground state, the strong magnetic moment
of the Pr3" ion instantly projects the randomized spins
onto the old quantization axis, since the precession fre-
quencies are now much greater than the flip rates. As-
suming the ion dropped to the ground state at
t =Ty < Ty, and noting the relation

(C3)

Ap(Ty)—Ap(eq)
=[Ap(Ty)—Apleq)]exp[ —R (Ty,—T,)]
=[Ap(0)—Ap(eq)lexp[ —R,To—R(Ty —Ty)],
(C4)

we calculate the probabilities of the different history
paths of the perturber to be
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P+-=pP—+=p++(eqlp__(eq)
X{1—exp[ —RoTo—R(Ty —Ty)1} ,
(C5)

where R, and R denote the fluctuation rates of the per-
turber at t < T and ¢t > T, respectively.

The phase error, which is determined by the final state
of the perturber, is the same as that in Eq. (A4). Thus the
resultant history average is

(1—expli@)) y=sin*(Aw 7)
X {1“exp[—ROT0_R(TW—T0)]} .
(C6)

These results are used to evaluate the total dephasing
of the Pr’" ions in Sec. IV D.

APPENDIX D: ADDITIONAL REMARKS
ABOUT THE Pr**:CaF, CRYSTAL DATA

This appendix contains some additional remarks about
the procedure used to fit the Pr’" data discussed in Sec.
IVD.

Because of partial covalent bonding, which results in
electronic wave-function mixing between the Pr’* ion
and the neighboring F~ ions, the Pr’" interaction with
the interstitial and the nearest-neighbor F~ ions is
stronger than given by Eq. (4.10). Optically detected
NMR measurements®> show that the frequency deturning
induced by the interstitial and the nearest neighbors are
20.65 and ~9.5 MHz, respectively. In contrast, Eq.
(4.10) would predict these values to be 6.76 and 7.37
MHz.3* The same measurement shows that the detunings
of the next-nearest neighbors (and hence the more distant
spins) are essentially given by Eq. (4.10).

The measured values of the nearest spin-coupling
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strengths are used in the fit. Because of the finite band-
width of the probe pulse (~6 MHz), flips of these spins
only affect the size, but not the shape, of the correlation
function Cgg(7, Ty, 75t). In the case of Cy(7, Ty, 7), the
nearest spins do not contribute because their flip rates are
virtually zero. However, they do contribute to
Cg (1, Ty, 7), because here their orientations are random.
We include the contribution of the flips of these nearest
spins to the correlation function Cgg(7,Ty,7;t) by
counting out the odd number flips of the eight nearest
spins. This determines the depth of the persistent hole.
using a binomial distribution, we find

Ceo (1, Ty, ;1) =B (1) Cr6 (7, T, T5) Jother spins >

N=8 N! (Dl)
: k, 1— N—k ,

2 v —mn P TP

=even

B(t)=

where p =[1—exp(—Rt)]/2 is the probability of finding
an individual spin flipped at ¢ [see Appendix A, Eq.
(A3a)].

The contribution of the interstitial spin is excluded. If
included, the calculated burning efficiency of the per-
sistent hole would be much too high when compared with
the experimentally observed value. The environment of
the interstitial spin differs from the rest of the spins.
Therefore, the interstitial spin does not flip at the bulk
rate when the atom is excited and does not contribute to
the permanent hole.

In the treatment, the spin flips are taken to be indepen-
dent events and possible correlations between the spin
pairs is excluded. This is in agreement with the finding
by Devoe et al. in a Monte Carlo study of the free-
induction decay in a Pr’*:LaF; crystal.>* Generally, the
coupling strengths of two spins to the Pr’* ion are
significantly different from each other. In effect, a mutual
flip is quite similar to two independent flips.
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