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Intermediate time-scale time-dependent hole-burning measurements are reported on three
glassy organic systems which undergo spectral diffusion: cresyl violet in ethanol at 1.30 and
2.13 K, resorufin in ethanol at 2.13 K, and resorufin in glycerol at 2.13 K. The hole width is
observed to broaden on a log time scale from 0.1 to 5000 s for each ethanol system while no
broadening is observed in the system of resorufin in glycerol. A detailed theoretical treatment
is introduced which allows the raw data to be converted to the fluctuation rate distribution of
the underlying modes responsible for dephasing. Using this theory, the broadening in ethanol

Two-level systems and low-temperature glass dynamics: Spectral diffusion
and thermal reversibility of hole-burning linewidths

is found to be the result of a distribution of glassy modes which is Gaussian on a log R scale
with a center rate at ~0.02 s~'. In addition, temperature cycling hole-burning results are
reported on the system cresyl violet in ethanol. A hole is burned at 1.30 K and detected before,
during, and after a temperature cycle to 2.13 K and back. The hole width is observed to
broaden at the high temperature and then narrow again in a completely reversible manner
when the temperature is again lowered. Theoretical calculations show this behavior to be
entirely consistent with the tunneling two-level-system (TLS) model of glass dynamics but
incompatible with other models such as particle or defect diffusion. The cycling data is shown
to fall exactly on the theoretical curve calculated from the TLS model using no adjustable

parameters.

I. INTRODUCTION

The dynamics of low-temperature glasses have been and
continue to be the subject of a great deal of experimental and
theoretical study.'~® Over twenty years ago glasses were re-
cognized to be fundamentally different from crystals. When
applied to glasses, models used to explain crystal thermody-
namics deviated from experiment at low temperatures.” Ob-
servation of such phenomena as time-dependent®’ and
anomalously high heat capacities® illustrate some of the dif-
ferences. Because glasses are nonequilibrium structures,
they have many different microscopic configurations which
are nearly equivalent in energy—quite unlike the single
sharp global potential surface minimum associated with a
crystal structure. These nearly equivalent states have been
used to account for the increased density of low-energy
modes responsible for the large low-temperature heat capa-
cities. Because of the disordered nature of glasses, these low-
energy modes have a wide distribution of relaxation rates.
Thus, even at low temperature, a glass is still a dynamic
system exhibiting dynamics over many orders of magnitude
in time—from picoseconds to kiloseconds or longer.'

Anderson, Halperin, and Varma® and Phillips® indepen-
dently proposed models for low-temperature glasses which
described the dynamics as localized low-frequency modes—
two-level systems (TLS’s). A TLS involves an asymmetric
double potential well. Transitions between the two wells rep-
resent changes in the local structure of the glass. Since its
introduction, the TLS model has had great success in de-
scribing a variety of low-temperature glassy properties in-
cluding anomalous heat capacities,” ultrasonic attenu-
ation,!®'? phonon echoes,'* photon echoes,'*'7 and hole
burning.'® However, while it does well in modeling the dy-
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namics, the TLS theory, as was recently pointed out, 19 s still
only one of several possible explanations of these properties.
Models consisting of particle diffusion and multilevel struc-
tures could also, in theory, be used with equal success.'>*°
Some papers'® have commonly been referred to as demon-
strations of the validity of the TLS model; however, while
these references clearly demonstrate the success of the theo-
ry, they are not proofs that the model is, in fact, valid. In this
paper the results of several waiting-time-dependent hole-
burning experiments and calculations are presented which
clarify the quesion of whether the TLS model is an accurate
physical description of the microscopic nature of low-tem-
perature glasses.

Two facets of persistent spectral hole burning are used
to examine the characteristics of glass dynamics. First, using
a variable waiting-time experiment described in Sec. I11, it is
shown that the glasses under study have a distribution of
fluctuation rates across several orders of magnitude in time.
Second, using a temperature-cycling experiment also de-
scribed in Sec. III, it is demonstrated that the dynamics re-
sponsible for optical dephasing are caused by a small number
of the glass’s degrees of freedom while the vast majority of
the glass’s degrees of freedom are fixed on a time scale well
beyond that of the experiment. The static degrees of freedom
define many local potential surfaces—each surface corre-
sponding to a single TLS. These potential surfaces are said to
be fixed. That is, when the temperature is raised, the poten-
tial surfaces do not change. Thus, when the temperature is
lowered again, the glass structure returns to the same steady-
state configuration it occupied before the temperature cycle.
This is in direct contradiction to a diffusion-based model
which should show no reversible behavior. In a diffusion-
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based model, there are no fixed potential surfaces. Instead,
one must consider the N-dimensional potential surface of the
entire glass. The glass structure moves randomly on this po-
tential surface. Raising the temperature increases the range
and rate of motion. Lowering the temperature again slows
this motion but does not reverse its direction.

Persistent spectral hole burning, like photon echoes and
other line-narrowing techniques, has been a useful tool in the
study of dynamic interactions especially glass dynamics
(see, for example, Ref. 4). Recently, however, its usefulness
has increased in light of the recognition that hole burning isa
“waiting-time-dependent” experiment; hole burning is sen-
sitive to dynamics faster than or on the order of the waiting
time between creating and detecting the hole. The first evi-
dence for this came in 1984 when Breinl, Friedrich, and
Haarer?' confirmed the hypothesis that, like other phenome-
na, the persistent spectral hole width of dye molecules in
glasses can be time dependent, that is, it undergoes “spectral
diffusion.” Spectral diffusion, in this context, means any
time-dependent line broadening. A change in hole width of
~ 30% was reported when the waiting time between burning
and detecting the hole was varied from tens of minutes to
many days. Broer et al.'® examined stimulated echo and two-
pulse echo data and also reported evidence of spectral diffu-
sion. Later, Berg et al.*? compared persistent spectral hole-
burning data to two-pulse photon-echo data taken on the
same sample and observed a dramatic difference in the de-
phasing rates measured by the two techniques. The
linewidth measured by hole burning was observed to be a
factor of 6 greater than the echo-determined linewidth. This
was explained in terms of a waiting-time argument. A two-
pulse echo experiment is sensitive to fluctuations occurring
at times on the order of the pulse separation (typically ps to
ns). Hole burning, on the other hand, is sensitive to fluctu-
ations occurring on a time scale from picoseconds out to the
waiting time (usually hundreds of seconds). The broader
time scale means that there are an increased number of dy-
namic modes (slow fluctuations) contributing to the hole-
burning linewidth. This spectral diffusion leads to a broad-
ening of the hole linewidth.

Temperature-cycling hole-burning experiments have
also been of use in examining the properties of glass dynam-
ics. The first such experiment was conducted by Friedrich
and Haarer in 1984.7 Since then it has been used to investi-
gate the irreversible spectral diffusion processes of amor-
phous materials which appear when the samples are cycled
to relatively high temperatures.>*?* However, when the tem-
peratures are kept low, it is possible to examine the reversible
aspects of the dynamics. It is this reversibility and its agree-
ment with theoretical predictions presented here which
demonstrate that the glass dynamics occur on fixed local
potential surfaces which do not change during the time scale
of the experiment.

Recent theoretical work of Bai and Fayer has yielded a
powerful tool in the analysis of waiting-time-dependent ex-
periments.”® It was shown that by analyzing the results of
such experiments, it is possible to determine the underlying
fluctuation-rate distribution of the sample in question. The
fluctuation-rate distribution is the function describing the

intrinsic rates and densities of the various dynamic processes
responsible for optical dephasing (line broadening). A pre-
cise mathematical definition for the fluctuation-rate distri-
bution is.given in Sec. II. Key elements of the theory from
Ref. 26 are recapitulated in Sec. II as needed to describe the
experimental results presented here. After describing and
reporting the results of several waiting-time-dependent ex-
periments in Secs. III and 1V, Sec. V derives the theory for
temperature-cycling hole-burning experiments and com-
pares theory to experiment without recourse to adjustable
parameters. The agreement between theory and experiment
is excellent and confirms the TLS fixed local potential sur-
face model for glasses.

Il. THEORY OF TUNNELING TLS-INDUCED OPTICAL
DEPHASING

The TLS theory is very successful in modeling the var-
ious aspects of low-temperature glass dynamics. 5182226
The TLS model describes fluctuations as discrete jumps be-
tween potential minima. These fluctuations are responsbile
for optical dephasing in low-temperature glasses. Other
models, e.g., defect diffusion, will be discussed in connection
to the temperature-cycling experiments. The following anal-
ysis is based upon the TLS model.

It has been shown previously that all currently em-
ployed line-narrowing techniques used to probe solid-state
dynamics, such as photon echoes and hole burning, are theo-
retically represented by a four-point transition dipole corre-
lation function.?*?” The general form of the correlation func-
tion is?>%*

C(7,T,,7) = {u*(T, + 27)u(T,, + p(r)u*(0))

T T+ 27
=<exp[—if A dt—{—if A dt]),
o T+ T

2.1)

where 7, T, and 7 are the intervals between the four times in
the correlation function, and A(¢) is the time-dependent per-
turbation of the transition frequency. Equation (2.1) is the
function which describes the decay of the stimulated photon
echo—in a sense, the most general of the line-narrowing ex-
periments. In this context, 7 represents the delay between the
first two pulses of the stimulated-echo pulse sequence, while
T, is the delay between the second and third pulses. The
echo then occurs 7 after the third pulse. It has been shown
that the correlation functions describing the results of the
other line-narrowing experiments may be derived from Eq.
(2.1).222528 For example, the spectrum of a hole generated
in a hole-burning experiment is the Fourier transform of the
stimulated-echo correlation function.?? That is,

I, (wg —wp) ocJ-dTexp[i(wR — wg)T]|C(1,T,,7),

(2.2)

where w; and w, are the reading and burning laser frequen-
cies, respectively, and T, is now essentially the waiting time
between burning and reading the hole.”* Note that Egs.
(2.1) and (2.2) predict, in general, a waiting-time (7T,,) de-
pendent observable. The correlation function is independent
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of T, only when all the fluctuations are fast relative to .
Only in this case is the four-point correlation function equiv-
alent to the two-point dipole correlation function of stan-
dard line-shape theory.2%-°

The problem of finding the line shape now becomes one
of calculating the four-point correlation function,
C(r,T,,7). It has been shown®' that for a large number of
independent TLS, Eq. (2.1) can be represented as

C(7,T,,7) =exp{ — N{1 —exp[id(r,T,,)) Y srsa}, (2.3)

where { ), denotes an average over the random histories,
positions, and internal parameters of the perturbing TLS.
Here, ¢(7,T,,) is the correlation function of a single TLS,

é(r,T,) =J"Am(t) dt—f
(4]

T,+7

To+2T

Aw(t)ydt, (2.4)
where Aw(t) is the frequency perturbation of the optical
center caused by a single TLS. The TLS model assumes that
each TLS perturbs the transition of a chromophore by
+ Aw depending on which level the TLS occupies. That is to
say, Aw(t) = + Aw depending on the level occupation of
the TLS. The magnitude of Aw depends on the distance of
the TLS from the chromophore and on the coupling
strength.

If the distributions of internal parameters of the TLS are
known, the averages in Eq. (2.3) can be carried out. How-
ever, in the absence of detailed knowledge of the TLS pa-
rameters, Eq. (2.3) may still be solved, and the final solution
will be a function of the internal parameter distributions. By
comparing to experimental results, one can obtain informa-
tion about the internal parameter distributions. The remain-
der of this section is devoted to the reduction of Eq. (2.3) toa
form dependent only on the fluctuation-rate distribution by
performing the averages in Eq. (2.3).

The history average in Eq. (2.3) has been examined in
detail.?®3!32 In the context of T, dependent hole burning, it
is more informative to analyze Eq. (2.3) only in the long-
waiting-time limit, i.e., T, » 7, the situation applicable to all
hole-burning experiments.

In the long-time limit, the history average may be calcu-
lated using a simple rate-equation description as follows.2¢
The rate equations describing the sudden jumps of a single
TLS are ’

d

L= —p.R_+p-R.,

dp_

7=p+R~ +p_R,, (2.5)

where p, (p_) is the population density of the upper (low-
er) state, and R, (R_) is the up (down) transition rate.
These equations are easily solved to give

Ap(1) — Ap(eq) = [Ap(0) — Ap(eq)Jexp( — RY),

Ap=p,—p_, R=R,_ +R_, (2.6)
where Ap(eq) is the population density difference at equilib-
rium. R is the relaxation rate toward equilibrium.3?

In the long T, limit (r€T,,1/R) the TLS does not flip
in a time 7. The accumulated phase error, ¢, in Eq. (2.4) is

then dependent only on the relative state of the TLS at times
t=0and ¢t = T,. If the TLS is in the same state at these two

times (either never left or has returned), the two integrals in
Eq. (2.4) are identical, and the phase error is zero. This
leaves only two possible history paths which can give a non-
zero phase error. If the TLS is in its upper state at time 7 =0
and the lower state at time t = T, ¢ = 2Awt. Conversely, if
the TLS was originally in its lower state and is in its upper
state attimet=T,, ¢ = — 2Awt.

Using Eq. (2.6), it is possible to find the probability of
each of these history paths. Defining p_ _ to be the probabil-
ity that the TLS is in the upper state at ¢ = 0 and the lower
state at t = T, one finds

Pe-=p.(0p_[T,lp,(0) = 1]
=p.(eq)p_(eq)[1 — exp( —RT,))],

Py =Py

where p, (0) is the population density of the upper state of
theTLSat¢=0,andp_[T,|p. (0) = 1] is the conditional
probability of finding the TLS in its lower state at time
t =T, given it was in its upper state at = 0. p_ (eq) and
p .. (eq) indicate the relative population densities at equilib-
rium. The probabilities that the TLS do not change, p, , and
P_ _, may also be calculated, but these situations induce no
phase error. With the resuit of Eq. (2.7), the history average
in Eq. (2.3) is calculated to be

(1 —exp(i$))y = p, _[1 — exp(2idwr)]
+p_ {1 —exp(—2iAwr)]
= sech?(E /2kT)sin*(AwT)
X[1—exp( —RT,)], (2.8)

where E is the TLS energy splitting. Analysis of this function
shows it to be an excellent approximation for
1/R,T, > 107.%® From this and Eq. (2.3) the correlation
function in the long-time limit is found to be

2.7)

C(7,T,,7) = exp{ — N (sech®(E /2kT)sin*(AwT)
x[l-exp(_RTw)]>r,/I}' (29)

Since the distribution of TLS parameters is unknown,
the averages in Eq. (2.9) cannot be carried out. Therefore, it
is important to express the correlation function in ferms of
the distributions. The average over A will be performed using
an integral over R, the relaxation rate. R is related to the
internal parameters of interest according to

R =KE coth(E /2kT)e ™ **, (2.10)

where X is a collection of constants describing the coupling
of the TLS to the glass acoustic phonons, E is again the TLS
energy splitting, and A is the tunneling parameter between
the two wells of the TLS.*® 4 is related to the TLS internal
parameters according to A2 = mVd 2/2#% where V is the
height of the barrier and d is the distance between the two
wells. It isimportant to note (especially in the context of Sec.
V) that R for a particular TLS is, at most, linear in tempera-
ture, becoming independent of temperature when E> kT.
Since the distribution of relaxation rates in a glass spans
many orders of magnitude in time,* a large change in R
(approximately an order of magnitude) is required before a
significant change in the experimental results can be ob-
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served. Thus R is said to be weakly dependent on tempera-
ture, weakly meaning that the temperature must change at
least one order of magnitude before a change in the distribu-
tion of relaxation rates can be observed. When the tempera-
ture is raised, as in a temperature dependence or cycling
experiment, the fluctuation-rate distribution will shift only
slightly. This is in contrast to a thermal hopping process in
which the rate is exponentially related to temperature.”

The averages in Eq. (2.9) are represented in integral
form as

(sech®(E /2kT)sin’(Awr)[1 —exp( — RT,) 1),
= j dr dE dR P(r,E,R)sech’®(E /2kT)sin*(AwT)

X[1—exp(—RT,)], (2.11)

where P(r,E,R) is the normalized probability density of
finding a TLS at a position r (relative to the optical center)
with an energy splitting E and relaxation rate R. In general,
it is assumed that there is no correlation between position
and the internal parameters of the TLS in a glass (however,
see Refs. 26 and 34). The following treatment can easily be
done making no such assumption.?*>* In the absence of cor-
relation, P(r,E,R) = P(r) P(E,R), and the integrals may be
separated. This leaves

(sech?(E /2kT)sin’(Aw7) [1 —exp( — RT,)]) .4
=f(71) jdE dR P(E,R)sech®(E /2kT)

X[1—exp(—=RT,)], (2.12)

where f(r) is the result of the integration over r. f(7) con-
tains the information responsible for the line shape (form of
the decay) in a hole-burning (photon-echo) experiment.

P(E,R) includes the density of TLS’s that are inactive
because their energy splittings are much larger than £T: that
is, they are not thermally activated. Therefore, we will define
a new function, P(R), called the Auctuation-rate-distribu-
tion function. It is defined to be

P(R) =AJdEP(E,R)secz(E/2kT) , (2.13)
where 4 is a normalization factor. This function is carefully
chosen to be the traditional probability density of TLS,
P(E,R), weighted to the degree that each TLS is thermally
accessible, or equivalently, it is the rate distribution of the
Suctuating TLS at a given temperature. It is this function,
not P(E,R), which is directly responsible for line broaden-
ing. Combining Egs. (2.12) and (2.13), one obtains

(sech®(E /2kT)sin’(Awr) [1 —exp( — RT,) 1),

o« deP(R)[l—exp(——RTw)] . (2.14)

When the line shape is Lorentzian (echo decay is an expo-
nential), it can be shown that the linewidth is directly pro-
portional to the expression in Eq. (2.14), i.e.,

Awy « deP(R)[l——exp(—RTw)] , (2.15)

where the constant of proportionality is a combination of
temperature-independent constants such as the coupling

strength of the TLS—chromophore interaction. The line
shape is Lorentzian for dipole-dipole coupling between the
TLS and the optical center in three-dimensional sys-
tems.?>2631:3536 - A} experimentally measured hole line
shapes (echo decays) that have been reported for bulk mate-
rials are Lorentzian (exponential).

Equation (2.15) is the final solution in the analysis of a
waiting-time-dependent hole-burning experiment. Examin-
ing this solution, one notes that the time-dependent observ-
able is a convolution of P(R), the fluctuation-rate distribu-
tion, and 1 — exp( — RT, ). Convolution with the function
1 — exp( — RT,) will dull any sharp features of P(R) be-
cause of the characteristic “width” associated with the con-
volution. For example, a convolution with a §-function fluc-
tuation-rate distribution will give an observable that changes
over about one order of magnitude in time (see Sec. IV).

Equation (2.15) gives the experimentalist a powerful
tool in analyzing the results of a waiting-time-dependent ex-
periment. With this relation, every type of line-narrowing
experiment with T, > 107 may be interpreted in a consistent
manner yielding the underlying observable—the fluctu-
ation-rate distribution (a somewhat more general treatment
can be used for 7, < 107). To calculate a fluctuation-rate
distribution from experimental data, one convolves a trial

function as per Eq. (2.15) and compares it to the data. Thus,
experiments with different characteristic time scales, e.g.,
accumulated echoes'”?® and time-dependent hole burning,*®
can be analyzed, and the results combined to yield one full
fluctuation-rate distribution spanning many orders of mag-
nitude in time—from picoseconds to days or longer.

lll. EXPERIMENTAL PROCEDURES

Samples for study consisted of 1.3 X 10™* M cresyl vio-
let (Exiton) in ethanol, 1.2 X 10~% M resorufin (Aldrich) in
ethanol, and 1.2 X 10~* M resorufin in glycerol. Lower con-
centrations of cresyl violet in ethanol were studied as a
check. No concentration dependence was observed. The so-
lutions were prepared from fresh stock without further puri-
fication with the exception of resorufin in glycerol in which
the glycerol was dried over molecular sieves before use.*’
The samples were placed in 1 mm spectroscopic cuvettes and
then quickly cooled in a “He bath cryostat to the temperature
of interest. Rapid cooling is necessary to avoid the formation
of alternate glassy phases which have been observed when
the samples are cooled slowly.>’° The samples were held at
the low temperature (1.3 or 2.1 K) for 1-2 h before burning
any holes to let the samples come to steady state. Effects of
sample aging in hole-burning experiments have been report-
ed.*® Since the waiting time in these experiments was never
more than 90 min, 2 h is sufficient to reach steady state on
this time scale. Each glass cracked substantially upon forma-
tion. Sample quality was the single most important criterion
in obtaining good signal-to-noise ratios. Traditional hole-
burning experiments could be performed on samples of
poorer quality and the data simply averaged. However, due
to the sheer magnitude of data and extreme precision re-
quired of the results in waiting-time-dependent hole burn-
ing, the kind of scatter associated with a poor sample could
not be tolerated. All spectra were recorded on the red side of
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the O-O absorption, e.g., 620 nm for cresyl violet, 585 nm
for resorufin in ethanol, and 587 nm for resorufin in glycerol.
The optical densities at these wavelengths and concentra-
tions were as follows: cresyl violet in ethanol, 0.7; resorufin
in ethanol, 0.4; and resorufin in glycerol, 0.6.

In the waiting-time-dependent hole-burning experi-
ment, holes were burned with a short laser pulse ( ~10-50
ms) and then recorded after various waiting times. (Note
that, as a check, holes were also burned and read at a single
waiting time. A new spot was used for each single delay. This
method gave identical results to burning a single hole and
reading it many times after variable delays.) Holes were
burned and detected with a Coherent model 599-21 scanning
single-mode dye laser (2 MHz bandwidth) under computer
control. Burning times and powers are reported in Table L.
The laser spot size was fixed at 450 zm radius for each exper-
iment. The burn time and burn power were regulated by two
computer-controlled acousto-optic variable-beam attenua-
tors. The laser power could be varied by a factor of up to
5000, and burning pulses as short as a 1-2 ms could easily be
produced in this manner. A mechanical shutter blocked the
beam when neither burning nor scanning. After burning, a
predetermined amount of time was allowed to pass before
scanning the hole. The laser was scanned at a rate of ~ 100
MHz/ms. For waiting times shorter than 20 s only one scan
was used to improve time resolution. For times longer than
20 s up to five scans were averaged. In the case of the shortest
waiting time (100 ms) there is a small temporal uncertainty
since the scan time is on the order of the waiting time. In each
experiment, the detection beam was attenuated by a factor of
~ 2000 relative to the burning beam to minimize the burning
effect of the reading beam. With this amount of attenuation,
no significant hole shape distortion was observed even after
60 repeated scans.

To span the range of time scales covered in this experi-
ment and still obtain accurate and reproducible results,
many modifications were made to the standard hole-burning
setup. Second only to sample quality in importance was sam-
ple stability. Both short-term vibrations and long-term me-
chanical drift had to be eliminated before reproducible data
could be obtained. In addition, slightly wedged windows
(~1°) were installed on the cryostat to remove the étalon
effects associated with parallel windows. Etalon effects
should be expected to remain constant in time and, there-
fore, be easy to normalize out. However, small temperature
and mechanical changes over 1000 + s made them unpre-
dictable, requiring their elimination.

Finally, the requirement that data collected with wait-

TABLE I. Burn times and burn powers used to create spectral holes for
various glasses.

Glass Temperature Burn time  Burn power Flux
CV/ETOH 1.30K 20 ms 12uW 1900 uW/cm?
CV/ETOH 213K 50 ms 12pW 1900 uW/cm’
Res/ETOH 2.13K 40 ms 25uW 390 uW/cm?
Res/ETOH 213K 1.8s 76 nW 12 uW/em?
Res/Gly 213K 16 ms 6.7uW 1000 uW/cm?

TABLEIIL Burn fluences necessary to obtain a 2% hole after a waiting time
of 100 s.

Burn fluence Burn fluence
Glass Temperature (this work) (from earlier works)
CV/ETOH 1.30K 40 pJ/cm? 31 pu)/em?®
CV/ETOH 213K 90 p/cm?
Res/ETOH 213K 12 pJ/cm? 9 uJ/cm?®
Res/Gly 213K 15 uJ/cm? 11 u¥/cm?®

®*From Ref. 43.
®From Ref. 22.

ing times less than 20 s be recorded with a single scan forced
the reduction of all possible sources of noise. The holes were
detected in transmission using a cooled photomultiplier
tube. A photodiode with a time response matched to that of
the phototube was referenced to light from a pickoff placed
before the cryostat. Both signals were then divided by an
analog divide circuit, and the divided output was then digi-
tized and stored by computer. The fast time (200 ms) holes
shown in the figures of Sec. IV are good examples of the
signal-to-noise ratios obtained with a single sweep.

Hole depths varied from 1% to 4% depending on burn-
ing fluence and waiting time. Table II is a list of burning
fluences necessary to obtain a 2% hole after a waiting time of
100 s. Effects which may cause artificial hole broadening,
such as sample heating and saturation hole broadening,*'"*?
were guarded against in this experiment. The hole depths
and hole-burning energies used here are quite comparable to
those used in standard hole-burning experiments on the
same systems.”?*7** The only difference in this study rela-
tive to previous ones was the power used to burn the holes.
As a check, holes burned with short intense pulses and holes
burned with longer (5 s) attenuated pulses were compared
after waiting times of 50 to 200 s. In every system with the
exception of resorufin in ethanol the results were identical.
Therefore, it may be concluded that artificial hole broaden-
ing in these systems was not a problem. Resorufin in ethanol
proved to be extremely sensitive to burn power, i.e., it was
more susceptible to anomalous hole broadening than the
other systems. Holes burned with a pulse of 40 ms were uni-
versally 0.1 GHz broader than those burned with a longer
pulse. The broadening becomes greater when the power is
increased and the pulse length shortened. To obtain reason-
able data, that is, to burn a 1%-2% hole in a short enough
time, a 40 ms burn was used for the data outto 7, = 10's
while data taken with 7, > 10 s used a burn pulse of 2sand a
proportionally smaller power. When comparing the short-
(T,<105) and long-time data, this 0.1 GHz broadening was
taken into account.

The details of the temperature-cycling experiment were
identical to that of the standard variable waiting-time exper-
iment with the exception of the temperature control. The
sample studied was the identical cresyl violet in ethanol sam-
ple used in the fixed-temperature experiment. The hole was
burned at 1.3 K and detected after waiting times of 13 and 23
s. The temperature was then ramped to 2.1 K by reducing
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FIG. 1. Three spectra of a hole burned in a 1.3X 107* M cresyl violet in
ethanol glass at 1.30 K with various waiting times. The three spectra (a),
(b), and (c), were detected with waiting times of 0.2, 23, and 4000 s, re-
spectively. The solid lines are the best Lorentzian fits to the data. The hole
was burned at 621 nm for 20 ms with a fluence of 40 uJ/cm?.

the pumping on the liquid helium and bleeding warm helium
gas into the cryostat. This process took approximately 50s to
complete. The sample was then held at 2.1 K while the hole
was detected at various waiting times. After approximately
500 s, the pump was reopened and the temperature lowered
to 1.3 K again. The hole was then recorded again as in the
standard waiting-time experiment.

{V. RESULTS AND DISCUSSION

Figure 1 shows a hole burned in the system cresyl violet
in ethanol scanned at three different waiting times. The solid
line through the data is the best-fit Lorentzian. Note that the
holes remain Lorentzian regardless of waiting time. All
holes detected in these experiments were Lorentzian regard-
less of waiting time, depth, burn fluence, and sample. There
is no a priori reason to expect only Lorentzian holes regard-
less of experimental parameters. Such a result is indicative of
a universal feature of glass dynamics, It has been demon-
strated that when the coupling between TLS’s and chromo-
phores is dipolar, and the TLS’s are uniformly distributed,
that the predicted hole shape is Lorentzian regardless of
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FIG. 2. Semilog plot of the full width at half maximum (FWHM) of var-
ious holes vs waiting time for cresyl violet in ethanol at 1.30 K. The hole
width broadens most dramatically around 50 s, while flattening out at both
short and long times, The solid line through the data is the best fit using log
normal distribution of rates {Eq. {4.1) ]. See text for values of the param-
eters. The dashed line is the best fit assuming a 5 function distribution of
rates, i.e., a single rate. The & function, while accounting for the magnitude
of the broadening, overestimates the steepness of the increase.

waiting time.253"4443 Thjs is certainly consistent with these
experimental observations.

Figure 2 shows the results of a complete waiting-time-
dependent hole-width study for cresyl violet in ethanol at
1.30K. The hole width is seen to vary over the entire range of
study, but the change in width (on a log time scale) is most
pronounced in the range of 50 s. Even without the develop-
ment presented in Sec. 11, one could conclude that there ex-
ists some process with a characteristic rate around 1/50s~!
in this system. This qualitative information allows one to
select a trial form of the fluctuation-rate distribution func-
tion. Since convolution with the function 1 — exp( — RT,,)
according to Eq. (2.15) tends to smooth out any sharp fea-
tures, there is little point in selecting an excessively compli-
cated form for the fluctuation-rate distribution function. A
log normal distribution (Gaussian on a log time scale) was
found to be the simplest form which still fits the data. Note
that this is by no means a unique solution to the problem of
finding P(R). Other functions will also fit the data, for ex-
ample, a rectangular distribution. However, all functions
which fit the data have three features in common—identical
center frequencies, identical areas under the curve, and iden-
tical characteristic widths. A function which does not con-
tain all of these properties, i.e., a § function, will not fit the
data. A log normal distribution exhibits all properties and is
the most physically reasonable. In addition, it fits the data
slightly better than unphysical functions such as rectangular
distributions. Therefore, it will be used in the analysis of the
data.

If the dephasing is due to TLS’s and the relaxation of the
TLS’s is caused by single-phonon scattering, then a log nor-
mal distribution of fluctuation rates is equivalent to a Gaus-
sian distribution of tunneling parameters [see Eq. (2.10)].
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TABLE IIL

4151

Parameters which give the best fits to the data for the function Aw(T,)

= Aw, + Aw, § dR P(R)[1 — exp( — RT,,) ], where P(R) = (7'*°0R) " exp{ — [In(R /R,)]*/5*}.

Glass Temperature Aw, Aw, In(R;: 18) o
CV/ETOH 1.30K 2.25GH:z 1.07 GHz —394+10 38410
CV/ETOH 213K 4.16 GHz 1.50 GHz —-37+10 38410
Res/ETOH 213K 2.23GHz 0.89 GHz —294+08 42408

Such a distribution of tunneling parameters has been used in
the analysis of thermodynamic properties, such as time-de-
pendent heat capacities, of amorphous silica.** Explicitly,
the best fit to the data was achieved when

P(R) dRxexp{ — [In(R/Ry)1*/0*}d(InR), (4.1)

whereln(R,-1s) = — 3.9+ 1.0and o = 3.8 + 1.0 (see Ta-
ble 111 for a summary of all fit parameters). The errors listed
are obtained by defining y* = =, {[ y; — /(i) ]/ERRi}* and
including in the limits all fits where y><{No. of data
points — No. of free parameters}. The solid line in Fig. 2 isa
plot of the best fit using this function. The dashed line in Fig.
2 is an example of the best fit possible when the form of P(R)
is assumed to be a & function, i.e., there is a single rate rather
than a broad distribution of rates. One can see that it cannot
be made to fit the data nearly as well as the log normal distri-
bution, indicating the underlying fluctuation-rate distribu-
tion does have an intrinsic width. Indeed, two & functions
still fail to adequately reproduce the data. When the number
is raised to three with freely floating individual rates, the fit
becomes better, but is still not as good as the log normal
distribution, and there are too many free parameters to
achieve a unique fit.

The experiment was repeated at 2.13 K, and these re-
sults are plotted along with the 1.30 K results in Fig. 3. A log
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FIG. 3. Plot of hole width vs waiting time for cresyl viclet in ethanol at two
temperatures, 1.30 and 2.13 K. The solid lines are the best fits assuming a
log normal distribution of fluctuation rates. See text for values of the param-
eters. Examining the curves, one notes that while the magnitude of the
broadening increases with temperature, the form does not change, indicat-
ing that the distribution of TLS rates is relatively insensitive to temperature.

normal distribution was again used to fit the data at the high-
er temperature. The best fit (shown as the solid line through
the data) was obtained when In(R,-1s) = — 3.7 + 1.0and
o=23.8+1.0. Note that the data indicate that P(R)
changes very little with temperature. The center of the distri-
bution remains close to 1/50 s~ . This is consistent with the
TLS theory in which the relaxation rate is weakly dependent
on temperature [see Eq. (2.10) and accompanying discus-
sion]. Descriptions of glass dynamics other than tunneling
TLS tend to predict much more dramatic temperature de-
pendences (see Sec. V). This gives further support to the
idea that TLS’s are responsible for dephasing in these glassy
systems.

Figure 4 is a plot of the fluctuation-rate distribution
used to fit the 1.3 K data in Fig. 2. It is produced from a
combination of these hole-burning results and previously re-
ported photon-echo data taken on the same sample. The
hole-burning results, in addition to yielding Eq. (4.1), give
the area under the fluctuation-rate distribution curve for
rates faster than the inverse of 10 ms.? From the echo data,
one may calculate the form of P(R) out to the coherence
time of the sample (here ~ 10 ns).*? It has been shown pre-
viously that P(R) « 1/R in this region.** The 1/R distribu-
tion when plotted as P(R) R is a horizontal line. Note that
the form of P(R) between 10 ns and 10 ms is unknown. Only
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FIG. 4. Plot of the fluctuation-rate distribution, P(R), used to fit the data in
Fig. 1. P(R) is a log normal distribution in the region from R = 1005~ ' to
R=10"%s""and is flat for R>10* s™'. The form of the distribution at
large R is taken from photon-echo data reported earlier (Ref. 44). The form
of the distribution where 10° < R < 10* is unclear; however, the area under
the curve is known. The dashed line indicates the form the distribution
would take assuming it continues flat past R = 10° until forced to cut off by
the area constraint.
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the total area under the P(R) curve is known. The dashed
line in Fig. 4 is the result which would occur assuming the 1/
R distribution continues past 10 ns unchanged until forced
to cut off by the area constraint. In light of the slow rate
results presented here, it is likely that the distribution is more
structured than is indicated by the dashed line in Fig. 4.
Waiting-time-dependent experiments performed in this re-
gion will clarify the nature of the rate distribution.

These time-dependent results are the first to record and
analyze the dynamic modes of a glass on this time scale.
However, while the results described above quantitatively
define the dynamics, they still leave open the question of
what is the source of these modes. It has been hypothesized
that the dye molecules themselves are responsible for the
TLS or, perhaps, are in someway themselves the TLS. If this
were the case, the dynamics would be expected to show a
marked dependence on the choice of chromophore. To
check this, the same type of experiment was carried out on
the system resorufin in ethanol at 2.13 K. Figure 5 shows the
results of this experiment. The data are reported by subtract-
ing the ~0.1 GHz saturation broadening from the short-
time data (7, <10 s) as was mentioned in Sec. III. The data
are presented in this fashion only to give a more accurate
description of the actual TLS-induced line broadening. It

must be stressed that this adjustment does not affect the rel- -

evant results in the calculation of P(R). Fitting the raw data
yields exactly the same width and center frequency for the
P(R) distribution as a fit to the adjusted data. The fit is
simply much better when this broadening is taken into ac-
count, and only the magnitude of the broadening is affected.

Examining Fig. 5, one notes that the hole width again
broadens in a manner similar to cresyl violet in ethanol—
most quickly in the range of 1/50 s~ '. Fitting the distribu-
tion using the form of P(R) in Eq. (4.1) yields the param-
eters In(R,1 s) = —2.9+ 0.8 and o0 =4.2 + 0.8. These
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FIG. 5. Plot of FWHM vs waiting time for the system resorufin in ethanol
at 2.13 K. The solid line through the data is the best fit using a log normal
fluctuation-rate distribution. See text for values of the parameters. The form
of the broadening is nearly identical to that of cresyl violet in ethanol, indi-
cating that the dynamics responsible for spectral diffusion on the time scale
examined here are intrinsic to the glass and not influenced by the dye mole-
cules.

values are in agreement with the parameters obtained for the
system cresyl violet in ethanol at 2.13 K. In terms of its
physical properties, resorufin is dramatically different from
cresyl violet. Resorufin’s net negative charge should influ-
ence its surroundings in a drastically different manner than
positively charged cresyl violet. If these dye molecules are
themselves the TLS reponsible for glass dynamics, there is
little chance that they would yield the identical fluctuation-
rate distribution. The fact that the experiments yield the
same form for P(R), for the ranges of R ’s studied, indicates
that the dynamic modes are intrinsic to the ethanol glass and
are not strongly influenced by the presence of the dye mole-
cule.

The P(R) distributions for the two dyes differ in the
absolute amount of broadening. This is of no concern, how-
ever, since the broadening is directly proportional to the
TLS-chromophore coupling strength which is dependent on
the choice of dye regardless of the nature of the TLS. In fact,
the ratio of the absolute amount of broadening in the two
systems is equal to the ratio of the coupling strengths assum-
ing the choice of dye does not severely influence the nature of
the glass TLS.?? The ratio of the amount of broadening from
0.01 to 5000 s in the case of cresyl violet/resorufin in ethanol
is 1.7. This is in good agreement with the ratio of the photon-
echo linewidths of the two systems which is also equal to the
ratio of the coupling strengths——cresyl violet/resorufin two-
pulse echo linewidth equals 1.6. This indicates that the cou-
pling strength is basically independent of relaxation rate.
While not conclusive, this result is highly suggestive that the
coupling mechanism is identical at both short and long
times.

By altering the host glass matrix slightly and repeating
the previous experiments it should be possible to learn more
about the actual nature of the TLS’s. To this end, the same
type of waiting-time-dependent experiment was performed
on cresyl violet in deuterated ethanol—CH,CH,OD. The
substantially reduced hole-burning efficiency made acquisi-
tion of data faster than 2 s difficult; however, the data ob-
tained for waiting times past 2 s were so similar to those
obtained in the completely protonated glass as to be indistin-
guishable to within the scatter of the data. It is evident from
this result that motions of the hydrogen bonds alone are not
responsible for dephasing for waiting times faster than
10 000s. This is an interesting result. Hole burning in a total-
ly deuterated mixed ethanol methano! glass seems to have
reduced the hole width by over 20%.2" However, this results
was contradicted in a later study which said the results were
identical for short waiting times.*’

Since the dynamics proved to be independent of dye
molecule, an experiment was performed on an entirely dif-
ferent glass, resorufin in glycerol. Extensive hole burning
and photon-echo results have been reported for this sys-
tem.?>*7*8 The difference between the linewidths obtained
by hole burning and two-pulse photon echoes is only a factor
of 3 for this system as opposed to a factor of 8 for cresyl violet
in ethanol.***”** This implies that there is little dynamic
activity between the time scales of the two-pulse echo and
hole burning. One might expect, therefore, to see little in the
way of hole broadening. This is exactly the case. Figure 6is a

J. Chem. Phys., Vol. 92, No. 7, 1 April 1890



Littau, Bai, and Fayer: Low-temperature glass dynamics 4153

0.9

0.8

0.7 1

0.6 . . "

FWHM (GHz)
~

0.5 4

0-4 L] L} L) T
0.01 1 100

10000

time (seconds)

FIG. 6. Plot of the hole width vs log waiting time for the system resorufin in
glycerol glass at 2.13 K. There is little apparent hole broadening over the
time scale studied here. This confirms that the dynamics observed in eth-
anol are intrinsic to the ethanol glass. When the glass is changed to glycerol,
the hole broadening vanishes.

plot of hole width vs log waiting time for the system resoru-
fin in glycerol. There is essentially no change in hole width
over 3 orders of magnitude in time-—from 5 s out to 4000 s.
There is only the slight suggestion of a change at very fast
times ~0.1-5 s. The change is too small to make any predic-
tions about the P(R) distribution at the faster times. How-
ever, this results serves as a good counter example to the
results obtained in ethanol where a dramatic change was
seen, and serves as a further confirmation of the validity of
the ethanol measurements. Any phenomena not intrinsic to
the glass itself which might be suggested as a source of time-
dependent hole broadening should have been observed in the
glycerol system just as in the ethanol system.

The absolute magnitude of the hole width in glycerol is
different from that reported in previous studies.*® However,
it has been shown that the hole width of resorufin in glycerol
is highly dependent upon cooling rate—slower cooling rates
yields narrower hole widths.?” The glycerol sample in this
experiment was quickly cooled as is detailed in Sec. III. The
hole widths recorded in this experiment agree with those
taken on a similarly prepared sample using traditional hole-
burning techniques.*’

The results of the temperature-cycling experiment*® are
detailed in Figs. 7 and 8. Figure 7 shows a single hole detect-
ed at 1.30 K before the temperature cycle, after the sample is
raised to 2.13 K, and at 1.3 K again after the temperature
cycle. The hole broadens when the temperature is raised and
narrows again when the temperature is lowered. The time
and temperature dependences of the cycled hole width are
shown in Fig. 8. The solid lines are the time dependences of
the hole width at 1.30 and 2.13 K taken from Fig. 3. The
dashed line is a predicted response calculated with no adjus-
table parameters using the data taken at 1.30 and 2.13 K.
The details of the calculation are presented in the next sec-
tion. The key feature to note is that, after returning to the
original temperature, the hole width returns to the value
expected without a temperature cycle. That is, the tempera-
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FIG. 7. Three plots demonstrating the effects of temperature cycling on the
hole spectra: (a) hole spectrum at 1.3 K and T, = 205, before temperature
increase; (b) at 2.1 K and T, = 160 s, after temperature increase; and (c)
at 1.3 K and 7, = 2000 s, after temperature is returned to 1.3 K. The hole
broadens when the temperature is raised and returns to its anticipated low-
temperature value when the temperature is reduced given the elapsed time.
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FIG. 8. Plot of the temperature cycled hole width vs waiting time and the
comparison with theory. 4p: data recorded from three separate experi-
ments; dashed line: calculation made without adjustable parameters using
information obtained from the fits of the data in Fig. 3. Solid lines: (same as
those in Fig. 3) show time evolution of holes at the two temperatures with-
out a temperature cycle.
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ture-dependent line broadening is totally reversible.

This result indicates, as will be shown in Sec. V, that the
glass returns to the same configurational minimum after a
temperature cycle as it occupied before the temperature was
raised. The fact that this return may be observed on the ex-
perimental time scale indicates that the TLS relaxation rate
is insensitive to temperature as was also demonstrated in the
temperature dependence shown in Fig. 3.

In Sec. V, a theoretical analysis is presented demonstrat-
ing the remarkable agreement between the results of the tem-
perature-cycling experiment and the TLS model of glass dy-
namics. First, however, the problem may be described more
qualitatively. Assume the hole is burned at a temperature 7,
According to the TLS model, the TLS with E<kT, are con-
stantly fluctuating and, therefore, contribute to hole broad-
ening. The TLS’s with E > kT, are frozen in their ground
states. Thus, the width of the hole shortly after burning is
only determined by the low-energy TLS. When the tempera-
ture is raised to T, additional TLS’s with kT,<E<kT, be-
come active and contribute to hole broadening. When the
temperature is returned to T, these higher-energy TLS’s
return to their ground states. The chromophores which
make up the hole experience a configuration associated with
the higher-energy TLS identical to that experienced when
the hole was burned. Thus, the hole width is again deter-
mined only by TLS’s with E<kT,, and the sample retains no
knowledge that it ever was cycled to a higher temperature.

This model is presented in contrast to a particle or defect
diffusion model where the structure of the glass is continual-
ly evolving in time. In a diffusive model, raising the tempera-
ture would increase the rate of the diffusive motion. When
the temperature was again lowered, the diffusive motion
would slow again, but continue to randomize the local struc-
ture showing no reversible behavior.

An equally accurate description focuses on the motion
of the glass configuration upon its potential-energy surface.
When the temperature is low, 7'= T, the glass configura-
tion may wander upon its N-dimensional potential surface
limited only by the restrictions that it cannot access states
where E> kT, or where the transition rate to that state is

vanishingly small. This range of motion on the potential sur-
face corresponds to the width of the hole detected at T,
When the temperature is raised to 7', the glass may now
access different states, i.e., those states where kT, < E < kT.
This leads directly to a broader hole at 7. When the tem-
perature is lowered again, the glass structure returns to those
states where £ < kT, and the hole width narrows according-
ly. Here it may be seen why it is necessary that the relaxation
rate be weakly (linearly or sublinearly) related to tempera-
ture. If, at the high temperature, the glass configuration ac-
cess states which have vanishingly small relaxation rates at
T4, the glass would be frozen in the high-temperature config-
uration, and the hole width would not narrow again on the
time scale of the experiment.

This requirement of weak temperature dependence is
satisfied in the TLS model where quantum tunneling is the
dominant transition mechanism. If, on the other hand, at the
high temperature, thermal hopping begins to appear as the
dominant TLS transition mechanism, this would yield an

exponential dependence on temperature and an irreversible
hole width. Irreversible temperature-cycling hole widths
have been reported for many systems.?>*> However, with
the exception of a very few cases,” waiting-time depen-
dences have not been taken into account. Indeed, in the sys-
tem cresyl violet in ethanol one would surmise that the hole
width is not completely reversible if one did not take into
account the T,, dependence. In addition, there is little irre-
versibility reported in these systems until the samples are
cycled to temperatures of 5-10 K. These temperatures, as
the authors suggest, are in the range where the tunneling
mode of TLS’s begins to break down in favor of a thermal
hopping mechanism. When the entire experiment is done in
the range where tunneling TLS’s dominate and when the T,
dependence is accounted for, the hole width should be rever-
sible as is clearly documented in the next section.

V. THEORY OF TEMPERATURE CYCLE

In this section, the temperature-cycling experiment is
analyzed quantitatively as a test of the TLS model. The TLS
model has been successful in describing the results of pho-
ton-echo and hole-burning measurements in glasses.'~® The
observed Lorentzian hole shapes and the quasilinear tem-
perature dependence of the hole widths can be derived with
the TLS model.***> However, it is possible to explain pre-
vious optical experiments using a defect or particle diffusion
model, as has been done for heat capacities'>?® and other
experiments on glasses. The reversibility of the temperature-
cycled hole widths is a property which cannot be explained
with a diffusion-based model. An argument in support of
this point based upon the correlation function for a diffusion
system is made in Appendix A. In the following discussion
the TLS model is used to predict the results of a temperature-
cycling study, and the predicted results are compared to the
experiment.

The analysis of the temperature-cycling hole burning
using the TLS model is identical to that of standard hole
burning except in the calculation of the history average. It
was implicitly assumed in Sec. II that burning and reading
were at the same temperature. When this is not the case, the
probability that the TLS has changed state in the time be-
tween burning and reading is modified. The form of the his-
tory average expressed in Eq. (2.8) is unchanged, i.e.,

(1 —exp(ip))y =p, _[1 — exp(2iAwr)]

+p_ [l —exp( —2iAwr)]; (5.1)
however, the joint probability of finding the TLS in the up-
per (lower) energy state at £ = 0 and in the lower (upper)
energy stateat? = 7, is not as expressed in Eq. (2.7). Equa-
tion (2.7) is valid only in the case of constant temperature.
Expressed in its most general form, Eq. (2.7) reads

Pr=p(0)p_[T,lp, (0)=1],

P =p_(0)p, [T,lp_(0)=1], (5.2)
where p, (p_) is the upper (lower) population density of
the TLS with respect toits local field, p_[ T, |p, (0) = 1] is
again the conditional probability of the TLS being in the

lower state at T,, assuming the TLS was in the upper state at
t=0.p,[T,|p_(0) = 1] is defined similarly. Substituting
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Eq. (5.2) into Eq. (5.1), one obtains the general result ofthe ~ Theinitial population distributionsarep , (0) = p_, (eq; Tp)
history average, and p_(0) =p_(eq; T,). The conditional probability
{p. (0)p_[Talp.(0) =1] p_[T,lp+(0) =1]for tl.le_TLS may then becfalculated. To
_ L 2(A 53 findp_[T,|p. (0) = 1] it is necessary to derive an expres-
+p-(0)p,[Tulp-(0) = 1]}sin*(Awr) . (33) " sion for p_(T,) for any initial condition. Recalling Eq.
Here we have taken into account that the sign of the coupling (2.6), one has
Aw is uncorrelated to the orientation of the local field experi- (1) — Ap(eq) = £ — ea)lexpl — R(f — t)1.
enced by the TLS. Therefore, the imaginary parts in Eq. ud Bp(ea) = [8p(to) — Ap(eq) Jexpl ¢ o)]
(5.1) cancel.

When the spatial average yields a Lorentzian hole (ex- ) (5-6)
ponential echo decay), as is usually observed, it is straight- ~ This can be solved for p_ (£). The solution is
forward to show that the width of the hole is given by p_(t) = %{1 — Ap(eq) + [Ap(eq) — Ap(2,)]
Awy(T,) «({p, (0p_[T,lp. (0) =1] Xexp[ — R(t — 1)1}
+p-(0)p [Tup-(0) =11}, . (54) =p_(eq) + [p_ (1) —p_(eq)]
Thus the entire problem reduces to solving the equation of ) ] .
motion of the TLS. . At this point, the temperature-cycling conditions are
Take the temperature cycle to be described by a step inserted. During thfz first interval, T, <#,, the conflitions are
function, i.e. exactly the same as in the fixed-temperature experiment, and
the solution is as in Eq. (2.7). During the second and third
Ty 14 time intervals the conditional probabilties are found by let-
T =1T,, t,<t<t, (5.5) ting 7, = ¢, and ¢, = t,, respectively. This gives
T, t>t,. P-[T,lp+(0) =1]

p_[T,lp.(0)=1]

P_(eq;To){l — exp| —R(To)Tw]}, T,<t (5.8a)
=4p_(eq;T){1 —exp[ — R(T\)(T, — 1)1} +p_(t))exp[ — R(T\)(T, —1,)], #©,<T,<t, (5.8b)
_(eq;To){1 —exp[ — R(ToI(T,, — 1)1} +p_(t)exp[ — R(T)N(T, —1,)], T,>t,. (5.8¢)

One can show thatp, [T, |p_ (0) = 1] has the same functional form.

As discussed in Sec. I1, for single-phonon-assisted resonant tunneling, the relaxation rate is very weakly dependent on the
temperature, R(T) ~coth(E /2kT).**>* Because R(T) is, at most, linear in temperature, the relaxation rates change by
much less than a factor of 2 in the temperature range of interest, i.e., 1.3 to 2.1 K. Taking the exact temperature dependence of
R into account greatly complicates the problem. Since spectral diffusion takes place on a log time scale, the difference between
the predictions of the cycled hole width using the exact form of R(T) and considering R(7T) to be constant are imperceptible.
That is, the difference is well within the signal-to-noise ratio in this experiment. Therefore, in the temperature range of
interest, it can be taken to be independent of 7, R(T,) = R(T,). This is consistent with our experimental observation (see
Sec. IV). Thus, it is easy to see that Eq. (5.8c) becomes identical to Eq. (5.8a) in the long-waiting-time limit, 7, > ¢,. In
practice, this condition can always be satisfied in a waiting-time-dependent hole-burning measurement because spectral
diffusion broadens the hole on a log time scale. Since Eq. (5.8a) describes the situation where no temperature cycling is
present, this indicates that the temperature cycle does not affect the long-time behavior of the hole spectrum.

To calculate the temperature-cycling data, it is necessary to average over all of the TLS’s. Following the development in
Sec. II, we reduce the average over the internal parameters of the TLS in Eq. (5.4) to an average over the fluxtuation-rate
distribution. The details of this conversion are given in Appendix B. The final expression for the time evolution of the hole
width including the temperature cycle is

Awy(l —exp(—RT, ), T,<t,
AAwo(l —exp[ — R(T,, — 1)) 1) r + Dap{exp[ — R(T, —t))] —exp( —RT,))p, t,<T,<t,

Awy(T,) = 5.9
nTo) Awy(l —exp[ — R(T, — t;,)] +exp[ — R(T,, —#)] —exp( — RT,)) (5.9)
+ AAwy(exp[ — R(T, — t,)] —exp[ — R(T, —t) Dz, Tu>ty,
[
where A is a scaling constant given by the ratio Here wehavetaken R tobeindependent of temperature. The

_ ‘ relative population densities at equilibrium in Eq. (5.10) are
(p+(eqTo)p_ (eq;T)) +p-(eq;To)p (eq;T))) 5/ related to temperature according to p, (eq;T) = [1

2o, (eq;Ty)p_(eq;Ty) ) & - (5.10) + exp( + BE)] ! where 8 = 1/kT. The averages over Ein
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Eq. (5.10) must be done using the appropriate density of
states. It has been shown that, using the TLS model, the
density of states of TLS’s may be related to the temperature
dependence of the hole width in a simple fashion.?
P(E) « E*~ ! where a is the exponent of the temperature in
the temperature dependence, i.e., Aw, (T) « T*. By exam-
ining the data in Fig. 3, one can calculate the density of states
for the TLS in ethanol. For rates faster than 100 s~/
P(E) « E®2, This is consistent with the results of the tem-
perature dependence of the echo decay rate—7" 13 = %143 For
rates slower than 100 s~ ', i.e., the log normal distribution,
P(E) < E ~ 93,

In Fig. 8, Eq. (5.9) is plotted without adjustable param-
eters (dashed line) using the information obtained from fit-
ting the standard waiting-time-dependent hole-burning
measurements [no temperature cycle (Fig. 3)] at 1.30 and
2.13 K. The temperature-cycling times are ¢, = 50 s and
t, = 500 s. The agreement between experiment and the theo-
ry based on the TLS model is quite remarkable.

VI. CONCLUDING REMARKS

A combination of careful measurements and theoretical
developments are now able to accurately detect and charac-
terize the dynamic modes of complex systems. This allows
quantitative information about low-temperature dynamics
to be extracted from hole burning or other experimental
data. Applying these methods to the organic glass ethanol, it
was found that, at low temperatures, there exist modes with
a broad distribution of rates. The distribution of rates was
characterized for rates which are operative on the 100 ms to
10 000 s time scale. These modes are intrinsic to the glass,
i.e., they are independent of dye molecule probe, and they
are not related to tunneling of the hydroxyl hydrogen of the
ethanol molecule. To date, the exact nature of the modes
responsible for spectral diffusion has not been ascertained.

It has been assumed for many years, without conclusive
evidence, that the TLS model is an accurate description of
low-temperature glass dynamics. The experimental data and
the theoretical analysis presented here are the first direct
evidence that low-temperature glass dynamics occur on
fixed local potential surfaces—a fact completely consistent
with the TLS model of glasses and incompatible with other
models such as diffusion. The TLS double-well structures
should be viewed as an approximate but accurate description
of glass potential surface. In fact, the results of temperature-
cycling hole-burning measurements agree exactly with the
predictions based upon the TLS theory. These results offer
overwhelming evidence that the TLS model is an accurate
description of the dynamics of low-temperature glasses.
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APPENDIX A

In this appendix it is demonstrated that a diffusion-
based model predicts an irreversible hole width. It has been
shown that in the limit of slow fluctuations the four-point
correlation function for a large number of independent per-
turbers is?¢

C(1,T,,7) =exp{ — N{1 —exp[ig(r,T,)]}},
¢(1.T,) = 7[Aw(0) — Aw(T,)], (Al)

where ( ) denotes an average over all the coordinates of the
glass, and Aw(¢) is the frequency shift caused by a single
perturber. The limit of slow fluctuations implies that Aw(?)
does not vary during the intervals (0,7) and
(T, + 7T, +27).

The relevant coordinates in the case of diffusive motion
are the initial positions of the perturbers and their relative
positions at time 7,,. Aw(0) and Aw (T, ) may be expressed
as functions of these coordinates. Aw(0) = Aw(r) and
Aw(T,) = Aw(r + r,) wherer is the initial perturber posi-
tion, and r, is the position of the perturber at time 7T, rela-
tive to its initial location. With this in mind, Eq. (A1) be-
comes

C(7,T,,7) =exp{ — N(1 —exp[ig(r,r,)])...},
é(rry) =7[Aw(r) — Aw(r+r,)] . (A2)

Ifther and r, distributions have no angular dependence, and
the function Aw(r) is also dependent only upon the magni-
tude of its argument, the imaginary terms in Eq. (A2) van-
ish when the averages over r and r, are performed. Thus the
correlation function becomes

C(r,T,,7) = exp{ — N(1 — cos[$(r,r,) ] ).}
= exp{ — 2N (sin*[ 4 (r,r,)/2]),..},

which, when converted to integral form, is

c(r,T,m) = exp{ — 2NJ- sin®[ §(r,r, )/2]P(r)

X P(r,,T,)dr drd} ,

¢(rry) = [Aaw(r) — Aw(r+r1,)] 7. (A3)

The accumulated phase error, ¢(r,r,), is assumed to be
monotonically related to |r,|, that is, #(r,r,) increases as
|r,| increases. For the sake of simplicity, the distribution of
final perturber positions is assumed to be Gaussian and inde-
pendent of . In the simple fixed-temperature case, P(r,,T,,)
is

P(r,,T,) <exp[ —rz(4DT,) '], (A4)

where D is a diffusion constant. D is a function of tempera-
ture and the relevant internal parameters responsible for dif-
fusion. The form of D(T) is unimportant. When the tem-
perature cycle is considered, the form of the P(r,,T,)
distribution [Eq. (A4)] is modified. Taking the tempera-
ture cycle to be described as a step function, i.e.,

T, 11
T(t)y=43T,, 1,<t<t, (AS)
Ty t>t,,
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one may show that P(r,,T,,) during the temperature cycleis

described by

(exp[ — 72(4D,T,) '], T,<t,

exp( — 75 {4[Dot, + D(T, — 1) ]}H,
1,<T, <,

exp( — r3{4[Dyt, + D\(t,—1,)

[ +Dy(T,—1,)]}"YH, T,>t,

P(l‘d,Tw)oH

(A6)

where D, and D, are the diffusion constants at the low and
high temperatures, respectively. The key feature of Eq. (A6)
is that it is a Gaussian of monotonically increasing half
width. Recall that the correlation function, Eq. (A3), is di-
rectly related to the hole width (rate of decay in an echo
experiment).?>?® By increasing the width of the P(r,,T,)
distribution, the averages in Eq. (5.1) are weighted towards
larger accumulated phase errors. This leads directly to a fas-
ter decaying C(7,T,,,7) which, when converted to frequen-
¢y, is equivalent to a broader linewidth. Thus it may be con-
cluded that, in a diffusive model, the linewidth broadens
constantly. Cycling the temperature only forces the
linewidth to evolve at a different rate at the higher tempera-
ture. When the temperature is again lowered, the line does
not narrow but merely continues to broaden at the original
rate. This is clearly in direct contradiction to the experimen-
tal evidence of a reversible linewidth as is documented in Fig.
8. Therefore, it may be concluded that a diffusive model is
not valid in these systems.

J

APPENDIX B

To obtain Eq. (5.9) it is necessary to reduce the average
over the TLS internal parameters to an average over the
fluctuation-rate distribution. Recall from Eq. (5.4) that

By (T,) = {({p, (0)p_[T,[p.(0) =1]

+p_(0)p [T,lp-(0)=1]}),. (Bl)

For fixed temperature, i.e., T,, < t,, this expression becomes
Bwy(T,) < (20_(eq,Ty)p. (eq,Ty)

X[1—exp(—~RT,)]);. (B2)

The average over A is converted to an average R exactly as is
done in Sec. 11. Thus for T, < ¢, one has

Awy(T,) < {((2p_(eq;Ty)p, (eq;To)) £
X[1—exp( —RT,) )z - (B3)

Normalizing to the condition that Aw, (T, > 10000
s) = Aw, gives

Awy (T,) = Awg(l —exp( — RT,))x . (B4)

Examining Eqgs. (B3) and (B4), one notes that the constant
of proportionality is Awy/{2p_(eq,Ty)p, (eq,Ty)) . This
proportionality constant is a temperature-independent term
which is related to the TLS—chromophore coupling con-
stant. With this in mind, the hole width at the cycled tem-
peratures may be calculated. Substituting Eq. (5.8b) and the
corresponding expression for p, [T, [p_(0) = 1] into Eq.
(B2), the hole width as a function of time in the region
t,<T,<t, is obtained. The result is

Awy(T,) « (20_(eq;T)p, (eq;Ty) [1 — exp( — Rt,) lexp[ — R(T,, — ;)]

+ [p. (eq;To)p_(eq;T)) +p_(eq;Ty)p, (eq;T) 1{1 —exp[ — R(T,, — 1,)]}). -

(B5)

This is converted to an average over R as before. Equation (B5) then becomes
Awy (T,) < {({2p_(eq;To)p. (eq;To) ) g [1 — exp( — Rt,) lexp[ — R(T,, —1))]

+ (p.(eq;Ty)p_(eq;T)) +p_(eqTy)p, (eq;T))) {1 —exp[ — R(T, — )]} -

Substituting the value of the proportionality constant, the

final result is obtained for the interval ¢, < T, <7,,
Awy (T,) = Awylexp[ — R(T, —¢,)]
—exp(—RT,))z
+ AAwo(l —exp[ — R(T, — ;))& »

(B7)
where A is a scaling constant equal to
(p+(eq;To)p_(eq;T)) +p_(eq;To)p, (eq;T)) o/

2(p.(eq;Ty)p_(eq;Tp)) s . (B8)

The expression for Awy, (T,,) when T, > 1, is evaluated in a
similar fashion.
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