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The role of solvent relaxation in electron back transfer following electron transfer from an
optically excited donor to randomly distributed acceptors is treated theoretically. The solvent
dynamics are included by using a time dependent electron back transfer rate function,

K. (R,t). The solvent relaxation is parameterized by 7,, the relaxation time, D, the solvent
energy diffusion constant, and Ag, the potential barrier height difference between the
nonequilibrium solvent state formed upon ion creation and the relaxed solvent state. The
expression for the ensemble averaged donor cation state population probability, (P, (¢)), as a
function of these solvent relaxation parameters is derived. Numerical calculations are
presented. Relationships among (P, () ), the intermolecular interaction parameters, and
solvent relaxation parameters provide detailed insights into the distance and time dependence
of the flow of electron probability in an ensemble of donors and acceptors. The theoretical
expressions can be used to calculate experimental observables such as the transient grating

signal.

1. INTRODUCTION

Photoinduced electron transfer is one of the fundamen-
tal processes in the realm of chemical reactions. Following
the transfer of an electron from a donor to an acceptor, the
resulting radical ions are highly reactive species which can
go on to do useful chemistry. Electron back transfer, how-
ever, quenches the ions and prevents further chemistry from
occuring. The initial steps of photosynthesis involve excita-
tion of a donor followed by electron transfer. Electron back
transfer to the primary donor turns off the photosynthetic
process. In photosynthesis, a specialized spatial array of con-
secutive acceptors overcomes the back transfer problem and
is responsible for the efficiency of photosynthesis.'* In sys-
tems of randomly distributed donors and acceptors (liquid
or solid solutions) back transfer can be very rapid. In liquid
solutions, back transfer competes with diffusional separa-
tion of the photoinduced ions and limits chemical yields.
Therefore, understanding phenomena which influence back
transfer is not only an important basic problem, it is a prob-
lem of considerable practical significance.

The results that have come out of many experimental
investigations on a wide range of systems and conditions
have demonstrated that there is more to photoinduced elec-
tron transfer than “particle hopping™>™'? between molecules
in intimate contact. It has been shown that electron transfer
depends not only on the distance between donors and accep-
tors®'>'*17 but also on factors such as exothermicity,'*2°
reorganization energy,>>?' temperature,®”*? solvent polar-
ity,”> molecular spacer (for intramolecular electron trans-
fer),>'* and electric field.>** This has motivated theoretical
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investigations into the dependence of the electron transfer
rate on each of these factors,'#18:22:25-28

When an ion is suddenly created in a polar solvent, the
solvent dipoles begin to move under the influence of the stat-
ic electric field produced by the ion. The dipoles will align to
counter the ion’s electric field. The interaction between the
ion and the moving dipoles will induce shifts in the energy
levels of the ion. As time progresses, a new solvent structure
will form about the abruptly created ion. These events are
known as solvent relaxation.

In a photoinduced electron transfer process, involving
electron transfer from an optically excited donor to an ac-
ceptor, the situation is somewhat different for that described
immediately above. Following optical excitation there is, in
general, a potential barrier separating the neutral donor-
acceptor pair from the ions.'? This barrier must be sur-
mounted as part of the electron transfer process. Thermal
activation of the neutrals brings the system to the transition
state.">?! Qualitatively, the activation process can be sepa-
rated into two sets of coordinates which must be perturbed
from their equilibrium values to reach the transition state
and for electron transfer to occur. These are internal molecu-
lar coordinates, labeled by the state energy y, and external
solvent coordinates, labeled by the state energy ¢. Initially
the excited donor and acceptor are in their neutral equilibri-
um configurations, y,, ¢,. Thermal activation takes them to
the transition state for electron transfer, y,, g,. Extremely
rapid relaxation of the internal coordinates, on a time scale
of molecular vibrations (10-100 fs), traps the system in the
ionic state. Relaxation back to neutrals can occur (barrier
recrossing) prior to relaxation of the internal coordi-
nates.">?' This does not appear as an electron transfer
event, and in part determines the forward electron transfer
rate parameters. The solvent relaxation generally occurs on
a slower time scale, several hundreds of femtoseconds to
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many picoseconds.’**? The solvent relaxation process starts
from solvent state g, and evolves towards the solvent struc-
ture totally relaxed about the ions, described by state g, .
Therefore, the solvent relaxation starts from state g, which
is intermediate between ¢, and ¢ _ . This is in contrast to an
ion which is abruptly created by capturing an electron in a
sample being bombarded by electrons. It is also different
from solvent relaxation about a molecule which has sudden-
ly undergone a major change in dipole moment upon optical
excitation. In these situations, solvent relaxation begins
from the equilibrium solvent structure, not from a transition
state, ¢,. Another feature of solvent relaxation following op-
tically induced electron transfer is that the internal state,
following relaxation from y, to y . , may evolve somewhat
in response to the solvent relaxation. In what follows any
such evolution of y _ will not be distinguished from the so}-
vent relaxation itself.

The role of solvent relaxation can be considerable in
modifying processes in and around ions or excited molecules
with large permanent dipole moments. Solvent relaxation
has become the focus of a number of experimental and theo-
retical investigations.®! 26272935 Recently, there have been
several excellent reviews of this area.”*? Time dependent
spectral and fluorescence shifts***? and more recently elec-
tron transfer have been probes for solvent relaxation pro-
cesses.*** Yet due to the complexity of the problem of elec-
tron transfer with eventual geminate recombination
(electron back transfer between the initially created ion
pair) in an ensemble of randomly distributed donors and
acceptors, a theory relating dynamical properties of the sol-
vent and the electron transfer system to time dependent ex-
perimental observables has been lacking.

The problem of forward transfer without solvent relaxa-
tion has been solved by Inokuti and Hirayama.’® In a pre-
vious paper,*’ the problem of electron transfer with eventual
geminate recombination in an ensemble of randomly distrib-
uted donors and acceptors was analyzed. In the paper, the
many particle problem was reduced to a two particle prob-
lem. The standard method for attacking such a problem is to
solve the coupled differential equations governing the var-
ious state probabilities, ensemble average over all possible
configurations of acceptors, and then pass to the thermody-
namic limit. This formal solution leads to multidimensional
integrals of dimension n, where 7 is the number of acceptors.
The problem was reduced to a two particle calculation®” by
first averaging over n — 1 acceptors, then solving the differ-
ential equations. The probabilities were averaged over the
final spatial coordinate and then passed to the thermody-
namic limit. The method provided an exact solution. This
not only made the study of the back transfer tractable but
also reduced the mathematical complexity to the point that
it is possible to include solvent relaxation and diffusion®® in
the calculations. The theory used an electron transfer rate
that depended only on the donor—acceptor separation, with
excluded volume properly taken into account. Ensemble
averaged state probabilities were derived and subsequently
used to calculate experimental observables (such as fluores-
cence and transient grating). Other quantities such as the
average ion separation and existence time were also calculat-

ed. Calculations were compared to experiments which had a
100 ps time resolution and excellent agreement was ob-
tained.*®

Solvent relaxation can have a profound effect on the rate
of electron back transfer. In the absence of solvent relaxa-
tion, for fixed molecular positions, the back transfer rates are
time independent. Solvent relaxation will make the back
transfer rates time dependent. In general solvent relaxation
is much faster than the time scale for significant molecular
diffusion in liquids. Therefore, it is sufficient to consider the
influence of solvent relaxation on back transfer for fixed do-
nor and acceptor positions. When the ion pair is created, the
initial solvent configuration is intermediate between that of
the solvent surrounding the neutral molecules at equilibrium
and the solvent surrounding the ions at equilibrium. As time
evolves, solvent relaxation moves the system away from this
initial state. As the solvent relaxes about the ions an increas-
ingly large solvent structure change is required to return the
system to neutral molecules (geminate recombination).
Thus, solvent relaxation slows the rate of back transfer. Back
transfer at short time can be substantially faster than back
transfer once solvent relaxation is complete. Therefore, it is
important to include solvent relaxation effects in the descrip-
tion of back transfer, and a study of the time dependent rate
of back transfer on a picosecond and subpicosecond time
scale can be used as a probe of solvent relaxation.

Inliquids, which are of particular interest, solvent relax-
ation times are typically shorter than 100 ps.!*2%4042 Relax-
ation also occurs in solids. In crystals the dressing of an exi-
ton or a polaron by lattice phonons (relaxation of the lattice
around an excitation or an electron) occurs on a picosecond
time scale. In solid solutions of donor and acceptor mole-
cules in room temperature glasses such as polymeric glasses
or sucrose octaacetate which has recently been used in elec-
tron transfer experiments,” there is a wide distribution of
time scales. The distribution can be roughly devided into a
short component and a long component. Consider a poly-
mer. Pendant groups will move rapidly in their free volume.
Flexing, bending, and rotations of polar groups will be re-
sponsible for solvent relaxation in a solid solution on a time
scale of less than 100 ps. In addition there can be motions in
glasses on very long time scales, milliseconds and longer,
from backbone motions of polymer chains, including crank-
shaft motions and translational diffusion. The latter can oc-
cur over hours or days. In small molecule glasses which are
generally formed at low temperatures, structural changes by
diffusion will also be very slow. For the subject under consi-
deration, the influence of solvent relaxation on electron back
transfer dynamics, only the fast component of the relaxation
in glasses is important. The slow component occurs on atime
scale that is taken to be static. Therefore, for liquids, crystals,
and glasses, the relevant time scale for solvent relaxation is
taken to be faster than 100 ps.

It is the aim of this paper to include solvent relaxation in
the theory previously developed for forward and back elec-
tron transfer. We use a simple, yet reasonable, model for
solvent relaxation, but any model for the solvent dynamics
that gives an electron transfer rate which evolves in time can
be used. The essence of the problem is to include the time
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dependent back transfer rate into the averages over the dis-
tance dependence of the forward and back transfer rates.

In the following, a distribution function for the time
dependent ion probability in various solvent states is de-
rived. Next a time and distance dependent back electron
transfer rate is obtained. The rate has a distance dependent
part that falls off exponentially with distance and a part that
depends on the amount of solvation, which is similar to the
Marcus’ theory exponentially activated rate.>?! Finally, the
total ion probability function is derived and ensemble aver-
aged.

Using these results, the ion probability as a function of
time and distance was calculated for a variety of solvent re-
laxation times and solvation energies. It will be shown that
the time and spatial distributions of ions change as a function
of the solvent parameters. The transient grating observable
will also be derived.

Il. THEORETICAL DEVELOPMENT

In this section the donor cation state population proba-
bility, {P,, (¢)), will be derived. In the derivation the effect of
solvent molecule reorganization under the electric field of
the radical ions is included. In the model, low concentration
donors and high concentration acceptors are randomly dis-
tributed and kept in fixed positions. The concentration of
donor molecules is low enough that donor—donor electronic
excitation transfer is negligible. Because the thermodynamic
lowest energy state of the system is a neutral donor and neu-
tral acceptor and spatial diffusion of the molecules does not
occur on the time scale of interest, back transfer is geminate
as in a solid solution. Because of the systems energetics, the
anionic acceptor will not transfer the electron to a neutral
acceptor, but only back to the cationic donor. This is the
down hill pathway.

An illustration of the electron transfer processes includ-
ing the solvent states is shown in Fig. 1. At time =0 an
ensemble of dilute donors is optically excited. In the absence

D*A
— qO
1/1
Keff
9%
SO lon States
DA DA™

FIG. 1. Energy level diagram. DA, D*A4, and D * 4 ~ are the ground state
neutral donor and acceptor, excited donor and ground state neutral accep-
tor, ground state cation and anion, respectively. The diagram shows only
one of the n acceptors. Forward electron transfer from the excited donor
state to the acceptor is into the g, solvent state and back transfer is from any
of the ion states with solvent configuration designated by ¢. g_ represents
the solvent state after solvent relaxation about the ions is complete.

of acceptors, the probability of finding the donor still excited
at time ¢, (P,, (1)), decays exponentially with the excited
state life time 7, where (P,, (1)) = exp( — ¢ /7). When ac-
ceptors are present the probability decreases more rapidly
due to the addition of the electron transfer pathway for
quenching the electronic excited state.

The electron transfer reaction occurs in the following
stages: After excitation a fraction of the donor—acceptor sys-
tems is thermally promoted to their transition state and elec-
tron transfer occurs to acceptor molecules. This electron
transfer process competes with fluorescence from the do-
nor’s excited state. The forward electron transfer rate is

K;(R) = 1/7exp({R, — R)/a,),

where R is the donor—acceptor-separation, R, is the distance
at which forward transfer has the same probability as flu-
orescence, and 4, is related to the overlap of the donor and
acceptor wave functions.®!"-3¢

The solvent shells around the newly formed ion pairs
begin relaxing to their equilibrium structures. The reorienta-
tion of the solvent dipole moments lowers the energy of the
ions and increases the energy of the neutral states. As a re-
sult, the solvent relaxation increases the barrier height for
electron back transfer which reduces the electron back trans-
fer rate. In the model the time scale for the internal, relaxa-
tion, vibrational redistribution, and thermalization of the
ions (y, — Y., ) is taken to be short (10-100 fs) compared to
the time scale for solvent relaxation (several hundred femto-
seconds to many picoseconds). This assumption may not
always hold. In some solvents, the time for thermalization
could be comparable to the time for solvent relaxation. The
theoretical framework presented below can be extended to
include this case. To simplify the calculation of the observa-
bles it is assumed that solvent relaxation shifts the potential
curves of the neutral ground state and neutral excited state of
the donor molecule approximately the same amount. This is
generally true for nonpolar molecules such as antracene or
rubrene. Solvent relaxation due to the donor electronic exci-
tation is neglected. Compared to the formation of the ions,
the effects of the excited state on the solvent structure is not
significant for neutral donors which do not possess dipole
moments which change substantially upon excitation. The
influence of solvent relaxation about the excited donor on
forward electron transfer can be treated in a manner which is
analogous to the method used to describe the effect of solvent
relaxation on back transfer presented below.

For electron transfer at fixed distance, Sumi and Mar-
cus®® developed a theory for the electron transfer rate that
included the dynamical effects of solvent relaxation. Two of
the limiting cases they studied were electron transfer faster
and slower than the time scale for solvent relaxation. In our
model for intermolecular electron transfer, after ion forma-
tion there is a distribution of distances between the newly
created ion pairs. Close pairs will recombine quickly and
pairs further away will recombine slowly or on the same time
scale as solvent relaxation. The important feature of the the-
ory presented here is to properly perform the spatial averag-
ing including the effects of solvent relaxation on the time
dependence of the electron transfer rate.
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In the next three sections the details of the calculation
will be presented. Section A gives the derivation of the cation
distribution function over the solvent states, the effective
back transfer rate, and the cation probability when the ca-
tion is formed at ¢ = O for a single donor acceptor pair with
separation R. Section B generalizes the cation probability
function derived in Sec. A so that the probability function
also contains ions formed at times determined by the finite
forward transfer rate. The cation probability is then ensem-
ble averaged over the donor—acceptor separations in Sec. C.

A. The effective back transfer rate

In the model, the forward electron transfer initially pop-
ulates the internal and external states y, and g,, respective-
ly. Following ultrafast relaxation of the internal molecular
degrees of freedom, the mechanical degrees of freedom of the
solvent about the ions have not yet relaxed and are in state
go- Subsequent solvent relaxation takes the ions to a more
stable state g_ in which the solvent contribution to the bar-
rier height is Ag = ¢, — ¢, . During the solvent relaxation
process the electron back transfer rate is significantly modi-
fied. The model for the solvent relaxation process can be
summarized as: (a) the energies of the ion—solvent systems
are shifted and the rate of the shifts can be described by the
solvent relaxation parameter 7,, the relaxation time, and (b)
there is a population distribution over different solvent states
that spreads as a function of time described by an energy
diffusion parameter, D. A single solvent relaxation param-
eter, 7,, is used because it is sufficient to display the impor-
tant features of the effect of solvent relaxation on back trans-
fer. In many physical systems it is a reasonable
approximation. The theoretical treatment is general, and
can be readily extended to any time dependence of the sol-
vent relaxation. As a subensemble of ions that are created at
a particular time relax, interactions with the heat bath cause
random fluctuations up and down in energy. This is in addi-
tion to the net down hill motion. The result is a packet that
spreads as it moves from ¢, toward ¢q_ , the energies which
are characteristic of the initial and final solvent states. The
forward electron transfer can place the ions in a distribution
of solvent states about g, . Since g, is a characteristic of the
thermally accessible transition state, the distribution is most
likely narrow. We have not included a distribution about g,
but it can be taken into account.

We first consider a single donor and a single acceptor.
The separation between the donor and acceptor is denoted
by R. Initially we take the forward transfer rate to be infinite-
ly fast so that the cations are formed at t = 0.

To study the evolution of the cation probability, the
function Q,, (¢,R,t) is defined such that Q,, (¢,R,t)dq is the
probability of finding the system (cation, anion, and sol-
vent) within the range of solvent states [g,g + dg]. The total
cation probability can be written as

Qct (R,t) = f Qct (q’R’t)dq' (n

According to the model described in the last two paragraphs,
at time ¢ = 0, the forward transfer prepares all the systems in
the unrelaxed solvent state g,. Therefore

Q.(Rt=0)=1. (2)

At longer times some ions have recombined due to electron
back transfer and

Q.(Rt>0)<1. 3)

The number of cations which have returned to the neutral
ground state because of electron back transfer in the time
interval [#,¢ + dt] and energy [¢,9 + dq] is given by the fol-
lowing expression

Kb (q’R)ch(q!R’t)dth! (4)

where K, (¢,R) is the electron back transfer rate. We now
define a normalized cation probability distribution function

Aaq.t)

Q. (g.Rt) = Q. (R,1)f(g,1). (5)
Integrating both sides of Eq. 5 and using Eq. 1 we obtain
Jf(q,t)dq= L (6)

f(q,t) is the conditional probability for the solvent state to

have the value q at time ¢ if at ¢ = 0 it had the energy q,.
As indicated by Egs. (4) and (5), the total number of

cations which returned to the neutral ground state in the

. time interval [,z + dt] can be obtained by integrating over

q.
dch (Ryt) = - [J' Kb(q9R)f(q’t)dq]Qct(Ryt)dt) (7)

where the term in the brackets is the effective electron back
transfer rate, K,; (R,t), and depends on the donor-acceptor
separation and the time.

Ka(R) = f K, (@.R)f(g,1)dg. (8)

K. (R,t) is the back transfer rate averaged over solvent
states at a time ¢ and separation R. At time r=0,
flgt=0) =8(q —g,) and K5 (R,t =0) = K3 (R,T). At
t> O the solvent state relaxes to a more stable configuration ¢
and the back transfer rate slows down. Therefore
K.z (R,t) <K (R,t =0). Rearranging Eq. (7) we obtain
the differential equation for Q, (R,?)

%Ri’—t)_= —Kcﬂ‘(R,t)ch (R’t)' (9)

The solution for Eq. (9) with the initial condition
Q. .(Rt=0)=1is

Q.(Rt) = exp( - f K (R,t")dt '). (10)
0

We shall now examine the function f{q,?) in some detail.
For simplicity we use the Debye model for the solvent relax-
ation. This leads to the well-known result that the relaxation
of the solvent polarization is exponential with a decay time
equal to 7,. As a consequence, the change in the solvent
energy is given by*®

q(t) =q, +Agexp(—1t/7,), (1

where g(#) is the solvent energy at time ¢, g is the solvent
energy for the relaxed solvent state, and Ag = g, — ¢, isthe
solvent contribution to the back transfer barrier height.
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The solvent relaxation can be viewed as a diffusion pro-
cess in energy space. In a reasonable approximation the
probability distribution function f(g,¢) satisfies the Fokker—
Planck equation*’

Ifgr _[194—-4.)

12
ot T, dq (1

az}f
+D— ( ’t)’
oq* 7

where D is a diffusion constant for motion in energy space
due to random fluctuations of the solvent. The solution of
Eq. (12) is a Gaussian distribution function moving in time.
This is the same as Sparpaglione and Mukamel’s propagator
of the solvation coordinate [our Eq. (13) is the same as
Sparpaglione and Mukamel’s Eq. (D8) with §,, =¢_,
M, (t) =exp( —t/7,),and A’ = Dr,].*” Mukamel’s pro-
pagator of the solvent coordinate is not limited to the Debye
model. Thus, if necessary, f(q,?) can be extended to include
non-Debye solvents. Since at # =0 the ions are in the ¢,
solvent state f(¢,,t = 0) = 8(q — g, ). For > O the distribu-
tion is

2
exp| — lg—g]
2D7, (1 —exp( —2t/7,))
J2mDr, [1 —exp(—2t/7,)]

(13)

With f(q.,?) it is possible to evaluate the time dependent
electron back transfer rate, K ; (R,t). The electron transfer
rate has two parts. One depends on the donor—acceptor sepa-
ration which represents the overlap of the donor and accep-
tor wave functions. The other part depends on the potential
barrier height separating the ion and neutral state. The bar-
rier height has contributions from the internal degrees of
freedom and the solvent degrees of freedom. We have a as-
sumed a separation of time scales. The relaxation of the in-
ternal degrees of freedom is much faster than the solvent
relaxation. Therefore, immediately following electron trans-
fer the internal degrees of freedom have relaxed and deter-
mine the initial barrier height for electron back transfer. This
barrier height is not explicitly shown but is contained in
K9 (R,T) which is the distance dependent rate constant for
electron back transfer prior to solvent relaxation. X %R,
depends on the temperature, 7, because it contains the inter-
nal contribution to the back transfer barrier height. We write
the solvent contribution to the barrier height dependence of
the back transfer rate in the exponential form."*?' There-
fore,

K, (q.R) = exp( — (o — 9)/kDK(R,T), (14)
where K § (R,T) depends on the donor—acceptor separation
and the temperature. The electron back transfer rate for the
unrelaxed solvent state ¢, is defined as

KR, =}exp((R‘,: —R)/&D), (15)

where R and aj are the electron transfer parameters for
solvent configuration ¢,. With Eqgs, (14), (13), and (8) we
obtain the effective back transfer rate

Lin, Dorfman, and Fayer: Solvent relaxation

Keﬂ' (R’t) = Kg (R’T') f f(q:t)dq
90
90
+ [" Ko @Rostandg
9o

o
+Kb(qec ’R) f f(qyt)dq5 (16)

where the first term represents the rate from population in
the g, solvent state, the second term is for population in the
states between g, and ¢_, and the third term is the rate
contribution from population in the lowest solvent state. The
first and third integrals account for the mathematical spread
of the Gaussian past the physical limits, g, and¢g_ . Atz =0
the distribution function becomes a delta function at g, thus
we obtain

K (Rt=0) = f K,(q,R)6(q —q,)dq

=K3(R,T). (17)
The integration in Eq. (16) can be carried out. The result is

Ko (R) =K2(R,T)%[erf(ZAq(evxp( —t/r) = 1)) +1]
+K,(q..R) % [1— erf(ZAg exp( — t/7,))]

+KY(R,T) %exp( — Ag/kT)

A —t
Xexp( qexp;T /7,) +P2)

X [erf(ZAg exp( —t/7,) + P)

—erf(ZAg(exp( —t/7,) — 1) + P)], (18)
where erf(x) is the standard error function, with
Dr (1 — -2
P T, ( exp( t/7,)) ’ (182)
2(kT)?
z 1 (18b)

 2Dr, (I —exp( —21/7))

Equation (18) has some interesting limits. At infinitely
fast relaxation, the solvent is relaxed on the time scale of
electron back transfer. This is also the case at times long
compared to the relaxation time and the spreading of the
distribution over solvent states. In this limit Eq. (19) is time
independent and can be simplified to

K (R) =K} (R, Texp( — Ag/kT)

=lexp( — Ag/kT)exp((RY — R)/a)).
-
(19)

From Eq. (19) we see that R ¢ and af are related to R, and
a,, which are the electron transfer parameters in the long
time limit, by the following relations:

a) =a,, (19a)
RO=R, +a,24

) 19b
T (19b)
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a, parameterizes the rate of the exponential fall off of the
cation-anion wave functions’ overlap. This factor deter-
mines the distance dependence of the electronic part of the
electron transfer matrix element. In the framework of this
model, a, is unaffected by solvent relaxation. Rather, sol-
vent relaxation changes R, , which parameterizes the magni-
tude of the overlap. @, and R, can be determined by experi-
ments conducted on a time scale which is long compared to
7,. This has been done for the rubrene—duroquinone system
using transient grating experiments.* As will be discussed
in more detail below, a short time scale experiment can de-
termine R ¢, and through Eq. (19b), Ag, the contribution of
solvent relaxation to the barrier for electron back transfer
can also be determined.

Under the limit of D— 0 (no spreading of the packet as it

relaxes) the effective rate becomes
K.;(R,t) =K% (R, Texp( — Ag/kT)

Xexp(% exp( — t/r,)), (20)

this is equivalent to having the delta-tunction torm in the
population distribution f{g,t) in Eq. (13)

flg,t) =6(g—q(0). (2

Using K (R,1), the cation state population probability,
givenin Eq. (18), Q., (R,?) from Eq. (10), can be evaluated.
Q.. (R,t) is the probability that the donor is a cation for a
single donor acceptor pair, at a distance R, with an infinitely
fast forward transfer rate (used here so that all of the ions are
created at the same time, £ = 0) and a back transfer rate that
depends on solvent relaxation. In the next section this result
is generalized for the case of a finite forward transfer rate.

B. Generalization of Q_,(R,1)

The generalization of the result obtained in Sec. A for
0., (R,¢) for afinite forward transfer rate is straight forward.
Asin Sec. A, at this point in the development there is a single
donor and a single acceptor. At ¢ = 0 the donor molecule is
optically excited. At some later time ¢,, the excited donor
transfers an electron to the acceptor molecule.

The decay of the donor excited state is due to the donor
relaxation to the ground state (fluorescence and radiation-
less relaxation) and electron transfer (see Fig. 1). The prob-
ability that the donor molecule is in the excited state at a later
time ¢ is

P, (R,t) =exp( —t/T)exp( — K (R)1), (22)

with the initial condition P,, (R,t = 0) = 1. The probability
for forward transfer occurring in the interval [¢,,, 4 dt, ]
is K,(R)P,, (R,t, )dt, . This transfer generates a cation. The
survival probability for the cation generated at time ¢, is

dPCt (R,t) it Kf(R)Pex (R9t1 )ch (R’t - tl )dtl . (23)
Where Q., (R,t —t,) is the cation survival probability at ¢
for unit forward transfer at ¢, and is given in Eq. (10).
Therefore the total probability of finding a cation at time ¢
with an anion at distance R is given by the integral over all
formation times ¢, from zero to ¢ in Eq. (23).

P.(R;) =J- K:(R)P,, (R,t)Q,, (Rt —t)dt,. (24)
(4]

Equation (24) satisfies the initial condition that at ¢ = O the
donor molecule is in its excited state and P, (R,t = 0) =0.

C. Many particles and the ensemble average

For randomly distributed donors and acceptors the spa-
tial ensemble average including the effects of donor—accep-
tor and acceptor—acceptor excluded volume has been per-
formed previously.*” Here a brief description of the method
will be given. In the previous treatment, solvent relaxation at
short time was not considered, and the back transfer rates
were distance dependent but time independent. In this sec-
tion the spatial ensemble average using the time dependent
effective back transfer rate is performed to obtain the ensem-
ble averaged time dependent cation probability.

The excited state survival probability, P,, (R, ,....R,,,t),
and the cation probability when the ith acceptor becomes the
anion are

P, (R,,.,R,,t) =exp( — t/T)exp( — zn: Kf(R,-)l) )
=1
’ (25)

t
P (R,,..,R, )= J K.(R,)P, (R,,..R,t)
(4]

X Q. (Rt —t)dt,. (26)

Since the back transfer process involves only two particles,
the cation and anion, Q,,(R,,t —t,) in Eq. (26) only de-
pends on R, the ion separation. The dependence on the oth-
er acceptors in P, (R,,...,R,,t) is contained in the details of
the forward transfer.*’

To account for the random distribution of the acceptor
molecules, the probabilities given by Eqgs. (25) and (26)
need to be ensemble averaged over all possible acceptor con-
figurations. The ensemble average of P, (R,,...,R,,t) was
derived by Inokuti and Harayama®® and was generalized by
Blumen and Manz to include donor-acceptor and acceptor—
acceptor excluded volume effects.** To calculate the ensem-
ble average of P, (R,,...,R,,t) the method in Ref. 37 was
used. Since the spatial distribution of the acceptors at differ-
ent points is uncorrelated and the ensemble averaging proce-
dure is independent of time integration, the ensemble aver-
age of Eq. (26) over all acceptors except the ith one is

PRy =f KR (Po (Rt )Y
0

X @ (Rt —t,)dt,, 27)

where (), _, denotes an average over the spatial coordinates
except the spatial coordinate of the ith acceptor.
(P, (R,t)),_, is the averaged probability of finding the
donor in its cation state with an anion at R,.
{P,.(R,,t;)),_, in the thermodynamic limit is*’

(P..(R,,1)) =exp( —t/7)exp( — K (R,)t)
— 47 & Pk (*

d3 k:lT R,,

X exp(

X [1 - exp( ——K,(Rj)t)]"Rdej) , (28)

where d is the acceptor diameter, R,, is the sum of the donor
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and acceptor radii, P= Cd >, and C is the acceptor concen-
tration. Equation (28) included donor-acceptor and accep-
tor—acceptor excluded volume effects. A simpler expression
is obtained when excluded volume is not taken into ac-
count.’” This result can be obtained by setting R,, and d to
zero. The physical meaning of Eq. (27) can be understood as
follows: K (R;){P..(R;,t;)),_, is the rate of an excited
donor transferring an electron at time ¢, to an acceptor at R;.
Only some of these ions will remain at a later time ¢. The
survival probability is given by Q. (R,,t —t,). The total
probability of finding a cation at time ¢ with an anion at
position R, is the product of these two terms integrated over
all the times from zero to ¢.

Finally the total time dependent probability of a donor
molecule being a cation, (P,, () ), is found by averaging over
the last spatial coordinate R; and summing over all accep-
tors, and then taking the thermodynamic limit. The result is

(P()) =47C [ " (PL (R0, (29)

R,
where (P’ (R,,t)) is given by Eq. (27) using the thermody-
namic limit of (P, (R;,£)),_, given in Eq. (28). In Eq.
(27), Q.. (R,1) is given in Eq. (10) using K. (R,?) given in
Eq. (18).

Using the forms of the forward transfer rate, K-(R), the
excited state population probability (P,. (¢)), and the effec-
tive back transfer rate K4 (R,t), the ensemble averaged ca-
tion probability (P, ()} is readily evaluated numerically. In
the next section we shall discuss some interesting properties
of (P, (¢)) and use it to calculate the transient grating ob-
servable.

lIl. NUMERICAL RESULTS AND DISCUSSION

In the previous section we obtained the expression for
the time dependent effective electron back transfer rate,
K. (R,t). This accounts for the effect on electron back
transfer of solvent reorganization that takes place after for-
ward transfer. The time dependent probabilities that a donor
isin its excited state, and cation state are also given. Numeri-
cal evaluations of these probability functions and the effec-
tive electron back transfer rate will be carried out in this
section. These calculations will provide a detailed physical
picture of the influence of the time dependent solvation pro-
cess on the back transfer dynamics.

A. Electron back transfer rate

As given in Eq. (18), the effective electron back transfer
rate depends on the solvent relaxation time, 7,, the change in
the back transfer barrier height Ag, the energy diffusion pa-
rameter D, and the electron back transfer parameters of the
unrelaxed solvent state a2, and R §. In the model, these pa-
rameters are taken to be independent of distance, and the
ensemble average over distance involves the forward and
back transfer rates only. It is possible that the parameters are
in fact distance dependent.*® Adding a distance dependence
to the above parameters is tractable because it does not
change the formalism given in Sec. II. The nature of the
results given below will not be affected by the inclusion of
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distance dependent solvent relaxation parameters.

In the calculation, the electron transfer reaction is taken
to occur in the normal free energy region,?! i.e., the back
transfer rate decreases as the solvent relaxes. This simplifies
the expression for the back transfer rate that takes into ac-
count the barrier height change due to solvent relaxation. A
more general approach would be to express the back transfer
rate, using the Marcus’ result,! as

K, (A,R) =exp( — AG*/kT)S(R), (30a)
0y2
AG* =M’ (30b)
44

rather than Eq. (14). Where S(R) contains the electron
transfer matrix element and is distance dependent. A is the
reorganization energy which includes a solvent part related
to our Ag and a part due to internal relaxation which is not
explicitly included in our model but rather contained in the
parameter R ). To include this generalization another pa-
rameter, AG °, which is the standard free-energy change for
the electron transfer must also be determined.”® Equation
(30) takes care of the normal and inverted free-energy re-
gion transfer dynamics. Two limiting cases can be distin-
guished depending on the relative magnitudes of 4 and AG°.
When — AG°< A (normal free energy region) K, will de-
crease with increasing A, when — AG°>A (inverted free
energy region), K, will increases with increasing A. The cal-
culations presented here can be modified to handle the in-
verted region.

The calculation of the effective electron back transfer
rate as a function of time (after the forward electron trans-
fer) for various solvent parameters, 7,, Ag, and D are pre-
sented in Figs. 2-4. For these calculations the temperature of
the system is 200 cm ~' (kT about room temperature), and
the excited state life time, which is used to scale the rate, is 16
ns (16 ns is rubrene’s life time, which is similar to many
other excited singlet states of aromatic hydrocarbons). The
other parameters are given in the figure captions for each
curve. Figure 2 plots the effective back transfer rate for var-
ious solvent relaxation times. One observes that K 4 (R,?)
drops rapidly when t < 7,, and then becomes constant as
time increases. Immediately following the forward electron
transfer (¢ = 0) the system is in an unrelaxed solvent state,
g, (but relaxed internal state y_ ), and the electron back
transfer rate is extremely high. At longer time the solvent
reorganization stabilizes the ions relative to the neutrals and
decreases the electron back transfer rate. Figure 2 also shows
that K (R,?) is steeper for faster solvent relaxation times.
As 7, approaches zero a greater fraction of back transfer
events occur from relaxed solvent configurations. The figure
also demonstrates that at times long compared to 7,, it is
sufficient to consider time independent but distance depen-
dent back transfer rates.

Figure 3 displays the effective back transfer rate
K.+ (R,t) for various Ag’s. The solvent relaxation time is 10
ps. Like Fig. 2 these curves decrease rapidly at early time and
are constant at long time. As Agq increases, the shape of
K. ¢ (R,t) at short time becomes steeper and the back trans-
fer rate from the relaxed solvent state decreases exponential-
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RATE [1/ns]
O = N W s O ND OO

6 20 24

8 12 1
TIME {ps]

FIG. 2. The effective back transfer rate. The distance is 11 A. The other
parameters are Ag = 5k7, D= 100cm ~%/ps, kT =200cm ', a® = 1.0 A,
and RY = 16.0 A. Curve 4 is a constant with the value 0.0625 ns ~'. When
t<7,, the rate drops rapidly. At times much greater than 7, the rate is a
constant.

ly as a function of Aq. For Ag = 0, the effective back transfer
rate is time independent, i.e., K4 (R,t) = K9 (R,T).

The dependence of the effective back transfer rate on the
energy diffusion parameter D is plotted in Fig. 4. In the Fig.
7, is varied from 0 to 25 ps. For each relaxation time two
curves were calculated, one with D = 0 and the other with
D = 1000 cm~?%/ps (energy squared per unit time). The
barrier height change Ag is 5 kT. As discussed in the pre-
vious section, D = 0 corresponds to -function relaxation
(all sites relax together). When D = 1000 cm~2/ps the
width of the solvent distribution is on the order of kT or
larger (the width of the distribution also depends on r, and
the time). The full width at half maximum of the distribu-
tion is

FWHM = [8In(2)Dr, [1 — exp( — 2¢/7,) ]

3D

10—
9«
8 B
A O kT
7 B: .1 kT
26 C: 1 kT
S5 D: 5 kT
— c E: 10 kT
B o4
] 3
2.
1.
0 . : . y
0 40

20
TIME [ps]

FIG. 3. The effective back transfer rate as a function of time and Ag. The
other parameters are the same as in Fig. 2. As Ag increases the stability of
the ions increases and the back transfer rate decreases.

It is important to mention that D can be expressed as
D = A¥/7,,” where A is related to the dielectric properties
of the solvent. Thus, in principle there is only one character-
istic solvent time, 7,. In more complex situations, this rela-
tionship may not hold. Therefore we have kept D as an inde-
pendent parameter. Figure 4 indicates that for parameters
similar to those measured in experiments,*® the effective
electron back transfer rate is not very sensitive to the value of
the diffusion parameter, D. Only when the relaxation time
becomes long do significant variations in the rate occur. For
the parameters used in the calculation of Fig. 4 significant
differences due to different diffusion parameters appear be-
ginning at 7, = 25 ps. These differences arise because for
slow relaxation rates and large D the population is relaxing
very slowly yet because of the large diffusion parameter, a
significant part of the population is spreading downward
rapidly away from the slowly moving center of the popula-
tion. Thus when the relaxation time is fast compared to the
spreading of the population, it is possible to use the 8-func-
tion form of the cation distribution function as an approxi-
mation to the actual distribution when comparing this theo-
ry to data.

B. Cation probabilities

Calculations of the ensemble averaged time evolution of
the cation probability are presented in this section. The time
dependent cation probability can be looked at in several
ways. For a system of randomly distributed donors and ac-
ceptors, it is possible to look at the influence of a particular
acceptor on the cation probability as a function of time and
donor-acceptor separation. To investigate the effect of the
ith acceptor, it is necessary to average over the positions of
all other acceptors, since they in part determine the rate of
electron transfer to the /th acceptor when it is at location R,.
This has been done before without solvent relaxation.*”>?
The expression including solvent relaxation effects is given
by (PL,(R,,1)) inEq. (27) [with (P, (R,,t)) in the thermo-

—h

RATE {1/ns]
O =N G&»UON®DO®O

20
TIME [ps]

FIG. 4. The effective back transfer rate as a function of time, D, and 7,. For
each relaxation time two curves were calculated one with D =0 and the
other with D = 1000 cm ~ ?/ps. Curve 4 is a constant with the value 0.0625
ns~'. Note the insensitivity to changes in D when 7, is short.
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FIG. 5. The probability the donor is a cation as a function of the ion separa-
tionand ,. The parametersare R,, = 6 A, d=72A,a,=05A,R, = 13
A a=1A4A, R=16 A, 7=16 ns, Ag=5kT, D=100 cm~*/ps,
KT =200cm "', and the acceptor concentration C = 0.1M.In4.r=10ps
and B. t = 100 ps. At long distance all curves have the same value. For
comparison, the top curve in 4 and B have K (R,t) = 0 (no back trans-

fer).

dynamic limit given in Eq. (28) ]. Cross sections of this two-
dimensional surface as a function of distance at various times
and solvent relaxation parameters are shown in Figs. 5, and
6.

(P!, (R,,t)) versus distance for a unit volume element
about R; is displayed in Fig. 5 for solvent relaxation times
varying from 0.0 to 10 ps and for K,z (R,?) = 0. In Fig. 5a
the time is 10 ps after the formation of the excited states,
while Fig. 5b is at £ = 100 ps. In each curve Ag = 5kT. The
other parameters are a; = 0.5 A,dd=10A R, =13 A,
R =16 A, and the concentration of acceptors is 0.1 M. The
excited state lifetime is 16 ns. The shortest distance is 6 A
because of donor-acceptor excluded volume. The probabili-
ty of finding a cation with an anion at a given distance from it
decreases as the solvent relaxation time increases. Increased
7, means the solvent relaxation is slower and the ions have a
faster recombination rate for a longer period of time. As a
result, the electron back transfer rate increases and the ca-
tion probability decreases. Figure 5 also shows that the dif-
ferences in the cation probabilities for various 7,’s become
smaller as the ion pair separation increases or time increases.
All the curves seem to coalesce at long distance. For the
parameters used in the calculation, at long distance the for-
ward transfer rate is larger than the back transfer rate,
K. (R,t). This means at long distance the ion population is
controlled by the forward transfer rate for the two times used

1
> 08 10 kT
=R
2 0.6
o S kT
2 -
> 0.4-
2 T 1 kT
S 0.2
0 ' ,

8 10 12
ION SEPARATION [angstroms]

FIG. 6. The probability the donor is a cation as a function of the ion separa-
tion and Ag. The parameters are the same as in Fig. 5 with 7, = 10 ps and
t = 100 ps. Atlong distance all curves have the same value. The curves show
that as the ionic state stability increases (increasing Agq) the cation probabil-
ity increases.

in Fig. 5. In the figure (P, (R;,t)) was also calculated for
K.z (R,t) =0 (top curve in Figs 5a and b). As can be seen at
long distance it coalesces with the other curves. If the
K (R,t) were chosen to be larger there would be a greater
difference between the curves at long distance. This is dem-
onstrated in Fig. 5 at short distances, where
K.+ (R,t) > K,(R); all the curves differ significantly.

Figure 6 shows the dependence of (P,(R,,t)) on the
cation-anion separation, and on Aq varying from 1to 10 kT.
The other parameters are the same as those used in Fig. 5.
7, = 10 ps and the time is 100 ps. Like Fig. 5 these curves
display the cation probability for various cation—anion sepa-
rations at a given time, and shows how the distribution
changes as Ag changes. As Aq increases more ions will sur-
vive at a given time and distance. For example, at 100 ps the
ion pairs with 8 A separations have recombined with
Ag = 1kT. However, ions will have a higher survival proba-
bility at Ag = 5kT. The greater extent of the solvent relaxa-
tion (large Agq) stabilizes the ions and substantially reduces
the electron back transfer rate.

The total time dependent probability of a donor mole-
cule being a cation for all ion separations was found by aver-
aging over the last spatial coordinate R;, and summing over
all acceptors as given in Eq. (29). The numerical evaluation
of (P, (1)) asafunction of time for various electron transfer
and solvent parameters are plotted in Figs. 7 and 8.

Figure 7 shows the ensemble averaged time evolution of
the cation probability (P, (¢)) for various solvent relaxation
times. Ry, R, a ., 4, and the fluorescence lifetime are same
as those used in Figs. 5, and 6. The values of these parameters
are similar to those found in the literature.*® One observes
that (P,, (¢)) rises rapidly within the first 100 ps, reaches its
maximum value, and then slowly decays to zero. At ¢ =0,
the donor molecules are in the excited state, and no ion pairs
exist. After excitation, a fraction of the donors in the ensem-
ble will fluoresce and a fraction will undergo forward elec-
tron transfer. As a result of electron transfer, the ion state
population builds up. The onset of ion pair formation marks
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the beginning of the solvent relaxation process and electron
back transfer. The competition between these processes de-
termines the shape of (P,, () ). The curves plotted in Fig. 7
demonstrate that the cation probability increases as 7, de-
creases. At short time, the curves with different solvent re-
laxation times have very different shapes. As time increases,
more ions reach their relaxed solvent state and back transfer
occurs from more stable configurations. At long time, differ-
ences due to 7, in K4 (R,t) become smaller and the cation
probability curves with different 7,’s have the same shape.
This property is important for determining the solvent relax-
ation parameters 7, and Aq experimentally. In the next sub-
section, we will discuss how these parameters can be extract-
ed from experimentally measured quantities.

Figure 8 shows the dependence of (P, (¢)) on time for
different Ag’s varying from 1 to 10 k7. The solvent relaxa-
tion time is 10 ps and the other parameters used in the calcu-
lation are the same as in Fig. 7. The curves in Fig. 8 are
analogous to those in Fig. 7. The parameter Ag is closely
related to the solvent polarity. As Ag increases, the height of
the solvent contribution to the barrier which must be sur-
mounted for back transfer to occur increases. By increasing
Ag the rate of back transfer is greatly reduced and the cation
probability will increase.

The dependence of (P,,(¢)) on R, a;, R,, and a,, in the
absence of solvent relaxation is discussed in Ref. 27.

C. Experimental observables

The dynamics of electron transfer and back transfer are
determined by five molecular parameters, the concentration
of the acceptors, and three solvent relaxation parameters.
Besides the donor excited state lifetime 7, there are four mo-
lecular parameters, a, and R, (forward transfer param-
eters), and a, and R, (back transfer parameters for relaxed
solvent). The three solvent dependent parameters are the
solvent relaxation time 7,, the difference in the activation
barrier height before and after the solvent relaxation, Ag, as
well as the energy diffusion parameter D. The life time of the

0.24
/8
e A
0.2
5 C
Ro.18 ﬁ D
&
0‘0.12 A:Ops
g B: 1 ps
o
50'08 C: 5 ps
o D: 10 ps
0.04
0 0.4 0.8 1.2 1.6 2

FIG. 7. The total cation probability as a function of time and 7,, Aq = 5kT,
and the other parameters are the same as in Fig. 5. The cation probability
decreases as 7, increases. As 7, increases it takes longer for the solvent to
relax.
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FIG. 8. The total cation probability as a function of time and Agq. 7, = 10 ps,

and the other parameters are the same as in Fig. 5. As the ion stability in-
creases (Ag increases) the cation probability increases.

donor excited state can be directly measured from a sample
without acceptor molecules present. The forward transfer
parameters can be determined by a combination of concen-
tration dependent steady state fluorescence quenching and
time-resolved fluorescence quenching experiments.'>!73¢:3°
With these parameters, the back transfer parameters and
solvent relaxation parameters can be obtained from a ground
state recovery experiment. The most common ground state
recovery method is a pump-probe experiment. Pump-probe
experiments, however, generally have problems with dy-
namic range because it is necessary to measure a small
change in a large signal. Here we will consider the transient
grating experiment. This is a zero background technique
which helps avoid a variety of artifacts which can occurin a
probe pulse experiment.*® The back transfer parameters and
the solvent parameters can be extracted from the transient
grating observable. The transient grating experiment and its
use in measuring electron transfer parameters has been dis-
cussed previously.*

The transient grating observable, S(¢), is proportional
to the square of the peak-null difference in the complex index
of refraction of the medium.*® The change in the index arises
from the reduction in the ground state population in the
grating peaks because of the formation of ion pairs, and do-
nor excited states. S(#) is given by

S(t) =AP., (1)) + (P, (1))~ (32)

Equation 32 shows the connection between the transient
grating signal and the electron transfer parameters. The first
term (P, (?)) is determined by concentration dependent
steady-state fluorescence quenching and time-resolved flu-
orescence quenching experiments. The extraction of the do-
nor’s excited state lifetime, and forward transfer parameters
is straight forward and has been discussed else-
where.'>!73¢3% The electron back transfer parameters a,
and R, and the solvent relaxation parameters 7,, D, and Ag,
that enter into (P, (#)) can be determined from concentra-
tion dependent grating measurements.

Figure 9 illustrates the results of a calculation of the
transient grating observable, S(z,7,), as a function of the
probe pulse delay time for various solvent relaxation times.

1 Cham Phve Vol G2 N & 1 Santember 1990



3560 Lin, Dorfman, and Fayer: Solvent relaxation

0.99{ 1 ps
0.97- S ps

0.95- 10 ps

0.93

p

0.911

-

S(LT,)/S(¢,0)

0.89

0.87 +——r—r-r—r-rrrrrrrorrrT
0 0.4 0.8 1.2 1.6
TIME [ns]

FIG. 9. The transient grating observable as a function of time and 7,. These
curves are all normalized by the transient grating signal when r, = 0.
Agq = 5kT, and the other parameters are the same as in Fig. 5.

In these calculations Agis 5 k7, and the other parameters are
given in the figure caption. All curves presented in Fig. 9 are
normalized to the transient grating signal with infinitely fast
relaxation (S(¢,7, = 0)). The greatest difference between
the transient observable with a finite relaxation time and an
infinitely fast relaxation time is found at short time. In Fig. 9
at short time the normalized observable dips well below one
showing that S(z,7,) <S(£,0). This is expected because
K (R,t) increases with 7, and thus the ion state would de-
plete faster with a larger relaxation time. At longer times the
normalized observable approaches one because K ¢ (R,?) is
slowing down to the relaxed value and the ion populations
with finite relaxation times and infinitely fast relaxation are
steadily approaching the same limiting value.

At long time, ¢> 7,, the solvent is relaxed and all of the
dynamics are due to recombination from ionsin the g, state.
Fitting the long time data to theory in the long time limit
(the theory without solvent relaxation’” using
K, (r) = 1/7exp((R, — R)/a,) for the back transfer rate
instead of K, (R,t)) gives the back transfer parameters a,,
and R, . Back transfer parameters in the long time limit have
been obtained from transient grating experiments.”* The
procedure for extracting the back parameters from long time
data has been discussed in detail.*

With the forward and back transfer parameters, only
three solvent relaxation parameters need to be determined.
They are D, the energy diffusion parameter, Ag, the barrier
height difference before and after the solvent relaxation, and
7., the solvent relaxation constant. As we have shown in Fig.
4, the back transfer rate is not very sensitive to the diffusion
parameter D if the relaxation time is short. Solvent relaxa-
tion around ions is quite fast so in most experimental situa-
tions the D parameter is not important.

The two remaining parameters, Ag and 7, can be deter-
mined in the following way. Obtain the long time parameters
using the method discussed in Ref. 39. Calculate curves back
to ¢ = O using the long time parameters. Use this to normal-
ize the short time data in the same way as the calculations in
Fig. 9. The function S(¢,7,,4¢)/5(t,0) should be fit to the
resulting curve. The best fit should yield the parameters 7,
and Ag.

iV. CONCLUDING REMARKS

We have developed a theory to describe the role of sol-
vent relaxation in electron back transfer following electron
transfer from an optically excited donor to randomly distrib-
uted acceptors. The solvent dynamics are included by using
a time dependent electron back transfer rate, K. (R,?). The
solvent relaxation process is parameterized by 7,, the relaxa-
tion time, D, the solvent energy diffusion constant, and Ag
the electron back transfer potential barrier height difference
between the relaxed and unrelaxed solvent configurations.
We also derived an expression for the ensemble averaged
donor cation state population probability, (P, (z)), as a
function of these solvent parameters.

Solvent relaxation stabilizes the ions relative to the neu-
trals and reduces the back transfer rates. At very short time,
back transfer will occur from an essentially unrelaxed sol-
vent structure. The back transfer activation energy from the
unrelaxed solvent state is small thus the back transfer rate is
large. As solvent relaxation proceeds, the electron back
transfer barrier height increases, and back transfer slows. At
times long compared to the solvent relaxation time, the dis-
tance dependent back transfer rates become time indepen-
dent. While a reasonable model was employed for the solvent
relaxation, the method permits inclusion of further details,
such as multiple solvent relaxation times and distance de-
pendent barrier heights.

The relationship between the solvent relaxation param-
eters and the experimental observables for a transient grat-
ing experiment were discussed. It is now possible to experi-
mentally explore the effects of solvent relaxation on the
distance and time dependent flow of electron probability
from donors surrounded by randomly distributed acceptors,
and to obtain information on the solvent relaxation dynam-
ics.
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