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A theoretical description is given for electronic excitation transport among interacting clusters 
of chromophores. Each cluster is a finite volume system with a limited number of 
chromophores. At high cluster concentration, intercluster transfer will become significant. The 
theory is based on a first-order cumulant approximation of the solution to the transport master 
equation. G”(t) the probability of finding the excitation on the initially excited chromophore is 
calculated. The problem is first solved for two clusters at fixed separations. This result is 
extended to many clusters and then to the thermodynamic limit of an infinite number of 
clusters in an infinite volume. An example calculation is performed of excitation transport 
among chromophores on the surfaces of interacting micelles. For realistic parameters 
characterizing the system octadecylrhodamine B (chromophores) in Triton X-100 micelles, it 
is found that intermicelle excitation transfer can compete with intramicelle transfer. For an 
isolated micelle-chromophore system (chromophores on the surface of a sphere), a new time 
domain expression for G’(t) is obtained. 

I. INTRODUCTION 

During the past ten years, electronic excitation trans- 
port among molecules distributed in finite volumes has been 
an area of active study, both theoretically’-’ and experimen- 
tally. 5+‘o-12 Since the transfer rate of an excitation from one 
molecule to another depends on distance and orientation,13 
the limitations on system size introduce considerable com- 
plexity into the transfer dynamics. Molecules near the boun- 
daries of a distribution experience a different environment 
than those near the center. Examples of such systems include 
chromophores distributed randomly throughout a micelle, 
chromophores on the surface of a micelle, and isolated poly- 
mer coils which are tagged with chromophores. The surface 
micelle system can be constructed with octadecylrhodamine 
B in Triton X-100 micelles;’ the tagged polymer system by a 
copolymer consisting of methyl methacrylate and vinyl 
naphthalene subunits. ‘e 

Previous research has focused on excitation transport 
within single finite volumes. Geometries such as molecules 
randomly distributed in spheres,’ infinite cylinders, and 
fractal pores,4 as well as on the surface of sphere2 and infi- 
nite planes’ have been studied. These systems all share the 
common characteristic of being isolated; i.e., the micelles or 
tagged polymers are separated by a large enough distance 
that there is no intersystem interaction. 

There are situations, however, where excitation trans- 
port from one clustered system to another can become im- 
portant. For example, at very low concentrations of tagged 
polymer chains in a solid polymer blend, the tagged chains 
are isolated and only intrachain transport occurs. I2 Observa- 
tion of intrachain transport has provided detailed informa- 
tion on chain structure. 10,12 At higher concentrations, par- 
ticularly in an incompatible blend, microphase separation 
will occur, i.e., the tagged chains will aggregate.14 Micro- 
phase separation results in interchain excitation transfer 
which causes the overall rate of transfer to increase. I2 Analy- 

sis of the time and concentration dependence of the inter- 
chain transfer should provide detailed information on the 
nature of microphase separated domains.‘4*‘S Another ex- 
ample, which is discussed in detail below, is a concentrated 
solution of micelles having chromophores on their surfaces. 

Here we develop a generalized model for incoherent do- 
nor-donor transport among chromophores distributed in 
many finite volumes. Each finite system is a cluster of chro- 
mophores and thus has internal transport dynamics unique 
to its configuration. The centers of mass of the clusters are 
taken to be separated by small enough distances so that 
transport between clusters is significant. By this we mean 
that intercluster transfer dynamics occur on a time scale 
comparable to the excited state lifetime. 

The time-dependent motion of an excitation within an 
ensemble of interacting chromophores can be characterized 
by the function G’(t).‘6v’7 G”(t) represents the self part of 
the Green’s function solution to the transport master equa- 
tion. I6 Its physical meaning is the probability that an initially 
excited molecule is still excited at time t. G ‘(t) does not 
contain the excited state lifetime decay. It does include 
transfer events in which the excitation leaves the initial site 
and later returns. 

The usefulness of G’(t) lies in its relationship to the 
observables measured in time-resolved depolarization ex- 
periments. A polarized excitation of an ensemble of random- 
ly oriented chromophores results in a photoselective excited 
state. Only chromophores with the appropriate transition 
dipole vectors can be excited. Transfer to surrounding mole- 
cules, which are randomly oriented, and subsequent relaxa- 
tion of the excited state lead to depolarization of the ob- 
served fluorescence.‘sV’g G”(t) can be studied in this way 
provided that other depolarization processes (such as mo- 
lecular rotation) occur on a slower time scale. 

In the following development, it is necessary to work 
with complicated molecular distribution functions. We em- 
ploy a cumulant expansion method developed by Huber” 
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for infinite three-dimensional isotropic systems which was 
later extended to finite volume systems by Petersen and 
Fayer.’ The interaction between a donor (initially excited 
molecule) and its identical neighbors can be approximated 
by performing a pairwise configurational average over ac- 
ceptors (initially unexcited, but otherwise identical mole- 
cules), This leads to a power series in the density of acceptor 
molecules which is truncated to first order. The major ad- 
vantage of the cumulant method is that it provides a math- 
ematically tractable form for systems with complicated dis- 
tributions, 

We separate G”(t) into two contributions G t, (t) and 
G & ( t) . G in ( t) describes transport “on” the cluster which 
contains the initial excitation. This problem has been treated 
in detail previously.’ G & (t) describes forward and back 
transfer among the initially excited cluster and other clus- 
ters. First, transfer between a pair of clusters and a fixed 
distance is analyzed. G & (t) is obtained as an average over 
all possible configurations of chromophores on the two clus- 
ters. The result is then averaged over the intercluster separa- 
tion and the thermodynamic limit is obtained for the interac- 
tion of the initially excited cluster with neighboring clusters. 
We refer to this approach as the “effective chromophore 
method.” The details of the cluster structure and possible 
chromophore locations are contained in the cluster-cluster 
pair G & (t). Once G & (t) for the pair of clusters has been 
obtained, the problem appears like transfer between a pair of 
“effective chromophores” as long as cluster excluded vol- 
ume is properly incorporated when necessary. (G& (t) ) is 
then calculated as an average over the ensemble of effective 
chromophores. 

This paper is organized in the following manner: In Sec. 
II, we briefly review the cumulant method and discuss its 
applications to finite volumes. In Sec. III, a general tech- 
nique to model multiple cluster systems is developed; this is 
then applied in Sec. IV to the specific problem of chromo- 
phores randomly distributed on the surfaces of spheres (a 
model of micelles in concentrated solutions). Section V con- 
cludes with a discussion of the relationship between these 
calculations and measurements in real systems. 

II. THE FIRST-ORDER TRUNCATED CUMULANT 
APPROXIMATION 

In this section, we follow the methods of Huber2’ and of 
Blurnet? to derive the ensemble averaged decay of excitation 
probability of a donor molecule surrounded by a random 
distribution of acceptors. (Here “donor” means the initially 
excited molecule. The “acceptors” are the unexcited, but 
otherwise identical molecules. The donor-acceptor transfer 
rate constant is equal to the acceptor-donor rate constant.) 
In order to establish the notation and to show the logical 
extension of infinite volume systems to finite volume sys- 
tems, we repeat the initial steps of Blumen in Ref. 8. The 
donor is placed at the origin of a lattice. The probability that 
a nearby lattice site is occupied by an acceptor isp. Assuming 
that there is no cooperativity involved in site occupation, the 
probability of obtaining a particular configuration Kn,m of n 
acceptors distributed in N lattice sites is 

P(K,,,) =p”( 1 -P)~-~. (2.1) 
The index m counts the number of ways of obtaining the 
configuration K,,, : 

l<m< 0 n . 
We next introduce the two-particle approximation. The 

excitation decay of the donor molecule due to an acceptor at 
sitej, Ej (t) , is assumed to be unaffected by the presence of an 
acceptor at some other site. This allows us to reduce the n- 
particle problem of the donor decay to a superposition of 
two-particle problems. The total decay function, therefore, 
is a product of the independent two-particle decays 

Gs(K,,,;f) = fl Ej(t)* (2.2) 
J eK,,, m 

For the case of Fiirster dipole-dipole interactions, the trans- 
fer rate is given by I3 

E,(t) = 1/2Cl +exp[( -2t/r)(Rc/rj)6]). (2.3) 
In Eq. (2.3)) r is the excited state fluorescence lifetime and 
R, is the Forster critical transfer radius. This radius depends 
on the magnitudes on the electronic transition dipoles of the 
donor and acceptor chromophores. It is defined as the sepa- 
ration between the acceptor and donor when the excitation 
probability decays to 0.5 in one lifetime. The quantity of 
interest is the ensemble average of G”(t) : 

(G”(O) = C G”(K,,,;WWn,,). 
n,m 

(2.4) 

After substituting Eq. (2.1) and (2.2) into Eq. (2.4), we 
obtain the expression 

/m 
N \n) 

(G’(t)) = C C J-J Eip n (1 -PI* 
n = 0 m = 1 is&, ier,, 

(2.5) 

It can be shown that the above equation is equivalent to 

(G”(t)) = fi [ 1 -p +PEi(t)]* 
i=l 

(2.6) 

A Taylor expansion of the logarithm yields a power series in 
the site occupancy 

ln(G”(t)) = 2 ln{l -p[ 1 - Ej(t)]} 
i=l 

= -& k&t~kik)[l --W)]k. (2.7) 

Equation (2.7) is an exact expression for the two-particle 
model proposed above. The advantage of the binomial distri- 
bution of acceptors (2.1) is that the number of acceptors in 
any local region is not strictly fixed. That is, the configura- 
tional average done in Eq. (2.4) accounts for all possible 
local distributions about any given donor position. The den- 
sity of acceptors may thus vary from one region to another. 
This is a necessary requirement when dealing with restricted 
geometries. 

At low acceptor concentrations, the lattice site occupan- 
cy is small. In this case, only the first-order term of the k 
summation in Eq. (2.7) is retained and the summation over 
lattice points can be replaced by an integration over space. 
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The discrete lattice positions are modeled by a continuous 
distribution function u (r ) . Thus, 

ln(G ”U)) = -p/2 f 
Jspace 

cl - exp[ ( - 2t/r)(&/@]} 

Xu(r)dr. (2.8) 
Here a local number density of acceptors p replaces the site 
occupancyp. For a random distribution of chromophores in 
an infinite volume, Eq. (2.8) yields an analytical expression 
which has been shown to be a very accurate approxima- 
tion.l,2,16 

the donor chromophore , while G  & (t) is the decay due to 
transfer to chromophores on other clusters. In Appendix A, 
we show that within the context of the first-order cumulant 
approximation G  ‘(I) = G  & ( t) G  & ( t) . Hence, the calcula- 
tion of a multiple cluster problem is reduced to the calcula- 
tion of G  & (r); the single cluster behavior can be factored 
out and calculated separately. 

The vector distribution u(r) is defined such that 
p(r)& is the fraction of acceptors in the region between r 
and r + dr. For finite volume systems, this distribution will 
generally be significant near the location of the donor, but 
will approach zero for distances far away. In addition, re- 
stricted distributions could have discontinuities in the angu- 
lar or radial components ofr. The normalization condition is 

P c 
Jspace 

u(r)& = (N- l), (2.9) 

where N is the total number of chromophores (donor and 
acceptors) within the finite volume. 

Equation (2.8) describes the excitation decay of a single 
donor molecule interacting with a distribution of acceptors. 
In general, for a finite volume or nonrandom system, there is 
a distribution of nonequivalent donor sites a( rd )dr, and the 
acceptor distribution is a parametric function of the donor 
position. Thus, u(r)dr = u(r,;rddra and the left-hand side 
of Eq. (2.8) should read ln( G  “( T;r, ) ). Any experimental 
observable must therefore be related to the average of Eq. 
(2.8) over the ensemble of donor positions’,’ 

(G”(0) = l/V, [ (G’(t;r,))o(rd)dr,, 
Jspace 

The factorization of G”( t) into G  & and G  &, is a conse- 
quence of the two particle approximation inherent in the 
first-order cumulant expansion. In other contexts, the two 
particle approximation has been found to be accurate, e.g., 
for infinite random systems, the first-order cumulant treat- 
ment of Huber” gives the same results as the Gochanour- 
Andersen-Fayer (GAF) theory,16 in spite of the fact that 
the GAF theory includes an infinite number of pathways 
among an infinite number of particles. This has been verified 
experimentally as has the accuracy of the first-order cumu- 
lant treatment of excitation transport on finite polymer 
chains lightly tagged with chromophores. Under the appro- 
priate physical situations, G:, will decay on a faster time 
scale than G  &. The excitation probability will become delo- 
calized within the donor cluster prior to excitation transport 
to other clusters. In this case, the separation of G” into G  i, 
and G& is strictly valid. 

A. Calculation of g,,(r) for a pair of clusters 

(G”(t;r,)) =exp - [(N- 1)/2v,] 

X 
s 

C1-exp[(-22t/7)(R0/r,)6]] 
SpXC-2 

(2.10) 

The cumulant method employs the averaging of two- 
molecule interactions between a donor located at position r, 
and a distribution of acceptors which we now define as 
P, (r2). We construct a multiple frame coordinate system 
(see Fig. 1) . The origin of frame 1 is placed at the center of 
mass of the cluster containing the donor, while the origin of 
frame 2 coincides with the center of mass of an acceptor 
cluster. The separation vector R joins the origins of the two 
frames. A third coordinate system (frame 12) has its origin 
at the position of the donor molecule. For a specified donor 
position r ,, and cluster separation R, a linear transformation 
of coordinates (r2 = Ar r2 = ri2 ) leads to an expression for 
the acceptor distribution in terms of the donor position. 
Thus, Pa (r2) = Pa (ri2 ) . In Appendix B, we show in detail 

In Eq. (2.10), the constants I’, and V, are the volumes oc- 
cupied by the acceptor and donor distributions, respectively. 

Examination of Eq. (2.10) reveals that the long time 
limit of (G “( t) ) approaches exp [ - (N - 1)/2]. This is 
contrary to the physically correct answer l/N. For an N 
particle system at infinite time, the excitation probability is 
equalized among the particles. The problem of correcting 
the asymptotic behavior (t + to ) of (G”(t)), thereby im- 
proving the long time accuracy ( t z 2 lifetimes ) , will be dealt 
with in Sec. V. 

x12 

tf 
xi2 

III. MULTIPLE CLUSTER SYSTEMS 
Consider a system of n chromophore clusters, labeled 

i = 1,2,3,...,n. We identify two components responsible for 
the decay of excitation probability of a single excited donor 
molecule in one of the iclusters, G  & (c) and G  i, (t). G  & ( t) 
is the decay due to transport within the cluster containing 

Donor Sphere &captor Sphere 

FIG. 1. Multiframe coordinate system showing the transformations neces- 
sary to express P( r2) in terms ofthe vectors r, and rlz for a given separation 
R. For spherical shell distributions lr21 is a function of only the angles 0 i2 
and 8,. 
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how this is done for the general case of asymmetric clusters 
and the simplified cases of spherically symmetric clusters. 
The configurational average over acceptors is then per- 
formed with respect to the position of the donor molecule 

ln(G&(t,R;r,)) 
= [(N- 1)/2V,] 

X {exp[ ( - 2t/7)(RO/r;2 I”] - 1) 

(3.1) 
where N is the number of interacting molecules under consi- 
deration (single donor on the donor cluster and N - 1 ac- 
ceptors on the acceptor cluster), V, is the volume occupied 
by the acceptor cluster, and T and R, are parameters defined 
in Eq. (2.8). The vector integral in Eq. (3.1) is converted 
into a triple integral over the spherical components of r2 
according to 

r : sin( O,)dr, d6, d&. 

Since Eq. (3.1) is an explicit function of r,, an additional 
average over the donor position must be performed 

(G’(t,R)) = l/F’, (GYt,R;rdU~)) 

xP,(r,,W,W, de, d#,. (3.2) 

B. e,(t) In the thermodynamic limit 

Equation (3.2) is the probability of finding a molecule 
in the donor distribution excited at time t in the presence of 
an acceptor distribution centered at R,. We, however, are 
interested in the decay function due to many acceptor clus- 
ters. For a distribution of n clusters defined by the set of 
coordinates {R, 1, 

G&(t,n) = G”(t,R,)G”(t,R,)G’(t,R,)...G”(t,R,) 

= ifiI G”(GRi 1. (3.3) 

In a macroscopic sample, the number of clusters is large. 
Any measured observable would correspond to a statistical 
average of Eq. (3.2) over an infinitely large number of clus- 
ters. Assuming all clusters are identical in geometry (but not 
in the locations of the chromophores in the clusters), the 
finite distribution (Ri} is replaced by a weighted average 
over the continuous separation variable R. Given a radial 
distribution function g(R) describing the spatial proximity 
of donor-acceptor cluster pairs, the expression in the ther- 
modynamic limit for excitation transport between clusters in 
a solution with cluster concentration c is*’ 

g(R)G”(t,R)dR $“g(R W]’ , 
A. The two sphere problem 

In deriving G”( t;R) from Eqs. (3.1) and (3.2)) we mod- 
el both the donor and acceptor distributions as radially de- 

(3.4) pendent delta functions 
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v-co 
N/V-c 

where R, = (3n/41rc)“” and V= fg(R)dR. 
The integration in Eq. (3.4) is carried out over a large 
enough volume to contain a macroscopic number of clusters. 
For a random distribution of clusters g(R)dR = ~ITR ‘dR. 
Equation (3.4) becomes 

-G&(t,R)]R’dR). 

(3.5) 

Equation (3.5) is the decay of a solution of clusters with 
concentration c. In deriving Eq. (3.5), it was assumed that 
all clusters have the same shape so that the functions 
G& (t,R;) can be explicitly written only as a function of 
cluster separation R and orientation Cl. In this way, a cluster 
to cluster G & (t) can be obtained by performing a radial and 
an angular configurational average. For clusters with a dis- 
tribution of shapes, an explicit average over shapes could be 
performed, or the average shape could be used as a reasona- 
ble approximation. Once a functional form for G”(t,R,R) 
has been found for two clusters, a basis for treating a solution 
of interacting clusters is established. The concentrations in 
Eq. (3.5) are in units of (number ofclusters)/(cluster diam- 
eter) .3 For the micelle system discussed below, the meaning 
of the diameter is clear. For an ensemble of polymer coils, 
e.g., the diameter would be twice the root-mean-square radi- 
us of gyration.15 

IV. CALCULATIONS FOR CHROMOPHORES 
DISTRIBUTED ON SPHERICAL SURFACES 

In this section, the theory developed above is applied to 
the specific example of chromophores randomly distributed 
on the surfaces of spheres. This system lends itself to the 
above formulation for the following reasons: spherical distri- 
butions are relatively simple. The symmetry properties of 
spheres allow the transformations described in Appendix B 
to be carried out such that the resulting expressions for 
G & (t) are computationally straightforward. Most impor- 
tant, this model mimics a particularly useful experimental 
system. As mentioned previously, energy transport among 
dye molecules distributed on the surfaces of noninteracting 
micelles has been successfully studied by other workers.* 
The surfactant molecules used in these studies, Triton X- 100 
are known to form essentially monodispersive, approximate- 
ly spherical shaped micelles in water.** In addition, these 
homogeneous, isotropic solutions remain in the mesotropic 
phase, even at high concentrations.23 
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pd(rl) =&r, -p> = 0, if rI#p co, s ifr,=p, 0 
m S(r, -p)dr, = l/47$ = l/V,, 

P,(r,) = &r2 -p) = 
0, if r2#p 
63, if r, = p, s 

m 6(r2 -p)dr, = l/4rrp2 = l/V,. O 

(4.1) 

In Eq. (4.1)) the “volumes” of the distributions are the surface areas of spheres with radiusp. Substitution of Eq. (4.1) into 
Eqs. (3.1) and (3.2) and omission of the brackets indicating a configurational average results in 

G’(t;R) = --$- 
. 

r : sin 8,S( r, - p)dr, d0, d#, 
d 

{exPC-2[Rdr:2(e:2,8,)]“t/7)- 1~S(r2-p)r~sin62dr2d82d~2 . (4.2) 1 
The function r ’ i2 (f3 ;2,0,) is obtained by performing the coordinate transformation r2+ri2 (see Appendix B) and then 
finding the subsequent roots of the argument of the S function in r,. In this way, the radial dimension of Eq. (4.2) can be 
eliminated. In addition, it is necessary to express the angle 8, in terms of the integration variable 0 l2 : 

G”(t;R) = + 
s 

sin 8, de, exp (N- 1) 
6 4 

x s 0, 
(exp{ - 2[R,/r;2(e;2,e,)]6t/~} - 1) 

x sin 8, de, , I 
(4.3a) 

e,=e;, +arcsin(r~,sine;,/p) 

- arcsin (p sin 0,/r y2 ), (4.3b) 

r;,c0s e;, 
p[ 1 - (rr2 sin 012/p)2]1’2 I ’ 

(4.3c) 

where 

ry, =(p2+R2-2Rpcosf3,)“2, (4.3d) 

r;,(e;,,e,) =c0se;2(p2+R2-22Rpc0se,)1'2 

f [c0se;,(p2+R2-2RpC0S8,) 

- (R2+2Rpcost9,])“2. (4.4) 
Equation (4.4) exhibits the correct limiting behavior as a 
function of sphere separation R. For large separations, the 
linear dependence of r i2 on R leads to behavior of the decay 
(4.3a) consistent with that of a single donor molecule inter- 
acting with a single effective acceptor. Under these circum- 
stances, there is little decay on the time scale of fluorescence. 
As R -0, however, the nontrivial solution of Eq. (4.4) ap- 
proaches cos 8 i2 . In this case, the inner integral of Eq. (4.3) 
is not a function of the donor position 0, and the outer inte- 
gral can be performed independently. The result is the decay 
expected from transport among chromophores distributed 
on the surface of a single sphere 

G”(t;O) = exp (N- 1) 
( 

r/2 

X {exp[ - 2(R,/2pcos O;,)‘~/T] - 1) 

xcos2e;,sine;,d0;, . 
> 

I 

Equation (4.5) has an analytical solution 

G”(t;O) = exp 
I (N2 ‘) [$‘3~(2/3,p) -~t’~I?(2/3) 

+ exp( --PI - 11 , 1 (4.6) 

where ,u = 2Q%/r, Q= (R,)2p, and I?(2/3) 
= 1.354 117 94. I’(x) and y(a,x) are the complete and in- 

complete Euler gamma functions, respectively, defined by 

I’(a) = 
s 

m e-‘t”-‘dt and y(a,x) = xe-4n-1dt. 
0 s 0 

It is interesting to examine the limiting behavior of Eq. 
(4.6) as a function of sphere radius. When the sphere radius 
is large in comparison to R,, energy transport only occurs 
between chromophores within a local section of the sphere 
surface. In the limit of infinite sphere radius, the transport 
behavior should look like that of an infinite planar surface 
with a chromophore density 6 equal to the total number of 
chromophores on the sphere divided by the total surface area 
of the sphere. The equation describing energy transport on 
an infinite two-dimensional surface is given by2 

G&,, =exp[ -S?rR~2-2’3r(2/3)(t/~)*‘3]. (4.6a) 

After rewriting the density in terms of the sphere radius con- 
tained in ,u and the total number of chromophores on the 
sphere, 

G&m (t) = exp (N; ‘) [ -PI?-(2/3)1). (4.6b) 

As the sphere radius grows large, ,u becomes very small and 
the following approximations can be made in Eq. (4.6)24: 

exp( -pu) - 1~ -,u +p2/2 -,u’/6 + *-*, 

,~‘/~y(2/3,~) =:3&2 - 3p2/5 + 3/.~‘/16 - e-e . 
In the large sphere limit, ,X is a number much less than 1. 
Therefore the lowest order term p1’3r( 2/3) dominates the 
behavior of Eq. (4.6) in this range. Equation (4.6) then, is 
identical to the infinite two-dimensional system (4.6a) in the 
large sphere limit. 
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6. The two sphere problem in the thermodynamic limit 

To extend Eq. (4.3) to a realistic description of the mi- 
celle solution as a function of micelle concentration, the ef- 
fect of volume excluded by the micelles must be considered. 
The thermodynamic limit given by Eq. (3.5) must be modi- 
fied to allow for volume exclusion.8’25 This is essentially the 
same problem developed in Sec. II for the interactions of 
particles which are binomially distributed over the points of 
a lattice. In this case, however, the lattice spacing is set equal 
to the micelle diameter. Replacing the particle-particle in- 
teraction term Ei (t) with the intercluster term G & ( t,Ri ) in 
Eq. (2.71, 

ln(Gi,(t))= - 2 ~(p*,k)[l-GG:,(I;R~)]*. 
k=i i=l 

(4.7) 
In converting the sum over the discrete lattice points Ri to an 
integration over the continuous variable R, we do not con- 
sider distances smaller than the micelle diameter d,. The 
site occupancyp is the probability that a lattice cell contains 
a micelle and is related to the micelle concentration by 
p = c( d,, )“. The analog to Eq. (3.5) with a random distribu- 
tion of micelles in solution is8,25 

m (d, )(=+-3Lk 
ln(G&(t,c)) = -44~ C 

k=l 

x 
s 

-[ -G&(t;R)lkR2dR. (4.8) 
dm 

The donor-acceptor micelle excluded volume is taken care 
of by the lower limit of the integral in Eq. (4.8). The accep- 
tor-acceptor excluded volume is related to the lattice site 
occupancy. Notice that acceptor-acceptor excluded volume 
only becomes important for terms in k higher than 1. 

V. RESULTS AND DISCUSSION 

Calculations were performed to obtain G& (t) for the 
Triton X-100 micelle/octadecylrhodamine B (ODRB) sys- 
tem as a function of micelle concentration. Previous excita- 
tion transport studies have determined the radius of the 
chromophore distribution (approximately the micelle radi- 
us) R m ~37 .& and the Fiirster transfer distance for static 
ODRB molecules R o z 5 1.5 A.” Equation (4.3) was numeri- 
cally integrated using a Gaussian quadrature method for val- 
ues of micelle separation ranging from zero to six R, . Since 
the number of ODRB molecules per micelle are known to 
follow a Poisson distribution,5 it is further necessary to 
weight G ‘( t;R) with respect to N: 

G ‘(N,R,t) =,z, ~(-$)WW,t), (5.1) 

where Y is the average number of chromophores per micelle. 
This was done for Y = 5 and 10. 

Figure 2 shows spline-fitted plots of G& for a pair of 
micelles at several different values of t as a function of mi- 
celle separation. At all times greater than zero, the curves 
smoothly increase with the intermicelle separation. This is 
the same behavior one observes when increasing the distance 
between a pair of chromophores, i.e., the intermicelle excita- 

0.2’ 
2 3 4 5 6 

R/R, 

2 3 4 5 6 
R/R, 

FIG. 2. C& for chromophores distributed on the surfaces of two spheres 
[ Eqs. (4.3) and (4.4) ] is plotted as a function of sphere separation. Curves 
are shown for different times ranging from 0 to 2.0 lifetimes. The t = 0 curve 
is a horizontal line with a value at 1.0. Subsequently decreasing curves are 
fort = 0.04,0.12,0.28,0.6, 1.0, and 2.0. Y is the Poisson averaged number 
of chromophores per sphere. For octadecylrhodamine B, R, = 51.5 A. For 
Triton X-100 micelles, the micelle radius is R, = 37 A. 

tion probability decay looks like the decay between two ef- 
fective chromophores. It can be seen that no significant de- 
?ay occurs for separations greater than 5.OR, (3.9R, = 200 
A) during the time scale of interest (two excited state life- 
times). The effect of doubling the average number of chro- 
mophores per micelle is small at distances greater than 
4.OR, (3. lR, = 160 A), but more pronounced at shorter 
distances. This is because all the chromophores on the accep- 
tor sphere, regardless of how many are present, are outside 
the transfer range to all the chromophore positions on the 
donor sphere. 

The intermicelle decays (Fig. 2) were numerically inte- 
grated with respect to the micelle separation according to 
Eq. (4.8), which accounts for excluded volume effects. The 
resulting functions represent the time decay of G& due to 
intermicelle interactions for a micelle solution of concentra- 
tion c. Figure 3 shows plots of these functions for several 
micelle concentrations ranging from 0.1% to 50.0%. The 
time dependence of G & (t) is strikingly different for differ- 
ent ranges of concentration. At low concentrations 
(c = 0. l-l .O% ), G & ( t) decays approximately linearly 
with time and only to a very small extent ( - 10% at two 
lifetimes for the 1% solution). Here, chromophores on the 
acceptor spheres are mainly out of range of the excited chro- 
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0 0.5 1.0 1.5 
t/r 

FIG. 3. G&(t) for a solution ofinteracting micelles [IQ. (4.8)] is plotted 
for several different concentrations: (a) 0.1%; (b) 0.5%; (c) 1.0%; (d) 
2.0%; (e) 5.0%; (f) 10.0%; (g) 20.0%; (h) 30.0%; (i) 40.0%; (j) 50.0%. 
Y is the Poisson averaged number of chromophores per sphere. For octade- 0 
cylrhodamine B, R, = 5 1.5 A. For Triton X-100 mice&s, the micelle radius 
is R, =3i'k 

mophores on the donor spheres. At intermediate concentra- 
tions (c = LO%-5.0% ), the short time decay is more pro- 
nounced and the long time decay can be as much as 40%. In 
these solutions, the average distance between micelles is on 
the order of a few R, and intermicelle transport is significant. 
At high concentrations (c = lo%-50%), the average mi- 
celle center to center separation is between two and three R,. 
Chromophores on acceptor spheres can interact with donor 
chromophores. The decay of G& is steep at short times, 
while the long time decay can range from 50% to 100%. 
Comparison of the Y = 5 and Y = 10 plots shows that 
G & ( t) scales approximately linearly with Y. That is, when Y 
is doubled, G & ( t) has a similar functional form, but decays 
twice as fast. 

The solution for an isolated micelle [ Eq. (4.6) ] was 
plotted for several values of N and compared to results ob- 
tained by Ediger and Fayer.’ In this study, the authors used a 
second-order truncated density expansion of chromophores 
with a Pad& approximant to solve the problem of chromo- 
phores distributed on the surface of a single sphere. Al- 
though the two theories agree well for short times, at longer 
times they can differ by as much as 20%. The Pad& approxi- 
mant used in the aforementioned theory has the effect of 

correcting the long time behavior of G” within the limita- 
tions of the function’s accuracy. The long time limits are 
forced to approach l/N. To correct the asymptotic behavior 
of the first-order cumulant theory, a (2/2) Pade approxi- 
mant of Eq. (4.6) was constructedz6 

In G”(t) = -(N- 1)/2[J?C2/3)1x 
1 + (N- 1)/2[ 1/2I-(2/31x* ’ (5.2) 

where x = (2 (R,/2p) t)“” . Figure 4 shows a comparison of 
Eq. (5.2) with the results obtained by Ediger. The agree- 
ment is excellent, within 4%. Thus the first-order cumulant 
with a Pad& gives an accuracy equivalent to a second-order 
density expansion with a Pad& The density expansion was 
checked against a numerical simulation and found to be ac- 
curate. Since the density expansion result is in Laplace 
space, a numerical inverse transform must be performed to 
obtain time-dependent decays. Therefore, the simple time 
domain expression (5.2) provides a considerable advantage. 

AsdiscussedinSec.III,G’(t) =G&(t)G&(t).Since 
a fluorescence depolarization experiment will contain con- 
tributions from both intra- and intermicelle transport, detec- 
tion of G & is limited by the behavior of G i,. The situation 
can be analyzed in the limit of low, intermediate, and high 
micelle concentrations. 

For low concentrations (c = 0.1%-l .O% ), chromo- 
phores within a single micelle are closer to one another than 
chromophores on neighboring micelles. G& decays only 
slightly and follows an approximately linear form. This leads 
to a fluorescence depolarization indistinguishable from the 
single micelle decay at short times and deviating between 
1 .O% and 10% at long times. Since the single micelle decay 
reaches its asymptotic limit (between 0.5 and 0.07 in Fig. 4) 
at long times, the deviations at best border on the edge of 
detectability. 

For intermediate concentrations (c = 1 .O%-5.0% ), 
the micelle separations are on the order of a few R,. Intrami- 
celle randomization still occurs faster than intermicelle 
transfer, 
40%. 

1 

& 0.5 
0 

0 

but the long time decay will deviate by as much as 

0 0.5 1.0 1.5 2 

t/r 
FIG. 4. A comparison of the cumulant solution of G & [ Eq. ( 5.2) ] with the 
results obtained by Ekliger and Fayer. Curves were generated for the follow- 
in_ me number of chromophores per micelle: (a) 2; (b) 3~ (c) 4, (d) 5; (e) 7; 
(0 lo: fr , .J) 15. For octadecylrhodamine B, R, = 51.5 A. For T&on X-100 
mkelles, the micelle radius is R, = 37 d;. 
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If the micelles tend to aggregate, the onset of intermicelle 
transfer will occur at lower concentrations. In a polymer 
system or other systems in which there is aggregation of clus- 
ters, it should be possible to obtain information on the spatial 
distribution and the number of clusters in the aggregates. 

In the high concentration limit (c = lo%-30%), the 
center to center separation is down to two or three R,. G & 
becomes a steeply decaying function at short times and as- 
ymptotically approaches zero at long times. This should be 
readily detectable. For example, in a 20% solution of mi- 
celles containing an average of five chromophores each, G iA. 
will decay to 0.5 in 0.5 lifetimes. G& will decay to 0.37 dur- 
ing this time and the decay of polarization will be 0.185. It is 
reasonable to expect to see this difference. On the other 
hand, for a 20% solution of micelles containing ten chromo- 
phores each, at 0.5 lifetimes the product of G& (0.36) and 
G& (0.14) will approach zero. Only the short time behavior 
can then be used to study the off-micelle transfer. A readily 
observable experimental situation would then be a concen- 
trated solution of micelles (5 < c < 20% ), each containing 
an intermediate number of chromophores (4 < N < 6). Such 
solutions should be possible to prepare.‘7*‘8 
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The use of a Pad& approximant to correct the asympto- 
tic behavior of G An could be extended to a correction of G & 
[ Eq. (4.3) ] as well. However, since most of the useful infor- 
mation of G& is contained in the short time region where 
the cumulant is most accurate, Eq. (4.3) can be considered a 
good approximation. The validity of this approximation, 
and the method in general, can be tested experimentally. 

APPENDIX A 

We want to show for a multiple cluster system that the 
approximation 

(G”(Q) = (G:,(f))(G:,(O) (Al) 
is consistent with the first-order cumulant approximation 
which includes only pair-wise interactions. From Eq. (2. lo), 

ln(G,(t;r,)) = - [(N- 1)/2V,] 
VI. CONCLUDING REMARKS 

A method has been presented which makes use of the 
truncated cumulant approximation, introduced by Huber” 
and extended to finite volume systems by Peterson and 
Fayer,’ to model the incoherent energy transport of mole- 
cules distributed among many interacting finite volumes. 
This is made possible by the mathematical tractability of the 
cumulant approximation. 

X I- 
JSpiW 

{1 -exp[( -2t/~)(R,/r,)~]l 

Xu(r, )dr,. (AZ) 
The distribution of acceptor molecules can be written as 

0,) = u,,(r,) + uoF(ra), (A3) 
so that 

The method was applied to the problem of Triton X-100 
micelle solutions with octadecylrhodamine B probe mole- 
cules. The energy transport was taken to be donor donor (no 
traps). The extension to the donor-trap problem is straight- 
forward.” An analytical result in the time domain was ob- 
tained for the excitation transfer dynamics of an isolated 
micelle. This was corrected with a Pade approximant which 
was found to agree with previous accurate calculations. Nu- 
merical calculations showed that the range of interaction 
between micelles is independent of the number of probe mol- 
ecules and is approximately six times the micelle radius of 
4.7Ro for this system. This corresponds to the average dis- 
tance between micelles in a 3% solution. The concentration 
dependence of the interaction was calculated for the cases of 
five and ten chromophores on average per micelle. For ran- 
domly distributed Triton X-100 micelles with ODRB chro- 
mophores, intermicelle excitation transfer can have a signifi- 
cant influence on experimental observables at 
concentrations above a few percent. 

G”(t;r,) = G& (t;r,)GS,,(t;r,). (A41 
It remains to show that Eq. (Al) follows from Eq. 

(A4). We follow standard methods of probability theory.27 
Let a represent those events which lead to on-micelle trans- 
fer and p represent ones that lead to transfer off. Also, sup- 
pose r, and rfi are independent random vectors with distri- 
butions P( ru ) and P( r0 ), respectively. Then the real valued 
functions G .L ( t;r, ) and G; ( t:r, ) are independent random 
variables. This means that there exists a function G” 
( t;r, ,rB ) = G S, (T;r, ) G b (t;r, ) and a joint distribution 
P(r,,rp) = P(r,)P(rp). Thus, 

WzW)(G;W) 

The method could be useful in obtaining structural in- 
formation from restricted systems such as energy transport 
of tagged copolymers in multicomponent polymer blends. In 
the calculations presented here, the micelles were taken to be 
randomly distributed. Nonrandom distributions will result 
in deviations from the predicted concentration dependence. 

= 
s 

G: (t;r, )P(r, )dr, 
s 

G;(t;r, )P(r, )dr, 

= 
ss 

G:,(t;r,)G;,(t;r,)P(r,)P(rp)dr,drp 

= 
ss 

G’(t;r,,r,)P(r,,r,)dr,drp = (G’(t)). 

APPENDIX 6 
Here we show how the acceptor coordinate r2 is ex- 

pressed as a function of the cluster separation R and the 
honor position r,. We choose reference-frames I, 2, and 12 
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b) 
xlZ$, x12 4 A xi2 

y,2&;,--pp; 
, 

FIG. 5. A multiframe coordinate system showing the general relationship 
between the donor position r,, the acceptor position rr , and the donor- 
acceptor distribution separation R. The vector r:, points from the origin of 
frame 12 to the origin of frame 2. (b) Frame 12’ is obtained by rotating 
frame 12 an angle 19:~ about they,, axis. 

with the additional vectors r2, rr2, and r:: as in Fig. 5. Appar- 
ently, r2 = r12 + r, - Rand R = (0, 0, R ). Breaking rZ into 
its components, 

r2 = rlZx + rlx, r2u = rlzv + rly, r2, = r12= + rlr - R. 
031) 

The relationship between polar and Cartesian coordinates is 

r, =rsint?cosf$, ru =rsinBsin+, r, =rcosO. 
032) 

Now assume the vectors r, and ry, are both in the x-z plane. 
Then r,,, = 0, r 02,, = 0, and r2,, = r,2,, . We next rotate 

frame 12 about they,, axis so that the z,~ axis is parallel to 
the vector r:, (Fig. 5 ) . The rotation is given by 

Wa) 
where B - ’ is the matrix of direction cosines: 

) ( 
cosf37, 0 

21 B22 B,, = 0 1 

sin 0:: 0 

(B3b) 
where 0 y2 = arctan( rlx/rlz - R). 

Substitution of Eq. (B3) into (Bl) gives 

r 2X = Bllr;2x + K1r i2= + rlx9 (BW 
r 2y = B22r :2y9 Wb) 
r zz = B,,r izX + Bssr iza + rlr - R. WC) 

Equations (B4) are the general relationship between the 
coordinates of an acceptor position and those of a specified 
donor position. The acceptor distribution P, (r2) can be 
written Pa (r i2 ) and the integration over r2 is replaced with 
an integration over ri2. For the special case of spherically 
symmetric distributions, Pa (ri2 ) is independent of di2. 
Then 4i2 can be set to zero and Eq. (B2) becomes 

ri2x = ri2Sil16i2, rizy =O, ri2= =ri,COSei, (B5) 

which in turn allows us to write Eq. (B4) as 

r zx = B,,r iz8in 0 iz + B,,r izoo 8 iz + rlx, (Bea) 
r - 0, 2Y - (B6b) 

r 2z = B,,r &sin 0 iz + B,,r i,COS t9 i2 + rlz - R. 
WC) 
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