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In this paper and the following paper (II) we introduce a new method of viewing transient 
holographic grating experiments in which the gratings are formed by laser beams of orthogonal 
linear or circular polarizations (or one of each). In this paper, we show that the two 
traditional methods of modeling these gratings, electric-field pictures and diagrammatic 
perturbation theory, may be augmented. We demonstrate that any grating can be decomposed 
into component intensity gratings that are related to the polarizations in its electric-field 
picture. Each of these component gratings may be analyzed separately (with or without 
diagrammatic perturbation theory), facilitating the incorporation of secondary effects (such as 
transport and heat deposition) into the grating calculation. The grating decomposition method 
(GDM) illuminates spatial structure that is not evident in standard perturbative calculations; 
it also provides a physical description that makes qualitative insights more readily obtainable, 
while at the same time making the electric-field approach rigorous and quantitative. 
Furthermore, the GDM reduces the complexity of many diagrammatic perturbation theory 
calculations. We also introduce effective two-interaction matrix elements (ETIMEs), which 
can be used to greatly simplify perturbative grating calculations. We show that ETIMEs, when 
considered in conjunction with the symmetry properties of the third-order susceptibility 
(x’~‘), can often be used to prove that some of the component gratings in a decomposition do 
not contribute to the signal and therefore need not be considered. In II, we apply this theory to 
two grating problems. 

1. INTRODUCTION 

Over the past two decades, four-wave mixing (FWM) 
techniques have become increasingly powerful tools for 
probing phenomena in all phases of matter.“* An important 
special case of FWM, the transient grating (TG),3 has prov- 
en useful in studying a multitude of processes. In the gas 
phase, velocity distributions, collisional excitation 
transfer,4*’ diffusional transport, and rates and cross sections 
for various sorts of collisions6*’ are among the phenomena 
that have been probed. Excited-state lifetimes,8*9 rotational 
rates,8*‘0 and the optical Kerr effect “.” (OKE) are some of 
the processes that have been studied in liquids. Processes 
such as diffusion, I3 molecular reorientations,14 and acoustic 
waves” have been studied in various liquid-crystal phases. 
Solid-phase investigations have included excited-state dy- 
namics, ” exciton transport in crystals,” acoustic-wave 
propagation in bulk materials,18-2’ and electron transport** 
and other processes’” in semiconductors. In addition, phase 
transitions,‘4 porous materials,25 and semiconductor-liquid 
interfacesZh have been studied. 

” Present address: Department ofchemistry and Biochemistry, University 
of Texas at Austin, Austin, TX 78712. 

“Supported by the U.S. Department of Energy, Office of Basic Energy Sci- 
ences, Chemical Sciences Division. 

Although the transient grating is a versatile technique, 
TG data are not always simple to interpret, especially those 
arising from orientational gratings (a term that we will use 
to describe the general class of grating in which the polariza- 
tion of the electric field changes along each fringe; an exam- 
ple of this is the linear polarization grating,27-3’ in which the 
excitation beams are of orthogonal linear polarizations). 
Historically, two approaches have been taken in the inter- 
pretation of orientational TG data. The first approach 
makes predictions based on the spatial dependence of the 
amplitude and polarization of the grating electric 
field.27*3’-33 While this approach has the advantage of being 
simple and intuitive, it provides little calculational power 
and can lead to false insights. 

The other approach that has been used to understand 
TG experiments and FWM in genera13*’ is the density- 
matrix formalism, usually in the form of diagrammatic per- 
turbation theory (DPT), although Wherrett, Smirl, and 
Boggess have used iterative density-matrix techniques to 
model linear polarization gratings.29 In this formalism, 
Feynman diagrams are used to depict integrals that describe 
the couplings of the material states by radiation fields and 
the evolution of these material states in between the field 
interventions. A weakness of this theory as it is usually ap- 
plied to orientational TG experiments, however, is that spa- 
tial information about the excitation processes is buried in 
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the mathematics of the calculation and is not available in a 
form that provides physical insight. This information can be 
essential to the understanding and calculation of orienta- 
tional gratings and their decays for several reasons. First, 
decay constants must be added in a completely ad hoc man- 
ner. For instance, in the following paper4* (hereafter re- 
ferred to as II) we discuss gratings of gas-phase sodium 
atoms. In this system, the decay constants for both linear 
polarization gratings and linear intensity gratings (in which 
the excitation beams have parallel polarizations) are calcu- 
lationally indistinguishable, even though the experimentally 
observed decay constants differ greatly.6s7 Such differences 
arise because of the different spatial dependences of the exci- 
tation processes in each experiment. Second, DPT only for- 
mally treats two processes: the coherent coupling of material 
states via radiation fields and the subsequent decays of these 
coherences. Secondary effects such as thermal gratings” or 
molecular alignment (through the nuclear optical Kerr ef- 
fect,32 for instance) cannot be directly treated within the 
formalism, even though they may be major contributors to 
grating signals. It is difficult to extend this theory to treat 
such processes without understanding the spatial nature of 
the excitation process. 

In this paper we use DPT to show rigorously that it is 
possible, through a change of basis set, to transform calcula- 
tions of orientational gratings into sums of linear and circu- 
lar intensity-grating calculations; we call this system the 
grating decomposition method (GDM). The electric field of 
each component intensity grating is of one polarization but is 
spatially modulated in amplitude; in this manner, spatial in- 
formation is restored to the calculation in a form in which it 
can be used readily. Although we develop the GDM within 
the framework of DPT, the results derived are general prop- 
erties of the third-order susceptibility (xC3’), and the GDM 
is therefore valid no matter what method is used to calculate 
xC3’. We further show that there is a direct connection be- 
tween the electric-field pictures of orientational gratings and 
the decompositions associated with these gratings; thus, 
electric-field pictures and xC3’ can provide great physical 
insight and simplify calculations when used in concert. 

We also introduce effective two-interaction matrix ele- 
ments (ETIMEs), which can greatly simplify perturbative 
grating calculations because much of the necessary summa- 
tion is done in advance. Finally, we show that the symmetry 
properties of the ETIMEs and ofXC3’ can be used to predict 
which gratings in a decomposition do not need to be consid- 
ered because of canceling contributions. We demonstrate the 
use of these symmetry properties in linear polarization-grat- 
ing calculations in isotropic media. In II, we illustrate appli- 
cations of the GDM to general and specific grating calcula- 
tions. 

II. BACKGROUND 

In the most general FWM experiment, three input 
beams (of frequencies w,, w2, and w3 and polarizations q,, 
q2, and r13, respectively) enter the sample at times f,, t2, and 
t3; the signal beam emerges at frequency w,, polarization q,, 
and time ts. In a TG experiment, beams 1 and 2 (the “excita- 
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tion” beams) are time coincident and usually (but not neces- 
sarily43) of the same frequency; these beams make some an- 
gle 19 with each other, and the resultant interference pattern 
creates a grating within the sample. Beam 3 (the “probe” 
beam), which may have a different frequency than the first 
two beams, arrives some time later and diffracts off of the 
grating. The diffracted portion of the probe beam forms the 
signal beam. (In another variety of induced-grating experi- 
ment, the laser pulses are all time coincident and the fre- 
quency of one or more of the beams is scanned instead of the 
probe pulse delay; the formalism developed in this paper 
applies equally well to this frequency-domain grating tech- 
nique, although we will concentrate on the applications to 
TG experiments. ) 

Table I lists the five distinct combinations of excitation 
beam polarizations that may be used in creating gratings, 
and the types of grating each combination creates (other 
grating configurations are possible, but these may be re- 
duced to linear combinations of those listed). Figure 1 shows 
the spatial variation of the electric fields for each of these 
gratings. The first variety of grating, the linear intensity grat- 
ing (which we will henceforth call an intensity grating), is 
the most common. In this sort of grating, the excitation 
beams have parallel linear polarizations (which we have rep- 
resented by x,x). The probe beam polarization is generally 
also linear, and the signal beam has the same polarization as 
the probe beam. As can be seen in Fig. 1 (a), the intensity 
grating arises from an optical interference pattern between 
the two excitation beams. This intensity pattern interacts 
linearly with the medium and causes a sinusoidal 
( 1 + cos 0) variation in its index of refraction; this variation 
in turn acts as a grating and diffracts the probe beam. (If the 
interaction with the medium is not linear, as in the case of 
two-photon absorption, the initial grating has a form other 
than 1 + cos 8; such nonlinear interactions can be treated by 
extension of the treatment described here, and will not be 
discussed further in this paper.) 

The second variety of grating that we consider is the 
linear polarization grating (which we will henceforth call a 
polarization grating). In this grating, the excitation beams 
are cross polarized (in this case we have chosen x,y). The 
probe beam (and therefore the signal beam) is again general- 
ly linearly polarized, but the angle between the probe and 
signal polarizations may range anywhere from 0” to 90” (de- 
pending on the choice of probe beam polarization and the 
relative strengths of the various relevant off-diagonal ele- 
ments of the response tensor of the medium). Figure 1 (b) 

TABLE I. Types of induced grating. 

Type of graing Beam polarizations Example 

Linear intensity 
Linear polarization 
Circular intensity 
Circular polarization 
Mixed 

Parallel linear 
Orthogonal linear 
Identical circular 
Opposite circular 
Circular and linear 

x,x 
X,Y 
r,r 
r,l 
r,x 
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FIG. 1. Spatial dependence ofelectric field for one fringe of (a) linear inten- 
sity grating, (b) linear polarization grating, (c) circular intensity grating, 
td) circular polarization grating, and (e) “mixed” grating. 

shows how the electric field varies along one fringe of a po- 
larization grating; note that the electric field changes in po- 
larization but not in magnitude across a fringe (as opposed 
to the electric field in an intensity grating, which changes in 
magnitude but not in polarization). The polarization alter- 
nates from right circular to linear (x - y) to left circular to 
linear (x + y ) and then back to right circular, with elliptical 
polarizations interspersed between the linear and circular 
polarizations. Since the e field changes in polarization along 
each grating fringe spacing, the polarization grating is a 
form of orientational grating. 

The next two types ofgratings are the circular analogs of 
the intensity and the polarization gratings (in Table I and 
elsewhere we denote right and left circular polarizations by r 
and 1, respectively). In a circular intensity grating [Fig. 
1 (c) ] the excitation beams have identical circular polariza- 
tions, whereas in a circular polarization grating [Fig. 1 (d) ] 
the excitation beams are of opposite circular polarizations. 
Finally, the last variety of grating consists of one circularly 
polarized excitation beam and one linearly polarized excita- 
tion beam [in Fig. 1 (e) we show r and x polarizations); we 
have termed this a “mixed” grating. 

It is possible, given these pictures, to understand many 
of the factors that contribute to grating decays. Anything 
that causes the sinusoidal modulations that make up the in- 
duced gratings to lose amplitude will cause the signal to de- 
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cay. For instance, diffusion across a grating will progressive- 
ly wash out the grating. Similarly, any population relaxation 
(such as excited-state decay) will usually cause the grating 
to decay. Orientational gratings [Figs. 1 (b) and 1 (d) ] 
formed in liquids by excitation of randomly oriented mole- 
cules with well-defined transition-dipole directions will de- 
cay completely by rotational diffusion of the molecules; 
however, rotational diffusion will cause an intensity-grating 
signal to decay only partially or not at all (when the angle 
between the excitation and probe polarization is the magic 
angle”). 

The electric-field pictures also give insight as to the 
preparation of populations in various regions of a grating. 
This insight can be valuable in understanding grating sig- 
nals, especially those arising from orientational gratings. 
For instance, many atoms and molecules have different se- 
lection rules for excitation by circularly polarized and linear- 
ly polarized light; in such cases, the populations prepared in 
different regions of a polarization grating can have vastly 
different properties. 

This pictorial method facilitates an understanding of the 
excitation and decay processes that contribute to grating sig- 
nals, although the actual calculation of grating decays from 
these pictures may be quite involved. While the effect of 
transport on any sort of grating is straightforward to calcu- 
late using this approach, there are many subtleties that can 
make it difficult to predict anything more than the qualita- 
tive nature of other orientational grating decay processes. It 
is desirable to have a more detailed mathematical theory of 
TG experiments that retains both the calculational ability of 
standard DPT and the qualitative insights of the spatial elec- 
tric-field grating descriptions. 

III. GRATING DECOMPOSITION 

In this section we develop the mathematical basis of the 
GDM. We start by expressing the TG third-order polariza- 
tion in a compact form consisting of what we call field prod- 
ucts. The field product notation is intended to emphasize the 
electric fields involved in a TG experiment (rather than the 
material energy states). The mathematical properties of the 
field products will then allow us to use standard polarization 
relations to reexpress the field product for the excitation 
beams in any TG experiment as a sum of intensity-grating 
field products. 

In a FWM experiment, the three incident fields interact 
through the third-order nonlinear susceptibility (xC3’) of 
the medium; multiplying x (3) by the electric fields of the 
incident beams gives the third-order electric polarization of 
the material ( pC3’). The signal is derived by multiplying 
gC3’ by its complex conjugate and then integrating over all 
observation times. A common scheme for calculating pC3’ is 
DPT, making use of the material density matrix. pC3’ is de- 
rived by summing three-dimensional time-ordered integrals 
that consider the coherent coupling of material states by the 
radiation fields and the evolution of the material-state coher- 
ences between these interactions. There are 48 separate sets 
of integrals to be evaluated in the calculation of pC3) for the 
most general FWM experiment; these integrals must then be 
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summed over all of the relevant material states and averaged (al 
over the distribution of molecular orientations.3M* It is 
common to use double-sided Feynman diagrams or energy- 
level “ladder” diagrams as an aid in deriving and evaluating 
the necessary integrals in a given problem. Time-ordering 
constraints (i.e., only allowing the probe beam to interact 
with the material after both of the excitation beams have 
interacted with the material, or equivalently, only consider- 
ing P (3) at delay times greater than the duration of the pulses 
used in the experiment) and the application of the rotating- 
wave approximation limit the number of these diagrams that 
need be considered in the analysis of a TG experiment to at 
most four.39 These four general processes are shown in dou- 
ble-sided Feynman diagram form in Fig. 2 and in ladder 
diagram form in Fig. 3. 

These diagrammatic methods provide a powerful tool 
for calculating TG signals. However, even with the simplifi- 
cations afforded by the diagrammatic approach, such calcu- 
lations can be quite involved. Our purpose here is to deal 
only with one piece of these calculations, the electric-field 
polarizations and transition-dipole matrix elements. The po- 
larizations and matrix elements are important factors in all 
induced-grating experiments, and together they may pro- 
vide useful and general insights into orientational gratings. 
Thus we express p (3) as a sum of terms of the form 

(clrl,*rla) (b IqX.rlC) (d lllm -rib ) bl$4d > 

xg(E,,ET,E3,f,,f*tf3,t,tob 1, (1) 

where Id, lb >, I > c , and Id ) are material states (we use the 
convention in this paper that material-state energy increases 

FIG. 3. The four processes that are important in transient grating calcula- 
tions, expressed as ladder diagrams. The solid arrows represent ket-side 
field interventions, while the dashed arrows represent bra-side field inter- 
ventions. 

from la) to Id ) ), rip is the polarization and phase of field q, 
andg is a complicated function of electric fields, intervention 
times, the probe delay time (t), and the observation time 
(fob ); we leave g in general form for now. Note that two of 
the field polarizations are expressed as complex conjugates, 
for reasons that are made clear later. The total third-order 
polarization is the sum of these terms over all relevant mate- 
rial states and Feynman diagrams. The matrix elements in 
Eq. ( 1) do not have a specific time ordering associated with 
them; however, all of the products of matrix elements that 
we use from now on will be implicitly time ordered unless 
otherwise noted. 

(al lb) 
d b d b 

3 
2 

j 

3 a 1 

C 

1 2 
b b a a 

Id (d) 

d b c b 
3 3 

C 

/IF d 
2 1 

1 4ll 2 
a a a a 

FIG. 2. The four processes that are important in transient grating calcula- 
tions, expressed as double-sided Feynman diagrams. 

lb) 

We can now introduce a new notation that concentrates 
on the polarizations of the light fields and not on the material 
energy levels. The dot product in each matrix element is 
represented solely by the polarization of the electric field 
involved (including an asterisk for conjugate fields). Time- 
coincident fields are placed in curly brackets; we call these 
sets of brackets field products. Square brackets are placed 
around a set of field products that constitutes a complete 
experiment. We thus write for a general induced-grating ex- 
periment 

(clq-rla) (b lqt-rI4 Cd Is .rlb > W~Z+rld 1 
= [ hj,qsl,al:~] * (2) 

The first field product in this equation contains the time- 
coincident excitation fields and the second field product con- 
tains the time-coincident probe and signal field. In general, 
we will only be concerned with the excitation fields, since we 
are interested in the spatial properties of the gratings that we 
create; however, it is also useful at times to consider the 
probe and signal polarizations. 

Because the dot products in the matrix elements are ses- 
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quilinear (i.e., they follow a law analogous to the distributive 
law for multiplication), the polarizations in the field prod- 
ucts (as well as any combinations of field products) are as 
well. In other words, if rl, = q1 + qs, then 

[bl,?rlXH%dl~~] = [blr~rl~l~rlm9~~~l 

+ [ blSJlmlrn?l~~] f (3) 
In fact, we can express any electric-field polarization as a 
sum of two other polarizations. A complete set of polariza- 
tion relationships is given in Table II. Note that the phases of 
the polarizations are introduced by expressing the polariza- 
tions as having both real and imaginary parts. We have also 
introduced two new linear polarizations; p (plus) and m 
(minus), that are at + 45” and - 45”, respectively. 

Using the relations in Table II, we can decompose the 
excitation fields for each of the five varieties of grating we 
have discussed; Table III shows examples of some of the 
more useful of these decompositions. For each type of grat- 
ing, we can find a decomposition that corresponds to the 
electric-field picture for that grating. The important point is 
that it is always possible to decompose a grating into a super- 
position of intensity gratings, each ofwhich has a single elec- 
tric-field polarization and an intensity modulation with the 
period of the fringe spacing. We will discuss the decomposi- 
tion of the polarization grating in some detail, and a similar 
process may be followed for each of the other sorts of grat- 
ing. 

We start out by writing, for the excitation polarizations, 

iIx,y*l = (i/2) (Cl,r*) - Cr,l*1 

+ Cr,r*l - Cl,l*l). (4) 
Similarly, we can show that 

O,r*l - {r,l*l = - itCx,~*l + CY,X*)) 

= i(h,m*l - CP,P*>). (5) 
Combining these results, we find 

Cx,y*1 = (i/2) (Cr,r*> + iCm,m*) 

- CU*l - iCp,p*l>. (6) 
The coefficient in front of each term in this expression ( + 1, 
1, * - 1, or - i) is its complex spatial phase. Equation (6) is 
equivalent to the polarization identity for inner products in 
functional analysis.44 Note that this does not necessarily im- 
ply that field products are inner products, however; the ses- 
quilinearity of matrix elements is enough to ensure that field 

TABLE II. Polarization relationships. 

Polarization 
(q) 

r 
1 
X 

Y 
P 
In 

Conjugate tq*) Component 
polarization polarizations 

I (l/Jz)(x+iy) 
r (l/Jz)(x-&iy) 
X (l/JZ)(r+I) 
Y Ci/$!)(l- r) 
P (l/JZ)(XfY) 
m (l/Jz)(x-YY) 

TABLE III. Useful grating decompositions. 
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Type of grating Example decomposition 

Linear polarization 

Circular polarization 

Mixed 

Cx,y*l = :(h*l + i(r,r*) 
- (m,m*) - P&l)) 

b,l*l = j({x,x*> + ihp*) 
- {y,y*) - i{m,m*)) 

Cr,x*> = (l/Jz)(Cx,x*) + i(y,x*)) 
= (l/Ji)(b,x*l + (i/2) [f.m,m*) 

+ i{r,r*l 
- {p,p*l - iO,l*111 

products meet this identity.4s We will further discuss the 
significance of the properties of field products in Sec. V. 

The important point that Eq. (6) illustrates is that the 
diagrammatic calculation of the polarization grating {x,y*} 
can be decomposed into four intensity gratings: a right circu- 
lar grating, a - 45” linear grating that is spatially s-/2 ra- 
dians out of phase with the right circular grating, a left circu- 
lar grating that is spatially 7r radians out of phase with the 
right circular grating, and a 45” linear grating that is spatially 
3~r/2 radians out of phase with the right circular grating. 
This decomposition is illustrated in Fig. 4. Furthermore, this 
is a rigorous property of the third-order polarization (and 
equivalently xc3)), regardless of how pc3’ is derived. 

The decomposed intensity-grating picture is essentially 
equivalent to the electric-field picture that we made for the 
polarization grating. Note that linearly polarized transitions 

FIG. 4. Decomposition of linear polarization grating based on the GDM. 

J. Chem. Phys., Vol. 97, No. 1, 1 July 1992 



are driven to some extent in the predominantly circular por- 
tions of the electric-field picture and circularly polarized 
transitions are driven to some extent in the predominantly 
linear portions. Since the GDM breaks orientational grat- 
ings into separate component intensity gratings, it is ideally 
suited for the phenomenological inclusion of secondary grat- 
ing effects such as population decay, heat deposition (ther- 
mal gratings), molecular alignment through the nuclear 
OKE, or even the spatial dependence of the population 
transfer out of various ground states. This is because each 
individual component intensity grating is created with two 
fields of the same polarization; if one knows that a particular 
system interacts with a particular polarization of light in a 
given manner, then this known interaction is modulated in 
strength sinusoidally as one moves along a fringe of the grat- 
ing. It is therefore easy to develop, with little or no calcula- 
tion, qualitative pictures of what happens in a given polariza- 
tion-grating experiment. We will demonstrate in II how the 
GDM can give such qualitative insights. 

IV. EFFECTIVE TWO-INTERACTION MATRIX 
ELEMENTS 

DPT calculations for TG experiments must be summed 
over all combinations of couplings of ground- and excited- 
state levels (i.e., those couplings that are allowed by the la- 
ser-field frequencies and bandwidths). These summations 
can be quite involved. We show here that the necessary sum- 
mations can be performed in advance and tabulated for a 
given molecule or atom, in the form of effective two-interac- 
tion matrix elements ( ETIMEs) . In addition, we will show 
in the next section that the symmetry properties of the 
ETIMEs can often be used to determine whether or not some 
of the component gratings in a decomposition will cancel. 

ETIMEs are an extension of a method for simplifying 
higher-order wave-mixing computations that was originally 
introduced by Trebino and Rahn.46 Trebino and Rahn de- 
veloped a method of simplifying DPT calculations in sodi- 
um-atom experiments. They considered only Feynman dia- 
grams in which ground-state coherences are created during 
the excitation steps; these are the “absorption” TG Feyn- 
man diagrams [Figs. 2(a) and 2(b) and Figs. 3 (a) and 
3 (b) 1. Here we will generalize this method, and show that a 
similar simplification can be made for diagrams in which 
excited-state coherences are created during the excitation 
steps [these “stimulated-emission” diagrams are in Figs. 
2(c) and 2(d) and Figs. 3(c) and 3(d)]. 

We start by writing the terms corresponding to the TG 
Feynman diagrams. For the sake of clarity we write these 
terms with the approximation that the pulses are temporal 
delta functions but have finite frequency bandwidths. We 
also assume that the signal pulses are temporal delta func- 
tions. This is a convenient limit in which to work for time- 
domain calculations, and in many cases the observable signal 
can be modeled by calculating the basic TG signal in this 
manner and then convolving with the instrument-response 
function.47 If the response time of the system is long com- 
pared to the pulse durations, this limit is an accurate descrip- 
tion even without convolutions. The terms that correspond 
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to the Feynman diagrams [Figs. 2 (a) and 2 (b) ] are almost 
identical, and are given by4’ 

X (qdb-q$)exp(ihbt) 

Xexp( - rabf)pbbcoa) K% (7a) 

where tiba is (Eb - E, )/fi, lYbn is the phenomenological 
damping constant of coherences between states ]a) and ]b ), 
pa0 (0) is the density-matrix element giving the normalized 
initial population of state ]a), and ~~~ *qm is shorthand for 
(k ]qm *rb). Similarly, the terms that correspond to the 
Feynman diagrams in Fig. 2(c) and 2(d) are identical, and 
are given by4’ 

x (pdb.qF)exP(i~dct) 

Xexp( - I,&)P~~ (0). (7b) 

The diagrams in Figs. 2 (a) and 2 (b) give identical terms in 
the delta-function pulse limit if plln (0) = pbb (0) for all ]a) 
and 1 b ). Ifp,, (0) #pbb (0)) the diagrams give terms that are 
proportional to each other in this limit. These diagrams do 
not give identical terms when the pulses are not temporal 
delta functions, and neither do the diagrams in Figs. 2(c) 
and 2(d). However, the methods that we present here are 
valid for any TG calculation. 

The total third-order polarization is derived by sum- 
mingEqs. (7a) and (7b) overallrelevant states la), lb ), Ic), 
and Id ) (and by doing whatever orientational averaging is 
necessary, which will not be considered for the moment). 
Note, however, that in Eq. (7a) the states Ic) and Id ) appear 
only in the transition-dipole matrix elements; similarly, in 
Eq. (7b) the states ]a) and 16 ) appear only in the transition- 
dipole matrix elements. Thus we can perform the summa- 
tions over these states in advance. Ignoring the density-ma- 
trix elements for the moment, the total contributions to gC3’ 
from the absorption and stimulated-emission diagrams are 
given by 

pc3’(abs) aE,EFGE,C C [x (P~~-~,)(cL,,W 
ab c 1 

and 

x c (kd%)(kfb’~:) 
[ d I 

xexp(iw,dexp( - rabt), (84 

P’3’(em)4E:E3~~ [E (,&*1),)(~,,-~;) 
cd a I 

1 (k-‘%)(~db*r):) 
b 1 

xexp(hdct)exp( - rdct). (8b) 
The quantities inside the first and second sets of brackets in 
Eq. (8a) represent interactions that couple the ground-state 
manifold to the states ]c) and the states Id), respectively, 
whether Ic) and Id ) are in the same or in different excited- 
state manifolds. We perform the summations inside each set 
of brackets and rewrite the equation in the form 
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xexp(i%bt)exp( - r&t)], (9a) 
where the CXMob ( q,,qk ) are the absorption effective two- 
interaction matrix elements (a-ETIMEs) . eXMOb ( qj ,qk ) is 
the sum of products of matrix elements that couple states la) 
and lb ) (which are in the same ground-state manifold) 
through excited-state manifold (ex) by absorption at polar- 
ization q, and stimulated emission at polarization q;. Simi- 
larly, we can write for the stimulated-emission Feynman dia- 
grams, 

c.d 

xexp(&cr)exp( - r&t)], (9b) 

where the grMcd ( q,,qk ) are the stimulated-emission effec- 
tive two-interaction matrix elements (e-ETIMEs). 
gr Mcd (q, ,qk ) is the sum of products of matrix elements that 
couplestates Ic) and Id ) (which are in the same excited-state 
manifold) through “ground’‘-state manifold (gr) by ab- 
sorption at polarization q, and at polarization q;. Note that 
to differentiate between the two types of ETIMEs, for a- 
ETIMEs we place the relevant excited-state manifold in a 
superscript and for e-ETIMEs we place the relevant ground- 
state manifold in a subscript. 

We must be somewhat careful in our definition of the 
ETIklES. For inStanCe, an U-ETIME ?!&b (I&,qk ) implies 

closure over states Ic); i.e., we must consider all states Ic) 
that are within the laser frequency bandwidth. If the band- 
width of the laser is smaller than the width ofan excited-state 
manifold, then only those states within the bandwidth 
should be considered. In addition, we must reintroduce the 
density-matrix elements to take into account the initial pop- 
ulations of the ground-state levels. For the diagrams in Figs. 
2(a) and 2(b), we multiply the summand in Eq. (9a) by 
pbb (0) and pa0 (O), respectively. We must treat Eq. (9b) 
somewhat differently, since the initial states have already 
been summed over; a factor of pa0 (0) should have been in- 
cluded in the summation over states la) in Eq. (8b). To take 
care of this problem, the first (but not the second) e-ETIME 
in Eq. (9b) must include this weighting; since thermal equi- 
librium is responsible for the differences in the initial popula- 
tions of the states la), we can think of the first e-ETIME in 
Eq. (9b) as being temperature dependent. 

The power of ETIMEs is that they can be calculated 
once and tabulated for a given atom or molecule. ETIMES 
thus save considerable calculational time, because all two- 
interaction pathways that couple a given pair of states are 
summed over in advance. In fact, for molecules it usually 
suffices to tabulate ETIMEs for a single linear polarization 
(within a given laser frequency bandwidth range and at a 
given temperature). 

V. NONCONTRIBUTING GRATINGS 

The symmetry properties ofxc3’ are known for all space 
groups.48 By considering these symmetry properties, it is of- 
ten possible to prove that the contributions to pc3’ of two 
intensity gratings in a decomposition must cancel one an- 

other, and therefore that the gratings need not be considered 
in the calculation. Here we consider what happens in iso- 
tropic systems, but a similar procedure can be used for any 
space group. 

In isotropic systems, xXvxv = xuXvX (we drop the super- 
script ofxc3) when it has subscripts that are indicative of four 
electric fields). For anything other than a two-level system, 
63 (3) contains terms that oscillate at different frequencies. 
The above relation must hold for all terms in xc3’ that oscil- 
late at a given frequency. Consider, for instance, an atom or 
molecule with some number of degenerate ground states la) 
and some number of degenerate ground states lb ), where 
E, # Eb. Because the sum of the terms that oscillate at w,,,, in 
X xyxy must be equal to the sum of the terms in xvXvX that 
oscillate at this frequency, we require that 

c c CMob tx,YldM,, (x,y) 
(I b 

= c c CMab (Y,ddM,, (y,x). 
a b 

(10) 

pc3’ contains many terms such as these that must be equal, 
both for the absorption diagrams and for the stimulated- 
emission diagrams. These expressions cannot, in general, be 
broken down any further. However, there are two important 
special cases for which they can be simplified: 
M,,(x,Y) =M,,,(Y,x) andM,,(x,y) = -M,,(Y,x). Note 
that these are not specifically a-ETIMEs or e-ETIMEs; this 
notation is intended to indicate that, for the special case to 
hold, these relationships must hold for all relevant ETIMEs. 

In each of these two cases the problem can, in some 
sense, be broken down and considered two fields at a time. 
Thus, we can rewrite the two cases in field product notation 
as {x,y*} = {y,x*} and {x,y*} = - {y,x*}. The full im- 
port of these two relations can be seen once we write the 
decompositions for {x,y*} and {y,x*}, 

Cx,y*l = (i/2) tCr,r*l + iCm,m*l 

- c1,1*1 - iCp,p*l,, (lla) 

and 

Cy,x*) = (i/2) (Cl,l*) + iCm,m*l 

- Cr,r*l - ~CP,P*> 1. (lib) 

From these equations, we see that when {x,y*} = {y,x*}, 
{r,r*) = {l,l*}, and therefore the contributions to &ac3’ from 
the circularly polarized component intensity gratings cancel 
one another. Similarly, when {x,y*} = - {y,x*}, the con- 
tributions from the linearly polarized component gratings 
cancel one another. 

The relation x*,,~,, = xv+ is true for many space 
groups, 48 so this result extends beyond isotropic systems. We 
show here that all isotropic molecular systems fall into the 
first special case so long as only absorption and stimulated 
emission need be considered (as opposed to effects such as 
circular dichroism) . Consider a pair of molecular states /j) 
and I k ) that are coherently coupled by a pair of transitions 
that share a common ground or excited state I I ). There is 
some arbitrary angle a between the dipole moments of these 
transitions. We label the transition-dipole moments j and k, 
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and we consider coherences at frequency wjk. If the first exci- 
tation beam is x polarized and the second excitation beam is 
y polarized, then the contribution of this pair of transitions 
to the ETIME for coherences at wjk is obtained by perform- 
ing a double average. We average the product of the x projec- 
tion of j and they projection of k over all possible vectors j 
and over all vectors k that make an angle a with each j. 

We can perform a similar procedure if the first excita- 
tion beam is y polarized and the second x polarized; this set 
of averages must give the same result as the first. This can be 
seen through a simple counting argument. For a particular 
pair of vectors j and k separated by angle a, we define the 
quantity q( j,k) as the product of the x projection of j and the 
y projection of k. Now we can interchange the directions of 
the two vectors, such that j’ points along k and k’ points 
along j. Then it must be true that q(j’,k’) = q(j,k), as is 
illustrated in two dimensions in Fig. 5. Thus, for every pair of 
vectors in the {x,y*} average, there is a pair of vectors in the 
{y,x*) average the gives the same contribution. Since the 
choice of j and k was arbitrary, it follows that, for all of the 
ETIMEs for the system, Mjk (x,y) = Mik (y,x) (or, equiv- 
alently, {x,y*) = {y,x*}). This condition implies that only 
the linear component gratings in the decomposition contrib- 
ute to the signal. 

considered. Furthermore, because the two gratings that are 
considered are either both linearly polarized or both circu- 
larly polarized, the calculation for one must be related to the 
calculation for the other. This relationship is easy to derive 
in most cases, and so the GDM calculation involves calculat- 
ing in detail the contribution to pc3’ of only one of the four- 
component intensity gratings. Even when all four compo- 
nent gratings contribute to the signal, the GDM provides the 
spatial information necessary for including secondary effects 
and for understanding the nature of decay constants. In ad- 
dition, the ETIMEs simplify in the perturbative calculation 
even if it is performed without decomposition. 

VI. CONCLUSIONS 

Although molecules have well-defined transition-dipole 
moment directions, atoms do not. Thus, isotropic atomic 
systems do not necessarily meet the condition 
{x,y*) = {y,x*}; the ETIMEs must be calculated separate- 
ly for each set of atomic transitions. Many isotropic atomic 
systems do fall under one or the other of these special cases, 
however. As we will discuss in II, the a-ETIMEs for the 
sodium D, and D, transitions fall under the latter special 
case, {x,y*} = - {y,x*}, as do the e-ETIMEs for the D, 
transitions. However, the e-ETIMEs for the D, transitions 
conform to neither of these special cases. 

Thus, for most linear polarization-grating calculations, 
only two of the four component intensity gratings need to be 

Electric-field pictures and DPT are both useful methods 
for understanding orientational gratings, but each has draw- 
backs; the former provides insight but little calculational 
power, while the latter provides calculational power but of- 
ten little insight. We have introduced a new way to view 
orientational gratings, based on the fact that it is possible to 
decompose any orientational grating into a sum of intensity 
gratings, each of which acts as if it was created by two beams 
of identical polarizations. These component gratings corre- 
spond to the electric-field pictures, in that, for instance, the 
maximum of the right circularly polarized (RCP) grating in 
the linear polarization grating decomposition is where RCP 
appears in the electric-field picture for this grating. Thus, the 
GDM makes a rigorous connection between electric-field 
pictures and perturbative calculations. With use of the 
GDM, it is possible to understand the spatial dependences in 
orientational gratings, thereby providing a means of includ- 
ing secondary effects in grating calculations. We have also 
introduced ETIMEs as a method of simplifying grating cal- 
culations by performing many of the necessary summations 
in advance. By considering the symmetry properties of x(3) 
and of the ETIMEs for a particular system, it is often possi- 
ble to show that pairs of gratings in a decomposition have 
canceling contributions to p (3), thus further simplifying the 
GDM calculation. 

(a) (b) 

k’ 

a 
J 

B. 

In the following paper, we demonstrate the application 
of the GDM to two different problems, nuclear optical Kerr 
effect orientational gratings and gratings of gas-phase sodi- 
um atoms. We will show how the GDM can simplify and 
provide insight into orientational grating calculations. 
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