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We apply the theory developed in Paper I to two transient grating problems that present 
difficulties in interpretation and/or calculation. The first application is general, and illustrates 
the ability of the grating decomposition method (GDM) to facilitate calculations and to 
provide intuition and insight in complex orientational grating experiments: we apply the GDM 
to nuclear optical Kerr effect (OKE) polarization gratings. We show that the circularly 
polarized component gratings of the polarization-grating decomposition do not contribute to 
the signal, and that the OKE polarization grating can therefore be viewed as the sum of two 
gratings with orthogonal net molecular alignments. We also use the GDM and this system to 
explain why polarization gratings can rotate the polarization of the probe beam. The second 
example is a detailed application of the GDM to an experiment in which the data cannot be 
fully interpreted using standard diagrammatic perturbation methods: picosecond transient 
gratings on the D lines of gas-phase sodium atoms. We use the GDM and effective two- 
interaction matrix elements to greatly simplify this problem. We show why, in atmospheric- 
pressure experiments, Na intensity-grating decays are dominated by excited-state quenching, 
whereas Na polarization-grating decays are not. We show that the polarization-grating decays 
are dominated by Na diffusion and are influenced by scattering among the ground-state 
magnetic sublevels, but are unaffected by excited-state decay. We further show why the 
envelopes of polarization decays do not match the corresponding intensity-grating decays at 
large fringe spacings in low-pressure Na cells. 

I. INTRODUCTION 

In the previous paper (hereafter referred to as I),’ we 
developed the theory of the grating decomposition method 
(GDM) and effective two-interaction matrix elements 
(ETIMEs). We demonstrated that a polarization grating 
(i.e., a grating in which the excitation beams are of orthogo- 
nal linear polarizations) can be viewed at the third-order 
polarization level as the sum of four intensity gratings (grat- 
ings that are created by excitation beams of the same polar- 
ization) . The polarization-grating decomposition consists of 
a right circularly polarized (RCP) intensity grating, an in- 
tensity grating that is m polarized (i.e., linear at - 45”) and 
is spatially rr/2 radians out of phase with the RCP grating, 
an intensity grating that is left circularly polarized (LCP) 
and is spatially rr radians out of phase with the RCP grating, 
and an intensity grating that is p polarized ( + 45” linear) 
and is spatially 3~/2 radians out of phase with the RCP 
grating. We will show here, in two examples, how the GDM 
and ETIMEs can be used to simplify orientational transient 
grating (TG) calculations and to provide important insight 
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that is often not readily available in standard perturbative 
(xc3’) approaches to orientational grating problems. 

One of the problems, gratings formed by exciting the D 
lines of gas-phase sodium atoms, cannot easily be treated 
fully and properly with standard diagrammatic perturbation 
theory (DPT). In atmospheric-pressure flames seeded with 
Na, intensity gratings decay at the Na excited-state colli- 
sional quenching rate, whereas polarization gratings decay 
much more slowly and are unaffected by excited-state 
quenching.=s3 In low-pressure gas cells, the decays of Na in- 
tensity gratings are smooth and are affected by both excited- 
state decay and the transport of Na atoms. On the other 
hand, the decays of polarization gratings are dominated by 
Na transport and exhibit beats at the ground-state hyper- 
fine-splitting frequency.4s5 In addition, the envelope of the 
polarization-grating decays differs from the intensity-grat- 
ing decays at fringe spacings large enough that the excited- 
state lifetime contribution to the decay is not negligible com- 
pared to the contribution from Na transport. 

Modeling these experiments with standard DPT in- 
volves calculations that can be quite complicated. Further- 
more, although the standard DPT treatment predicts the 
smooth decay of the intensity grating and the oscillations in 
the decay of the polarization grating, it does not provide a 
means of distinguishing the phenomenological damping 
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constants for these gratings. Here we present a detailed ac- 
count of the application of the GDM and ETIMEs to this 
problem. We show that the GDM and ETIMEs, by readily 
allowing for the inclusion of spatial information, provide a 
complete explanation of the behavior of Na intensity and 
polarization gratings in both low-pressure gases and in 
flames, and greatly reduce the complexity of this calculation. 

Before we consider this detailed example, we apply the 
GDM to a more general problem: nuclear optical Kerr effect 
orientational gratings. Although this problem has been 
treated previously,6*7 we use the GDM and ETIMEs to sim- 
plify and add insight to its treatment. 

Il. NUCLEAR OPTICAL KERR EFFECT GRATINGS 

When liquid or gas molecules are exposed to an electric 
field, they tend to reorient in order to minimize the energy of 
the interaction with the field. The reorientation causes a net 
alignment in the medium, thereby producing a birefrin- 
gence; this process is called the Kerr effect.s The optical 
Kerr effect (OKE) arises from the induced-dipole moments 
created in atoms and molecules by strong light fields, and 
has both an electronic and a nuclear component. The elec- 
tronic OKE (e-OKE) is a change in the shape of the electron 
clouds of the atoms or molecules, and it decays essentially 
instantaneously when the light field is removed. On the other 
hand, the nuclear OKE (n-OKE) involves rotations of mol- 
ecules, and it therefore generally decays much more slowly 
than the e-OKE. 

The effect of OKE-induced birefringence on a grating 
signal can be calculated directly from the change in the index 
of refraction of the medium6*9 or by using the symmetry 
properties of the nonlinear susceptibility tensor.‘,” While 
the latter method is a powerful one that allows for the design 
ofexperiments that can separate, for instance, n- and e-OKE 
TG responses, it is somewhat lacking in physical insight. In 
addition, the susceptibility tensor elements can be derived 
directly from the birefringence calculation, and so the two 
approaches are ultimately equivalent. For the sake of clarity, 
we will use the first approach in combination with the GDM 
in deriving our results for OKE polarization gratings. 

Following the notation of Sala and Richardson,’ the 
OKE-induced birefringence is given by 

An = An,, - An,, (1) 
where An,, and An, are the changes in the index of refraction 
for the polarizations parallel and perpendicular to the inci- 
dent e field. The components of the index of refraction paral- 
lel and perpendicular to the polarization of the light field are 
both influenced by the e- and n-OKE. We can write, in gen- 
eral, 

An,, = An, + Bn, (2a) 
and 

An, = (A - l)n, + (B - l)n,, (2b) 
where n, and n, are the e- and n-OKE contributions to the 
birefringence; they follow the relation 

An = n, + n,. (3) 

Sala and Richardson showed that, under the circumstances 
in which most TG OKE experiments are performed, 
A = 3/2 and B = 2/3. We will use this value of B in our 
treatment of this problem, although any values ofA or B will 
give equivalent results in the GDM picture. 

Both the e- and n-OKE can be probed using transient 
gratings, since the strength of the OKE is proportional to the 
amplitude of the light field that causes it. As mentioned 
above, the e-OKE tracks the laser pulses, whereas the n- 
OKE can provide important information about molecular 
motions; therefore, the n-OKE will be discussed here, al- 
though a similar treatment can be applied to the e-OKE. 

Intensity and polarization gratings can both be used to 
study the n-OKE. It can be seen, from the intensity-grating 
electric-field picture, how the n-OKE contributes to the 
grating signal when the excitation beams are of the same 
polarization. The greatest molecular alignment (and there- 
fore the greatest birefringence) occurs in the regions of the 
grating in which the electric field is strongest; thus, a bire- 
fringence grating is formed. As molecules undergo rota- 
tional diffusion, An,, and An, equalize, and An, which gives 
rise to the signal, goes to zero. The problem with using paral- 
lel-polarized excitation beams to study the OKE, however, is 
that interfering thermal and acoustic gratings are readily 
formed, even if there is only weak (e.g., vibrational over- 
tone) absorption”-‘4 or weak stimulated Brillouin scatter- 
ing.” 

Cross-polarized excitation beams remove both of these 
problems, since the excitation is of constant amplitude 
across the grating. On the other hand, it is not immediately 
obvious from the electric-field picture how the n-OKE pro- 
duces a polarization-grating signal. We now describe a pic- 
ture of orientational OKE gratings that follows directly 
from the GDM. Because the OKE must necessarily be de- 
scribable by expressions such as Eq. ( 1) of 1,16 any picture 
based on the GDM is rigorously correct at third order. The 
contributions from the circularly polarized component grat- 
ings in the polarization-grating decomposition cancel one 
another, just as they do in absorption and emission gratings 
in isotropic molecular liquids. We can see this by replacing 
transition-dipole moments with polarizability vectors in the 
argument given for absorption and emission gratings in the 
argument in Sec. V of I. Thus, {x,y*) = {y,x*) for the n- 
OKE. 

We are left with two fully sinusoidal, linear intensity 
gratings, one p polarized and one m polarized [see Fig. 
1 (a) 1. Each of these component gratings causes no net mo- 
lecular alignment at its minima, and maximum alignment at 
its maxima, so the spatial dependences of contributions from 
the gratings are 1 + sin( 2rrz/d) and 1 - sin( 2rrz/d), re- 
spectively. We break up the probe beam into its p- and m- 
polarized components. The spatial index of refraction expe- 
rienced by the components is given by 

n(p) = no + n,-Cj[ 1 + sin(27rz/d) ] 

and 

- $[ 1 - sin(27rz/d)]] 

= no + n, [f + sin(277-z/d) ] (4a) 
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FIG. 1. (a) Molecular alignment in a nuclear optical Kerr effect polariza- 
tion grating as predicted by the GDM. The net alignment is expressed as the 
sum oftwo fully sinusoidal gratings, one with + 45” alignment and one with 
- 45” alignment. (b) Spatial dependence of index of refraction change for 

ppolarized light (solid line) and for m-polarized light (dashed line), based 
on the model in (a). 

n(m) =n,+n,{--f[l +sin(27rz/d)] 

+ f[ 1 - sin(2nz/d)]} 

= no + n, [j + sin(2?Tz/d)], (4b) 
where n, is the index of refraction in the absence of an elec- 
tric field. These expressions are plotted in Fig. 1 (b). Within 
the framework of the GDM, the COKE polarization grating 
can be viewed as two-component linear intensity gratings 
that are 180” out of phase with one another. In one grating 
the molecules tend to be oriented in the p direction, whereas 
in the other grating the molecules tend to be oriented in the 
m direction. Furthermore, the same behavior is expected for 
the spatial dependence of the index of refraction of the p and 
m components of the probe polarization no matter what val- 
ue B takes on. 

We can see readily from this analysis why a polarization 
grating can rotate the polarization of the probe beam: thep- 
polarized component of the probe beam sees a grating that is 
spatially shifted by 180” from the grating seen by the m- 
polarized component. Thus, there is a corresponding 180” 
spatial phase shift between the p-polarized and m-polarized 
components of the signal beam. A probe beam of polariza- 
tion angle 45” + 0 therefore produces a signal beam at a po- 
larization angle of 45” - 8; e.g., an x-polarized 
[ m(p + m) ] probe beam produces a y-polarized 
[m(p - m) ] signal beam, and vice versa. By splitting up 
the probe into r- and l-polarized components, we can make a 
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similar argument about probe beam rotation for systems in 
which the circularly polarized component gratings contrib- 
ute to the signal. 

Finally, we note that this treatment resolves inconsis- 
tencies in Eyring and Fayer’s treatment of n-OKE polariza- 
tion gratings;6 their treatment led to the prediction of a dis- 
continuity in the derivative of the spatial dependence of the 
index of refraction in the n-OKE polarization grating, which 
in turn leads to the prediction of higher-order diffraction at 
arbitrarily low laser intensities.17 While the present analysis 
does not change past interpretations of time-dependent 
OKE TG data, it puts the experiments on a rigorous physical 
footing and augments the susceptibility tensor element sym- 
metry approach to OKE transient gratings. 

Ill. GAS-PHASE Na GRATINGS 

It is possible to model the systems in the previous exam- 
ple well enough to analyze data without using the GDM, 
although the GDM is valuable in adding insight to and sim- 
plifying the problem (as well as resolving inconsistencies in 
previous treatments). We now present a specific example of 
a set of experiments that are difficult to describe completely 
strictly within the confines of standard DPT: TG experi- 
ments atmospheric-pressure Na-seeded flames and in low- 
pressure Na vapor. Although there have been a substantial 
number of Na experiments described with DPT,‘8-2’ we 
show that the GDM and ETIMEs not only greatly simplify 
the treatment of these grating problems, but also readily pro- 
vide spatial information that is essential to the understand- 
ing of the decay mechanisms involved. 

Intensity- and polarization-grating experiments have 
been performed in the time domain in both Na-seeded 
flames2*3 and low-pressure gas cells;4r5 in addition, frequen- 
cy-domain intensity and polarization-grating experiments 
have been performed in flames by Trebino and Rahn20*2’ and 
in sodium/buffer gas cells by Rotherberg and 
Bloembergen. 18*‘9 Whereas the intensity-grating data in each 
of the time-domain experiments can be explained readily us- 
ing standard DPT, the interpretation of the polarization- 
grating data is not so straightforward. The difficulty in the 
interpretation of these data arises from the fact that different 
Na ground-state magnetic sublevels exhibit different spatial 
behavior in a polarization grating; this in turn affects the 
grating decay. We will use the properties of the Na ETIMEs 
to show that only the circularly polarized component grat- 
ings of the polarization grating need be considered. In addi- 
tion, we will show that the contributions of the circularly 
polarized gratings to pC3’ are identical when the 180” spatial 
phase shift between them is considered. Thus, the entire po- 
larization-grating calculation can be reduced to a single cir- 
cular intensity-grating calculation. Finally, with the aid of 
the GDM we will calculate the population depletion in each 
ground-state magnetic sublevel in the intensity and polariza- 
tion gratings, and describe qualitatively how the differences 
in population transfer between the two types of grating ac- 
count for the differences between the Na intensity- and po- 
larization-grating decays in both flames and low-pressure 
cells. 

Figures 2 (a) and 2 (b) show intensity- and polarization- 
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FIG. 2. (a) Linear intensity grating in a sodium-seeded, premixed, meth- 
ane/air flame. The fringe spacing is 13.6 pm, the excitation wavelength 
589.0 nm, and the probe wavelength 589.6 nm. (b) Polarization grating in 
the same flame under the same conditions. The oscillations in (b) are due to 
the Na ground-state hyperfine splitting. Note that the envelopes of the two 
decays are very different; (a) decays almost an order of magnitude faster 
than (b). 

grating decays in a Na-seeded, premixed, methane-air flame 
at atmospheric pressure. At this high pressure, the mean free 
path of a Na atom is much smaller than the fringe spacing at 
which the data were taken; therefore, the Na transport is 
diffusive. The intensity-grating signal is given by2p3p5 

S(t) ccexp( - 2A2Dt)exp( - 2t/r), (5) 
where D is the Na diffusion constant, A is 2rover the grating 
fringe spacing (d), t is the probe delay time, and 7 is the Na 
excited-state lifetime ( 16 ns in the absence of collisions22). 
Due to the presence of large concentrations of efficient Na 
excited-state quenchers (such as*’ N, and CO,), the effec- 
tive Na lifetime is expected to be much shorter than 16 ns in a 
fuel/air flame. This quenching should dominate the decay at 
large fringe spacings.2*3 The intensity-grating decay is indeed 
exponential and is relatively insensitive to fringe spacing for 
medium to large fringe spacings. The polarization-grating 
data display large oscillations at the ground-state hyperfine- 
splitting frequency (tihF), and the decay envelope is expo- 
nential. Surprisingly, however, the envelope of the polariza- 
tion grating has a much slower decay than does the intensity 
grating, and the polarization-grating decay constant is sensi- 
tive to fringe spacing over the same range of spacings. The 
behavior of the polarization gratings is consistent with diffu- 
sionally dominated decay with an additional 6 ns time-con- 
stant decay term. This time constant is an order of magni- 
tude longer than the quenching-induced lifetime observed in 
the intensity-grating decays. 

Intensity- and polarization-grating data in low-pressure 
Na itapor at a fringe spacing of 22 pm are shown in Figs. 

3 (a) and 3 (b). The D, transition (at 589.6 nm) was excited 
and the D, transition (589.0 nm) was probed. The polariza- 
tion-grating decays again contain large oscillations, as was 
the case in the flame. The intensity-grating decays can be 
shown from electric-field picture considerations to be relat- 
ed to the Fourier transform of the Na velocity distribution4’5 
(as well as the Na excited-state lifetime). At very low pres- 
sure (such that the mean free path of a Na atom is greater 
than a fringe spacing), the velocity distribution is a Gaussian 
Maxwell-Boltzmann distribution. The intensity-grating de- 
cay is given by5 

5’(t) aexp[ - (At)*k,T/m]exp( - 2t/T), (6) 
where k, is Boltzmann’s constant, Tis the temperature, and 
m is the atomic mass. One might imagine that at least the 
envelope of the polarization-grating decay ought to conform 
to this expression. While this is true at fringe spacings small 
enough that transport is the dominant grating decay mecha- 
nism, it is not true at larger fringe spacings. The intensity- 
grating decay from Fig. 3 (a) is superimposed on the polar- 
ization-grating decay in Fig. 3 (b); it can be seen that the two 
decays differ at long delay times. 

Although the electric-field picture can be used to ex- 
plain the intensity-grating decays, it neither predicts the os- 
cillations nor the insensitivity to excited-state decay of the 
polarization gratings. Standard DPT can be used to explain 
the oscillations, but not the decay behavior of the gratings. 
The GDM provides the additional spatial information nec- 
essary for understanding these decays, however. 
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FIG. 3. (a) Linear intensity grating in a low-pressure (collisionless) sodi- 
um cell. The fringe spacing is 22 /*m, the excitation wavelength 589.6 nm, 
and the probe wavelength 589.0 nm. (b) Linear polarization grating in a 
low-pressure sodium cell under the same conditions as in (a). The decay 
envelopes are mainly due to the Maxwell-Boltzmann velocity distribution 
of the Na atoms. The oscillations in (b) are caused by the hyperfine splitting 
in the Na ground state. The decay in (a) is superimposed on the decay in 
(b) as a dashed line, to illustrate that the polarization-grating envelope does 
not correspond to the intensity-grating decay at long decay times. The mag- 
nitudes of the two decays were matched at an arbitrary delay time long 
enough that the coherence artifact does not affect either decay. 
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The observed effects can be explained in terms of coher- 
ences induced in the Na magnetic sublevels by the light 
fields. An energy-level diagram for Na is given in Fig. 4. 
Spin-orbit coupling splits the 3p orbitals into the P,,, and 
P3,2 levels. Coupling with the nuclear spin, I = 3/2, yields 
the total coupled angular momentum, F. Thus, the S,,, 
ground state and the P,,, excited state are both split into two 
levels (I; = 1 and F = 2) and the P3,2 state is split into four 
levels (F= 0, F= 1, F= 2, and F= 3). Each of these F 
levels has 2F + 1 magnetic sublevels, with quantum 
numbers mF = - F to F. 

Since, for the data in Figs. 2 and 3, the excitation and 
probe wavelengths were tuned to two different excited states, 
this particular experiment is described by the two “absorp- 
tion” Feynman diagrams from I. We must still sum over all 
possible four-wave mixing (FWM) pathways, however; for 
this we use the absorption ETIMEs (a-ETIMEs) for the Na 
D, and D, transitions. It is a property of these particular a- 
ETIMEs that eXkfOb(q,,q2) = - eXMnb(q2,q,), where q1 
and Q are two orthogonal linear polarizations. As an exam- 
ple, we list in Table I the a-ETIMEs for the D, and D, lines 
for 9, = x and Q = y (and vice versa); a full list of the 
ETIMEs for the Na D, and D, lines is given in Ref. 17. Thus, 
following the argument given in I, we need consider only the 
circularly polarized component intensity gratings in the 
analysis of the above experiments. In fact, for the P,,, mani- 
fold the stimulated-emission ETIMEs (e-ETIMEs) with or- 
thogonal linear polarizations also have the property that 
they change sign upon interchange of the polarizations (al- 
though those for the P3,2 manifold do not), so we could 
apply the same argument if we were exciting and probing the 
D, line. 

We perform all of our calculations with a laser band- 
width much smaller than the 17 cm - ’ splitting between the 
P,,, and P,,2 manifolds of states. We consider first the inten- 
sity grating, for which there is no decomposition to perform. 
We approximate the signal pulse as a delta function in time 
(although we have already assumed that the laser pulse has a 
finite-frequency bandwidth, there is a large range of pulse 
lengths for which both approximations can be used simulta- 
neously ), so we need only evaluate the sums 

F 

3?,'+; 

17 crf’ 

32~/2-+--<--~ 

t 
2 

325,/2 1.77 GHz 

1 

FIG. 4. Energy-level diagram for sodium 3s and 3p orbitals. 

pc3’ cc C E,E fE3 “*Mjk{x,x} 3’2Mkj{x,x} 
1.k 
Xexp( - rjkf)cos(wkjt), (7) 

where the superscripts on the a-ETIMEs indicate through 
which excited-state manifold the ground-state sublevels j 
and k are coupled. For this set of polarizations, the above 
sum becomes 

gc3’ CC E,ETE3 exp( - I’,?), (8) 
where r, is the rate at which population returns to the 
ground manifold of states through decay from the excited 
state (as will be explained below). 

From Eq. (8) we can see that in neither the low-pressure 
experiment nor the flame experiment is the signal predicted 
to contain oscillations at w,~; this agrees with the observed 
decays. Although terms containing this frequency do occur 
in the calculation, each of these terms has a corresponding 

TABLE I. Absorption ETIMEs for Na D, and D, lines for one x-polarized and one y-polarized excitation 
beam. 

- i.“W,, (x,y), i. “Qf,, (Y,X), i.“Qf,, (x,y), - PM,, (y,x) 

k I1 - 1) I1 0) I1 1) 12 - 2) 12 - 1) 12 0) 12 1) 12 2) 

jll - 1) - l/6 -Jim 
110) - l/3 
I1 1) l/6 -Jim 

1; 1:; 
l/3 

-m l/6 
I2 0) 

-1,3 

12 1) -dl/lz - l/6 
12 2) - l/3 
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term that destructively interferes with it. Thus, all of the 
terms that oscillate at uhf cancel. This type of explanation 
was originally given by Rose et aZ.,5 but their mathematical 
argument was a qualitative one that did not accurately de- 
scribe the experiment as a whole. 

We now turn to the polarization-grating calculation. 
We know from the properties of the a-ETIMEs for this sys- 
tem that we can ignore the linearly polarized component 
gratings in the decomposition. We can make an additional 
calculational simplification by considering the probing 
steps. Using the fact that, in the absence of secondary effects 
such as the OKE, probing a linear intensity grating with 
linearly polarized light produces a signal of the same polar- 
ization as the probe, we can show through a few simple mani- 
pulations that the contribution to pc3’ arising from the LCP 
component grating is the negative of the contribution to p(3) 
arising from the RCP component grating. However, the two 
gratings are spatially 180” out of phase, and so they contrib- 
ute identically to pc3’ when the probe beam is x polarized 
and the signal y polarized. Thus, we need consider only the 
contribution of one of the circularly polarized component 
gratings in deriving p (3). Even if the calculation is per- 
formed with normal matrix elements (as opposed to 
ETIMEs), it is easier to calculate {r,r*} than {x,y*}, in that 
there are fewer allowed paths available among magnetic sub- 
levels when using matrix elements for circularly polarized 
light (this is because the selection rule for r is Am, = + 1, 
whereas for x or y it is Am, = + 1). 

We can now work through the calculation for the polar- 
ization grating, following the methods outlined in I and sum- 
ming the a-ETIMEs over all initial ground-state sublevels. 
We find that 
Ig0’12a IEIEFE312 

x [ 18 exp( - 2F,t) + 25 exp( - 2r,t) 

+ 60 exp( - F,t)exp( - F,,t)cos(w,,t) 

+ 25 eXp( - 2rggt)coS(hhft)], (9) 
where l/r, is the time constant for the recovery of the initial 
ground-state population distribution, and l/I’, is the time 
constant for the decay of coherences between the ground- 
state hyperfine levels. Note that we distinguish Fg in this 
calculation from I,, the excited-state decay rate in the inten- 
sity-grating calculation. These decay constants are purely 
phenomenological, and there is no intrinsic reason to believe 
that they are different based on standard DPT for closed 
systems. Thus, although standard DPT predicts the smooth 
intensity-grating decay and the oscillations in the polariza- 
tion-grating decay, it provides no mechanism for distin- 
guishing the different grating decay mechanisms observed 
experimentally. 

We have so far used the GDM to simplify the perturba- 
tive calculation for these experiments. We now illustrate the 
ability of the GDM to provide physical descriptions that can 
be used to understand perturbative calculations of orienta- 
tional grating experiments. In fact, it is possible, using the 
GDM, to develop a full, qualitative explanation of the be- 
havior of the Na grating decays without doing perturbative 
calculations. As we will show, this problem can be solved by 

considering the effects of the four component intensity grat- 
ings on the ground-state magnetic sublevels. 

We start by noting that a ground-state recovery con- 
stant does not really measure the rate of population decay 
from the excited state, but rather the rate at which the sys- 
tem returns to a state that is indistinguishable from its origi- 
nal state. In the experiments described here, all of the 
ground-state magnetic sublevels are initially equally popu- 
lated, because ti,, is negligible compared to k, T. Decay of 
population from the excited state is not necessarily sufficient 
to return the system to this original state. For instance, the 
excited state may decay preferentially into particular 
ground-state magnetic sublevels. Alternately, the grating ex- 
citations steps may affect each ground-state magnetic suble- 
vel differently, and these differences in the properties of the 
magnetic sublevels may not be removed by excited-state de- 
cay. We will show with the aid of the GDM that the latter 
explanation accounts for the observed behavior of the flame 
gratings, whereas both of the explanations are important in 
the low-pressure gratings. 

Although negligible population transfer is implicit in 
the perturbative treatment of FWM, we can still calculate 
the relative amount of population transferred out of each 
ground-state magnetic sublevel after the excitation pulses. 
Since we are in the low-power limit, much more population 
is transferred out of the ground-state levels by the first field 
intervention than is transferred back from the excited state 
by the second field intervention. Thus we can approximate 
that the amount of population transferred out of a given 
magnetic sublevel is simply the sum of the oscillator 
strengths between that level and the magnetic sublevels of 
the excited state. [More rigorously, we might calculate 
ppg (2) for all four-component gratings considering all possi- 
ble diagrams, including those that do not contribute to the 
signal; however, such a treatment will give the same result.] 
Although this is a straightforward calculation to perform for 
the intensity grating, it is possible to look at the spatial na- 
ture of the transfer in the polarization grating only through 
decomposition into the four component intensity gratings. 
Figure 5 (a) shows the relative populations transferred out 
of the three F = 1 ground-state magnetic sublevels through 
excitation into the P,,, manifold for both the intensity grat- 
ing (solid curves) and the sum of the four component grat- 
ings of the polarization grating (dashed curves). The differ- 
ences between the two gratings are striking. In the intensity 
grating, the population transfer from each of the ground- 
state magnetic sublevels has both the same spatial depend- 
ence and the same amplitude. On the other hand, the mag- 
netic sublevels in a polarization grating have population 
transfers that differ both in spatial dependence and in ampli- 
tude. 

The behavior of the ground-state magnetic sublevels in 
the polarization grating can be understood in terms of opti- 
cal pumping.24 Consider, for instance, the 12 2) ground-state 
magnetic sublevel; because the selection rule for transitions 
driven by RCP light is Am, = + 1 and because there is no 
sublevel in the P,,, manifold with mF = 3, the RCP compo- 
nent intensity grating does not drive any transitions out of 
this ground-state sublevel. On the other hand, the selection 
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(b) 

FIG. 5. (a) Spatial dependence of population transferred out of the three 
magnetic sublevels in the F= 1 ground-state hypetfine level immediately 
after excitation. In all plots, the solid lines are for the intensity grating and 
the dashed lines are for the polarization grating. (b) Spatial dependence of 
the excited-state population immediately after excitation, under the same 
conditions as in (a). (c) Spatial dependence of population in magnetic sub- 
levels of F= 1 ground-state hyperfme level after complete, 
m,-independent, excited-state quenching. 

rule for LCP light is Am, = - 1, so there are two magnetic 
sublevels in the P,,, manifold to which transitions can be 
driven from this ground-state sublevel by the LCP compo- 
nent intensity grating. Similarly, no transitions are driven 
out of the 12 - 2) ground-state magnetic sublevel by the 
LCP component intensity grating, whereas the RCP compo- 
nent intensity grating does drive transitions. Because the 
LCP and RCP gratings are spatially 180” out of phase, so is 
the population driven out of the 1 - 2 2) and 12 2) ground- 
state magnetic sublevels. In fact, any ground-state magnetic 
sublevel for which mF # 0 is affected differently by the LCP 
and RCP component intensity gratings. As can be seen in 
Fig. 5(a) for the 11 0) ground-state magnetic sublevel, the 
population transfer from sublevels with mF = 0 shows no 
spatial dependence at all, but is instead constant across the 
grating. This is because, from symmetry considerations, 
transitions from sublevels with mF = 0 must be driven 
equally by RCP and LCP light. 

Given this understanding of how the grating excitation 
process affects the ground-state magnetic sublevel popula- 
tions, we can now describe how collisional quenching and 
fluorescence contribute to the grating decays. In the flame 
experiment, where quenching dominates over fluorescence, 
there is no reason to believe that collisional relaxation events 
should preserve mF in any way. Thus, in this experiment we 
can assume that any excited-state population is quenched 
with equal probability into each of the ground-state magnet- 
ic sublevels. The decays in the low-pressure cell are modeled 
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differently. From the above population transfer calculation, 
we can also derive the spatial dependence of the population 
transferred into each of the P,,, magnetic sublevels during 
the intensity-grating excitation step. Thus, we calculate the 
effect of fluorescence on each of the initial ground-state mag- 
netic sublevel gratings by considering the oscillator 
strengths from each of the excited-state sublevels into each 
of the ground-state magnetic sublevels. 

We are now equipped to calculate the effects of both 
types of population relaxation on intensity- and polariza- 
tion-grating decays. We first consider collisional quenching. 
Since we assume that any excited-state population is 
quenched with equal probability into any of the ground-state 
magnetic sublevels, we need only consider the spatial de- 
pendence of the total excited-state population, as opposed to 
that of the population in each of the excited-state sublevels. 
In the intensity grating, the P,,, population has the same 
spatial dependence as (albeit a different amplitude than) the 
population in each of the ground-state sublevels, as is shown 
in the solid plot in Fig. 5 (b) . Collisional quenching therefore 
fills in each of the ground-state gratings equally. Once all of 
the population has returned from the excited state, the 
ground-state gratings have been completely washed out, as is 
illustrated in the solid plot in Fig. 5 (c). Thus, the intensity- 
grating decay in the atmospheric-pressure flame follows 

S(t) aexp( - 2A*Dt)exp( - 2r,t). (10) 

This expression is equivalent to Eq. (5)) since Ie is the in- 
verse of the collisional-quenching time. 

Because the electric field in the polarization grating is of 
constant amplitude across each fringe spacing, the total ex- 
cited-state population is constant across the grating, as 
shown in Fig. 5(b). If the population is returned to each 
ground-state sublevel with equal probability, the depths of 
the ground-state gratings will not change. Figure 5 (c) shows 
the relative populations of the F = 1 ground-state sublevels 
after complete collisional quenching; although the gratings 
in the 11 - 1) and 11 1) sublevels have different offsets after 
quenching than they did initially, the grating magnitudes are 
unchanged. Thus, quenching collisions do not contribute to 
the polarization grating decay. 

There are two ground-state phenomena that contribute 
to the polarization-grating signal, however: the gratings in 
the sublevels and coherences between sublevels in dzfirent 
hyperiine levels (we have chosen a basis set in which there 
are no coherences between sublevels in the same hyperfine 
level). The coherences between the hyperline levels account 
for the oscillatory term in pc3), while the population redis- 
tribution among Zeeman levels provides a nonoscillatory 
term; because the signal is proportional to I p (3) I ‘, beats ap- 
pear in the data at both w,,~ and at 204,. The beats would be 
expected to be observed only at twice the ground-state hy- 
perflne-splitting frequency if there were no zero-frequency 
term in p (3). Collisions that dephase only the coherences 
between the hyperfine levels cause only the oscillatory terms 
to decay. On the other hand, collisions that randomize the 
ground-state magnetic sublevel populations must also neces- 
sarily dephase the coherences, and therefore should cause 
the both oscillatory and the constant terms to decay. De- 
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phasing of the hyperfine coherences would not eliminate the 
signal, but rather would cause the oscillations to damp. Since 
this is not observed in the flame decays, we conclude that 
scattering among the hyperfine levels is much faster than the 
pure dephasing. 

Given the above analysis, we may set rg equal to rgg,. 
When quenching is the dominant relaxation process, we ob- 
tain 

S(t) a [43 + 60 cos(o,,t) + 25 cos(2w,,t)] 

xexp( - 2rgg’t)exp( - 2A*Dt). (11) 
This expression does an excellent job of reproducing the po- 
larization grating decays in the atmospheric-pressure flame. 
Note that the 6 ns decay time observed in the polarization 
grating corresponds to the rate of scattering population 
among the ground-state magnetic sublevels, rgg’. 

Fluorescence affects intensity and polarization grating 
decays differently than does collisional quenching. In the 
intensity grating, we calculate that the population trans- 
ferred into each of the P,,, magnetic sublevels is identical to 
the population transferred out of each of the ground-state 
magnetic sublevels. Fluorescence repopulates each of the 
ground-state magnetic sublevels equally. Once all of the ex- 
cited-state population has relaxed to the ground state, there 
are no ground-state gratings left, and therefore no signal. 
Thus, in a low-pressure Na cell, where there is no collisional 
quenching and we are in the free-transport regime, the inten- 
sity-grating decay will follow 

S(t) aexp[ - (At)*k,T/m]exp( - 2lY,t). (12) 
This is equivalent to Eq. (7), since lYr is the inverse of the 
excited-state lifetime, 7. This expression fits the observed 
decays so long as there is very slow or very fast scattering of 
population between the P,/, and P3,2 levels.3 

In the polarization grating, the population transferred 
into a given P,,, magnetic sublevel IFm,) is the same as the 
population transferred out of ground-state magnetic suble- 
vel IF - mF). For instance, the population transferred into 
the 12 2) excited-state magnetic sublevel has the same spatial 
dependence as the population transferred out of the 12 - 2) 
ground-state magnetic sublevel. Subsequent fluorescence 
from these excited-state sublevels affects the amplitudes of 
the ground-state sublevel gratings in different manners; 
some gratings become deeper, whereas others become more 
shallow. However, fluorescence causes the grating signal to 
decay by only a few percent, so its effect is small enough that 
it can be ignored. Thus we approximate for the polarization- 
grating decay in the low-pressure Na cell 

S(t) aexp[ - (At)*k,T/m] [43 + 60cos(w,,t) 

+ 25 cos( 201,~) 1. (13) 
Note that we have omitted rg and rggp in this expression, 
since collisional effects are negligible on the experimental 
time scale. The low-pressure Na cell polarization-grating de- 
cays are fit well by this equation. Comparison with Eq. ( 12) 
shows that the envelope of the polarization-grating decay 
should not conform to the intensity grating when the lifetime 
decay term is not negligible compared to the velocity distri- 
bution decay term. 
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IV. CONCLUSIONS 
We have illustrated the application of the GDM to two 

orientational grating problems. In the first example, we used 
the GDM to augment and add insight to previous treatments 
of OKE orientational gratings in molecular liquids. Our sec- 
ond example was a specific application of the GDM to a 
system that cannot be completely described using standard 
DPT. With the aid of the GDM, we were able to develop a 
detailed, physical picture that completely describes the be- 
havior of Na intensity and polarization gratings. The quali- 
tative understanding of the important aspects of this prob- 
lem does not rely on perturbative calculations. These 
qualitative results are essential to the complete perturbative 
treatment of the problem. Using the GDM and the symme- 
try properties of the Na ETIMEs, we were able to greatly 
reduce the complexity of this calculation and to understand 
dynamics that would not emerge from a standard DPT cal- 
culation. 
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