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The influence of diffusion on photoinduced electron transfer and geminate recombination in 
solutions of randomly distributed donors and acceptors is explored. The focus is on the effect 
diffusional motion has on geminate recombination. The reactive state (state following 
photoinduced electron transfer) probability is calculated as a function of diffusion constant 
and relative permittivity for three intermolecular potential cases: attractive, repulsive, and no 
Coulomb potentials. Also calculated are the reactive state yield and reactive state survival 
fraction. Both forward and back electron-transfer rates are distance dependent (not contact 
transfer). Any diffusion constant can be investigated, and donor-acceptor and acceptor- 
acceptor excluded volumes are taken into account. The model developed here is compared 
with slow and fast diffusion limits as well as with the theories of Smoluchowski, and Collins 
and Kimball. 

1. INTRODUCTION 

Photoinduced electron transfer from a neutral donor to 
a neutral acceptor (or cationic acceptor) in an ensemble of 
randomly distributed donors and acceptors generates a radi- 
cal pair that are in close proximity. The ions and/or neutrals 
created by forward electron transfer are highly reactive and 
can go on to do useful chemistry. However, since the ther- 
modynamically stable state of the pair is the original parent 
molecules, there is a strong tendency for electron back trans- 
fer to occur prior to ion separation by diffusion. The lifetime 
of photogenerated ions in solution depends on the forward 
and back electron-transfer parameters,’ the concentration 
of donors and acceptors, the interaction potential between 
the ions, and on the diffusion*” characteristics of the donor 
(D) and acceptor (A ) (viscosity of the solvent). In this pa- 
per, we extend the theory of photoinduced electron transfer 
and back transfer in solid solutions’** to include diffusion of 
the particles. This extends the theory to liquids and provides 
a comprehensive description of the competition between 
electron back transfer and separation by diffusion. 

The importance of particle motion and its effects on 
chemical reactions cannot be understated. In batteries, the 
motion of charged particles through an electrolyte solution 
to eventual oxidation or reduction at an electrode is funda- 
mental to its operation.’ In chemical reactions in solution, 
molecules may react on contact with each other or at a dis- 
tance (as in some electron transfer reactions).’ Many bio- 
chemical charge-transfer reactions take place in fluid media 
whose properties govern life processes.’ Before current can 
flow in a fuel cell, the fuel has to diffuse to an electrode for 
electron transfer to occur and the spent fuel must diffuse 
away. These diffusion processes can effect the current output 
and efficiency of the fuel cell.““’ 

The nature and importance of diffusion in chemical sys- 
tems has been studied for many years.12-14 More recently, a 
considerable amount of work has been done on the influence 

of translational and rotational diffusion on excitation trans- 
port among molecules in liquids.‘5-23 In these treatments, 
the assumption of a slow or fast diffusion process relative to 
the transfer time is assumed in order to make the mathemat- 
ics more tractable. The inffuence of diffusion on electron 
transfer has also been studied both experimentally2’27 and 
theoretically.26*28-36 In these studies various assumptions 
have limited the general applicability of the theoretical re- 
sults. In one study, the low concentration limit of acceptors 
was used to obtain information only on forward electron 
transfer.28 In other studies, transfer is allowed only at con- 
tact between the donor and acceptor.26*29*30*33*34 In a work by 
Mikhelashvili,37s38 et al., both forward and back transfer 
with donor-acceptor excluded volume was taken into ac- 
count, but did not include the effects of acceptor-acceptor 
excluded volume. However, they use a different method for 
calculating the back transfer problem than the one in this 
work. A theoretical study39 that compares several methods 
for analyzing the forward/back transfer problem has dem- 
onstrated that the method of Mikhelashvili et al. is accurate 
only at very low concentrations, concentrations that are not 
of experimental interest. Steady-state and time-resolved flu- 
orescence experiments have been used to measure the effect 
of diffusion on forward electron transfer between the ions 
rhodamine B and ferrocyanide.24 This study used a variety 
of models to analyze the experimental data. Consistent fits 
were not obtained with any of the models. In another experi- 
mental work,25 the Smoluchowski equation modified with a 
distance dependent sink function was used to analyze data 
on forward electron transfer between neutral donors and 
neutral acceptors. This was more successful at analyzing the 
data. 

Chemical reaction dynamics in liquids is a heavily stud- 
ied area. It is well known that solvent properties such as 
viscosity26 and dielectric constant4W4 can effect chemical 
reactions between solute molecules. Other properties such as 
the relative size43 of the solvent and solute play a role in 
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determining the dielectric properties and therefore the reac- 
tion dynamics. The solvent properties may not always be 
estimated from the bulk viscosity or dielectric constant. It 
has been demonstrated that the microscopic viscosity26*45 
and the microscopic dielectric properties40*42-44 can be dif- 
ferent from the bulk. 

The interaction potential between reactants and prod- 
ucts can be important. For neutral molecules, the force that 
one molecule exerts on another when not in contact is quite 
small. When a pair of molecules has like or opposite charges 
the situation is different. In low dielectric solvents the force 
between the molecules can be quite strong and have a dra- 
matic effect on the reaction yield. In a solvent with a high 
dielectric constant the force between the molecules can be 
diminished to the point of being negligible. 

In solid solution, at high concentrations of solute (reac- 
tant), one must account for the finite size of the molecules 
because they may fill a large portion of the sample volume.’ 
In liquid solution, the effect of excluded volume might be 
different because two different molecules can now occupy 
the same space but with the condition that it be at different 
times. This suggests that there might be a time scale (or 
diffusion constant) during which excluded volume becomes 
less important than in solid solution. Certainly at very short 
times (or small diffusion constants), the molecules in liquids 
have barely moved from their initial positions and are repre- 
sented by the solid solution result quite well. At long time the 
particle positions, relative to their initial positions, have ran- 
domized and their trajectories have overlapped. 

In this work, we treat the problem of photoinduced elec- 
tron transfer and geminate recombination for any diffusion 
constant, any acceptor concentration and size, any combina- 
tion of forward and back electron-transfer parameters and 
various ionic interaction potentials (including different di- 
electric constants and attractive/repulsive/noninteracting 
potentials). The model presented here is for a three level 
system (see Fig. 1). We will call the various states the 
ground, excited, and reactive states. The model encompasses 
the three cases that are represented in Eqs. ( l)-( 3). Case I 
has as its excited state a neutral excited D * molecule with a 
neutral A molecule. Its reactive state is an ion pair of oppo- 
site charges (D + A - ), while the ground state is the neutral 
D and A. Case II is different, the A + + molecule (acceptor) 
has a + 2 charge, the reactive state has like charges on the 
molecules (D + A + ), and the ground state has the neutral D 
with the ground state A + + . Case III has an excited state 
composed ofan excited neutral D * with a positively charged 
A ‘. The reactive state has a neutral A with a positively 
charged D + , and the ground state has a neutral D with a 
positively charged A ’ . These specific cases were chosen be- 
cause there is no Coulomb interaction between the initial 
species. Therefore it is reasonable to assume that they are 
randomly distributed. The material presented below can be 
applied to nonrandom initial conditions by performing the 
appropriate spatial average. Transitions between the three 
states can occur via fluorescence from the excited state to the 
ground state or by forward electron transfer from the excited 
state to the reactive state and by back electron transfer from 
the reactive state to the ground state. The chemical reaction 

ex 
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FIG. 1. Level diagram showing the three states: the ground (gr), excited 
(ex), and reactive (re) states. The three rate processes are represented by 
their rates r, k,.(R), and k,(R), which are the fluorescence lifetime of the 
donor, the forward, and back transfer rates, respectively. The three cases 
explored here are given in detail in Sec. I. 

equations for these cases are given in Eqs. ( 1 )-( 3). 

D+A:D*+A:D+ +A -:D+A, (1) 

D+A++ :D*+A ++ ~D++A+ ZD+A f f, 

(2) 

D+A + ~D*+A + :D+ +A:D+A +. (3) 

The relevant rate constants are given in Eqs. (4)-( 6). 

k=-L, (4) 
7 

k,(R) =+exp[(R,-RI/a,-], (5) 

k,(R) =$exp[(R, -RI/a,]. (6) 

In Eqs. (4)-( 6), 7 is the fluorescence lifetime of D’s 
excited state, kf(R) is the forward electron-transfer rate, 
k, (R ) is the back electron-transfer rate, R is the D-A sepa- 
ration, and af, ab, R/, R, are parameters that characterize 
the falloff of the donor-acceptor wave function overlap.‘*’ 
These rates assume that the electron transfer is in the nona- 
diabatic limit.’ This is a common assumption for intermole- 
cular electron transfer. This model is not limited to this form 
of the electron-transfer rate. In fact, any form for the elec- 
tron-transfer rate can be used as long as it is time indepen- 
dent. In all cases, we will call the D molecule the donor and 
the A molecule the acceptor. Of course, when back transfer 
occurs their roles are reversed. 

In Sec. II, the fundamental equations that describe the 
evolution of the three states will be derived. In Sec. III, cal- 
culations for the excited (which is proportional to the time 
dependent fluorescence observable) and reactive state popu- 
lations, the reactive state distribution function, the fluores- 
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cence yield, and the pump-probe observable for the three 
cases with a variety of parameters will be presented. 

II. ELECTRON TRANSFER AND BACK TRANSFER IN 
SOLUTION 

In this section we will derive the excited state 
( (P,, ( t) ) ) , and reactive state ( (P,, ( t) ) ) populations. We 
start by determining the probabilities of finding the donor 
molecule in its excited or reactive state for a system contain- 
ing only two molecules, the donor D and the acceptor A in 
solution. 

In the problem presented here the initial condition is 
donors in their excited states at t = 0. Each donor is sur- 
rounded by a random distribution of acceptors. As time pro- 
gresses probability will flow out from the donor to the accep- 
tors. The probability that a particular excited donor is still in 
the excited state is a function of time and acceptor position. 
Donors and acceptors that are close interact more strongly 
than those further apart. The function that describes the sur- 
vival of an excited donor is called the excited state survival 
probability. This survival probability also governs the rate of 
reactive state formation (for example, an ion pair as in case I 
presented earlier). Since the excited state survival probabili- 
ty is a function of both time and distance and the acceptors 
are randomly distributed, the reactive states will be formed 
over a distribution of times and distances. Once the reactive 
state has been formed recombination can occur, returning 
the system to the ground state. The survival of the reactive 
state pair is now governed by the reactive state survival prob- 
ability. The reactive state survival probability describes the 
survival of the reactive state and its loss due to back transfer 
to the ground state; it does not contain a source term. Since 
the reactive states are formed over a distribution of times and 
distances, the reactive state population is obtained by con- 
volving the rate of reactive state formation (which is a func- 
tion of the excited state population, the excited state survival 
probability and the forward transfer rate) with the reactive 
state survival probability. The reactive state survival proba- 
bility is calculated for all pairs created at a single time. The 
function describing the reactive state survival probability is 
then convolved with the function that describes reactive 
state formation. The convolution yields the appropriate re- 
active state population function. 

The method of convolving a survival probability 
(Green’s function) with the appropriate source term is used 
in many fields. It has been employed previously in electron- 
transfer and diffusion problems.26~28~32-38 The survival prob- 
abilities that will be derived in the next section are used to 
obtain populations and related observables. 

In the model the donor has only one accessible elec- 
tronic excited state, and the acceptor has one acceptor state. 
All three states have the same multiplicity, e.g., singlets. The 
concentration of the donor molecule is low enough that exci- 
tation migration among the donor molecules does not occur 
and that the back transfer is geminate. The electron-transfer 
rates [see Eqs. (4)-(6) ] are exponentially decaying func- 
tions of the donor-acceptor separation. Acceptor-acceptor 
transfer is not allowed because the energetics highly favor 
back transfer. 
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A. One donor and one acceptor 
At t = 0, the donor is optically excited. In the absence of 

the acceptor, the probability of finding the donor excited 
decays exponentially with the excited state life time, r, where 
(P,., (I) ) = exp( - t/r). When an acceptor is present, the 
probability decreases more rapidly due to the addition of the 
electron-transfer pathway to the acceptor. 

The survival probabilities of the excited, S,, (R,t) , and 
reactive states, S,, (RJ), for solid solution7,32*39 are given by 
the following equations for one acceptor in the absence of 
fluorescence: 

Se, t&t) = exp[ - kJR>f 1, (7) 

S,UW =exp[ -k,(R)f]. (8) 
These are the probabilities that the state (excited or reac- 
tive) will still survive after a time c with a donor-acceptor 
separation of R in the absence of fluorescence. To include 
fluorescence one multiplies the survival probability by 
exp( - t/r). 

In liquid solution, the situation is more complicated be- 
cause the positions of the particles are not static. The donor 
and acceptor molecules undergo diffusive motion character- 
ized by their corresponding diffusion constants D, and D, . 
It is convenient to describe the position of the acceptor in a 
reference frame whose origin coincides at any instant with 
the center of mass of the donor. In this reference frame the 
acceptor undergoes diffusive motion relative to a stationary 
donor characterized by the diffusion constant 
D=D, +-DA. 6,19726,34 For the three cases introduced ear- 
lier, there are no significant intermolecular forces between 
the donor and acceptor prior to electron transfer. This 
means that the donors and the acceptors are randomly dis- 
tributed and are freely diffusing. To obtain the survival prob- 
ability for the excited state we start with the following 
Green’s function:26’33 

&G.dRJIRo) =DV:,Ge,(R,t IR,,) - k/(R)G,,(R,t IR,), 

(9) 

G, (ROIR, 1 = 
&R-R,) 

4~Rf, ’ 

~ITR z-D& Ge, (R,t (R,) 1 = 0, 
R=R,, 

(IO) 

where in Eq. (9) G,, (R,t IR, ) represents the probability 
distribution of the excited state at a time t, if at t = 0 the 
separation is R, . Vi for the spherically symmetric case con- 
sidered here is 

The first term in Eq. (9) accounts for the diffusional motion 
of the particles and the second term is a sink due to electron 
transfer. The initial condition is given in Eq. ( 10). At t = 0 
the donor is excited and the acceptor is at its initial position. 
We use a reflecting boundary condition which is given by Eq. 
( 11) (the particle flux through the boundary is zero). This 
can be important because the electron-transfer rate is finite 

a2 vi =a&+-. 
aR2 

(12) 
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at contact. Therefore, the donor and the acceptor can con- 
tact and diffuse apart without undergoing electron transfer. 

The reactive state has a Green’s function associated 
with its probability distribution function given by the follow- 
ing equation:26*33 

& 6, (R,* I& 1 = LRG,, CR,* I& 1 - k, WW,, (R,* IR, 1, 

(13) 

Gr, (R,OIR, 1 = 
S(R -4,) 

4nR; ’ 

4nR$Dexp[ - V(R)] -& 

(14) 

Xexp[Y(R)IG,.(R,tIR,)IR=R =o, rn (15) 

where L, is the Smoluchowski operator given by26*33 

L, =h&DR’exp[ - V(R)] &exp[V(R)]. 

(16) 
V(R) is the interaction potential between the donor and the 
acceptor in the reactive state divided by KB T. Here V(R) is a 
Coulomb potential and is given by 

V(R) = (4z-;;T) f 
where Z, and Z, are the numbers and signs of the charges 
on the donor and the acceptor, respectively, e is the charge of 
the electron, E,, is the permittivity of free space, E, is the 
relative permittivity of the solvent, KB is Boltzmann’s con- 
stant, and T is the temperature. 

& Sre (* IR, 1 = L t,,,s,, 

Sr, WC, 1 = 1, 

1 R, = R,, 

* IRo I- k, (4, ,S,, (t IR, ), 

(27) 

(28) 

In all cases, the donor-acceptor pairs start at some loca- 
tion at t = 0, then diffuse. Since the sink functions (the elec- 
tron-transfer rates) extend over space, and are not just at 
contact, electron transfer will happen concurrently with dif- 
fusion. If the pair separation is initially very large then the 
particles will undergo essentially free diffusion until they 
come into the range of forward electron transfer for the ex- 
cited state and the range of the interaction potential and back 
transfer for the reactive state. If the pair separation is initial- 
ly small then the particle motion and survival probability 
may depend mostly on the nature of the interaction potential 
and the electron transfer rate. 

4rR iD- a Sr,(*lRo 
aR0 

= 0. 
Ro=R, 

Equations (24) and (27) for the excited- and reactive state 
survival probabilities, respectively, cannot be solved analyti- 
cally. There are, however, analytical solutions for very 
small35 and very large diffusion constants36 as well as solu- 
tions for transfer only at contact.26’33 Here the survival prob- 
abilities will be solved numerically since the diffusion con- 
stants explored in this work are intermediate between the 
small and large diffusion limits and electron transfer occurs 
over a range of distances with a distance dependent rate. 

B. A donor and many acceptors 
To obtain the survival probabilities one takes the ad- 

joints of Eqs. (9)-( 16) and then integrates over R.26a33 The 
The partial differential equations describing electron 

purpose of taking the adjoints is that it allows for analytical 
transfer with diffusion for a donor and Nacceptors having an 

integration over the R coordinate, which gives the pair sur- 
initial configuration of RO, ( j = 1,. . .,N) and a configuration 

vival probability. The adjoint equations are 
ofR, ( j = l,...,N) at a timetaregivenin thefollowingforan 
infinitely long excited-state fluorescence lifetime: 

& C, CR,* JR, 1 

=DV&G,,(R,tIR,) - kf(R,)G,,(R,tIR,), (17) 

Ge, W,WC, 1 = S(R -&I 
47rR2 ’ 

49~R 5, D -$- Gr, CR,* I& 1 = 0, 
0 =o = &I 

(18) 

& Gr, (R,* IR, ) 

=Lt%G,,(RJlR,) -kk,(R,)G,,(R,tIR,), (20) 

&R-RR,) G,,UWIR,) = 4rrR 2 , 

4?rR2,D a - G,, (R,* I& 1 
JR0 

= 0, 
Ro = R,, 

(21) 

(22) 

where Vi, is given by Eq. ( 12) with R replaced by R, and 
L LO is given by26v33 

LLo =+exp[V(R,)] --& 
0 0 

DRi exp[ - V(R,)] $--. 
0 

(23) 
In the adjoint equations, the operators are now functions of 
R. and both sides may be integrated over R to give the the 
survival probabilities: 

$Sex (* IRo 1 = DV”,/L (t I&) - k,(R, XT,, (t IR, ), 

(24) 
Se, (OIRo 1 = 1, (25) 

~ITRZ,D $s,AMo)i = 0, (26) 
0 

$P,,(R I 2...,Rd 1% ,...,Rw ) 

= 2 W’; - k,(R,)]L (R, ,..., R,,t IR,, ,..., RON), 
j= 1 

Pex CR I ,.-.&v,OIRo~ ,...,Rop,) 

(30) 

=A 6(~r;o;w) , (31) 
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4n-R ;D- a Pr,(R I ,...,RN,* I&, ,..., R,, 1 =o 
aRj =, = 4, 

(j = l,...,N), (32) 

&p:,(R I,... &,,*I&,, . . . . R,,) 

= j$, L~~f’f, W, ,...,R,v,* IRo ,,... So,) 

- k, (Ri )Pfe (RI ,***,RN,* IRo, ,***,RoN) 

+ k#W’e, (R, ,..., RN,* IR,, ,..., R,,) 
(i = l,...,N), (33) 

Pie@ , ,...J?wOIRo, ,..., R,,) = 0 (i= l,...,N), (34) 

4n-R LDexp[ - V(Rj)] &-ev[ VW,)] 

xpre (R , ,...,Rd IR ow.(.R,,)lR,=n, =O 
(j= l,...,N), (35) 

(P,,(t)) = exp( - t/T)exp 

X 
s 

- [I-&,(*IRo)]%dRo , (41) 
%l > 

where d is the acceptor diameter, p = Cd 3, and C is the con- 
centration of acceptors in number density units. In this 
work, we will use the following expression which is equiva- 
lent to Eq. (41) because the sum in the exponential has a 
closed form: 

(P,,(t))=exp( -ttr)exp $- ln[l-p 
( s 

co 

=!Tl 

t-P&, (* IRo)]R WC,). 

where P,, (R, ,..., R,,t (R,, ,..., R,, ) is the excited-state 
probability with the initial condition given by Eq. (3 1) and 
boundary condition given by Eq. (32). 
Pfe (R , ,... ,Rd I&,, ,..., R,,) is the probability that the sys- 
tem is in the reactive state and the ith acceptor has the elec- 
tron. The initial condition is given by Eq. (34) and the 
boundary condition is given by Eq. (35). This is only exact 
in the limit of D, = 0, but is a very accurate approximation 
in three-dimensional systems.34 

The solution of Eq. (30) is given by32 

This can also be written in terms of a time-dependent rate, 
which is given by 

Pex (R , ,...,R,v,* IR 01 ,***&N) = fi Gex. (RjJ I&j 1, 
j=O 

(36) 

This substituted into Eq. (39) will give the excited-state 
population. In the limit that d, the acceptor excluded vol- 
ume, goes to zero, Eq. (43) goes to Eq. (40)) the result with 
only donor-acceptor excluded volume. Substitution for the 
time derivative with Eq. (24) gives the more explicit form 

where G,, (R, ,t 1 R, ) is the solution to Eq. ( 17). The surviv- 
al probability is then obtained by integrating over all R: 

Pex (* IR 01 ,.*.&N) = fi Sex (* I&j), 
j=O 

(37) 

where S,, (t IR, ) is the one acceptor survival probability 
given in Eq. (24). The ensemble averaged excited-state pop- 
ulation in the thermodynamic limit has been derived for 
point particles and donor-acceptor excluded volume7*32*46 
and is given by 

In the case of no acceptor-acceptor excluded volume 
(d = 0), the second term goes to zero. 

To get the ensemble averaged reactive state population, 
(P,,(t)), Eq. (33) is integrated over all Rj (i = l,...,N) ex- 
cept Ri. The integration is defined as 

(P,, (*I) = exp( - t/7) 

Xexp( - 4n-CLI [I-Se,(*lR,)]R;dR, , 
> 

(38) 

= ~~4~~R:R~dRi)P:,(Ri,...,R,,r IROI,*..,RON), 
(45) 

where exp( - t/r) has now been added to account for the 
finite fluorescence lifetime of the excited state and R, is the 
center-to-center distance of the donor and acceptor when 
they are in contact. This can also be written in terms of a 
time-dependent rate:26 

and where the following is from the boundary condition, 

= 0, 

one gets 
(P,,(t))=exp(-t/T)exp(-Cik(t’)dt’) (39) 

with k(t) given by 
2 f’k (Ri,* I&, ,-JON) 

k(t) = 41r 
s 

- k,(R,)S,,(tlR,)R~dR,. (40) 
=t, 

= L,,P:e (R,,t I&, ,..., R,,) 

- k, (Ri )PL (Ri,* IRot ,*..rRON) 

The inclusion of acceptor-acceptor excluded volume has 
also been done7*47*48 and is given by 

(42) 
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+kf(Ri) exP( - */T)Ge,(Ri,t IRoi) fiSex(t IR,) 
i#i 

(i = l,...,N), (47) 

where the exp( - t /T.) factor was added to the source term 
to account for loss of the excited state due to fluorescence. 
Averaging Eq. (47) over all R, except the ith one [average is 
similar to the integration defined in Eq. (45) except the 
time-dependent positions have been replaced with the initial 
positions and a factor of l/V has been added, which is the 
volume occupied by the Nacceptors ( V = 47rR c/3) ] gives 

= LR,PL (R,,* IRot 1 - k, (RI )Pte (Rip* IRoil 
+ kf(R, )G,, (Ri,* IRoi 1 (Pe, (*I) (i = l,...,N). 

(48) 
In Eq. (48) G,, (R,,t IR,,) is the solution to Eq. (13) and 
(P,, (t)) is the excited-state population from Eq. (38). 
Equation (48) averaged over Roi gives (after dropping the 
subscripts and superscripts) the reactive state distribution 
function’ 

$ Pr, (&*I = L,p,, (R,*) - k, (RIP,, CR,*) 

+tk/(R)S,,(*IR)(P,,(*)). (49) 

In Eq. (49) the factor S,, (t IR) comes from the fact that 
Eqs. (9) and (17) are self-adjoint, which means that inte- 
grating Eq. (9) over R, or Eq. (17) over R gives the same 
function only with R as the variable in Eq. (9) and R, in Eq. 
( 17). This is not true for the reactive state survival probabili- 
ty. The operators L, and L & are different operators and are 
not converted to the other upon interchanging R and R,. 

The initial condition for Eq. (49) is obtained by inte- 
grating Eq. (33) over all spatial coordinates except R: 

P,, (R,O) = 0. 
The boundary condition is reflecting 

(50) 

4rRf,,Dexp[ - V(R)1 &exp[V(R)IP,,(R,t)l = 0. 
= = =m 

(51) 

The ensemble averaged reactive state probability is ob- 
tained by taking the solution of Eq. (49) and summing it 
over all the acceptors and then integrating over the last spa- 
tial coordinate. Since this term is the same for all the accep- 
tors one gets [and with the factor l/Vremoved from the last 
term in Eq. (49) ] 

(P,,(t)),, =ys* P,,(R,t)R2dR. 
=,,, 

(52) 

In the thermodynamic limit the ratio N/Vbecomes the con- 
centration C. Thus, the reactive state population is 

(P,,(t)) = 4rrC 
I 

- P,(R,t)R ‘dR. 
=,,, 

(53) 

It is possible to write an analytical solution for the par- 
tial differential equation for the reactive state distribution 

function [ Eq. (49) ] in terms of the Green’s function for the 
reactive state [Eq. ( 13)], the survival probability for the 
excited state [ Eq. (24)], the ensemble averaged excited- 
state population [ Eq. (38) 1, and the forward transfer rate 
[Eq.(5)1: 

Gr, CR,* - *‘lRo )k,(R, ,S,, (*‘lRo 1 

x(P,,(t’))411-R;dR,dt’. (54) 
Taking the derivative of this with respect to t will give Eq. 
(49), proving this is a solution (in the thermodynamic limit 
the term l/V is replaced by C). Also letting the diffusion 
constant D = 0 gives the exact solid solution result, which 
has been derived elsewhere.’ To get the total reactive state 
probability from this, it is integrated over the final coordi- 
nate and, in the thermodynamic limit, is 

4&G, (R,t - t ‘1 R, ) R ‘dR 
> 

Xk,(R,)S,,(t’IR,)(P,,(t’))4rrR~dRodt’. 
(55) 

Since integrating the Green’s function over R gives the sur- 
vival probability for the reactive state [ Eq. (27) ] the final 
form for the reactive state population is 

(P,,(f)) = 47s m 
ss 

I Sr, (* - *‘lRo V@o XL (*‘lRo) 
=,n 0 

x (P,, (t’))dt’R ;dR,. (56) 
This is an interesting result because it has the same form as 
the solid solution result7 except the survival probabilities 
from Eqs. (24) and (27) with diffusion are used instead of 
the solid solution results given in Eqs. (7) and (8) and the 
excited-state population is calculated using Eq. (24) instead 
ofEq. (7). 

Equation 56 for the reactive state population and Eqs. 
(49) and (54) for the reactive state distribution function 
only take into account donor-acceptor excluded volume. To 
account for acceptor-acceptor excluded volume the source 
term in Eq. (49) needs to be modified.7*47-49 The differential 
equation for the reactive state distribution function becomes 

&P,, @,*I = LRPre CR,*) - k, (RIP,, CR,*) 

1 
1 -p+pS,,(*lR) > 

x ~aA*lR) 
( at > (P,, (*I), (57) 

where the excited-state population is now given by Eq. (42). 
With this modification the solution becomes 

Pre (R,t) = 1 
f 

ss 
- G,,(R,*- t’IR,)(P,,(t’)) 

v 0 =,, 1 -p++Se,(t’lR,) 

as,, (*‘PO 1 
at’ > 47rR ; dR, dt ’ (58) 

(where in the thermodynamic limit l/V is replaced by C) 
and the final result for the reactive state population is 
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dt’R ;dR,, (59) 

where (P,, (t) ) is given by Eq. (42). 
The probability that the system is found in any one of 

the three states, ground ( (P,, (t) ) ), excited ( (P,, (t) ) ), or 
the reactive ( (P,, (t) ) ) state is unity. Therefore, the ground- 
state population is 

(P,,(t)) = 1 -(P,,(t)) -(P,,(O). (60) 
In this section, the excited state [ Eq. (42) 1, (P,, (t) ), 

and the reactive state [ Eq. (59) I, (P,, (t) ) population func- 
tions have been derived. In Sec. III we will use these results 
as well as the ion distribution function in Eq. (58) to illus- 
trate the detailed nature of the model as well as calculate the 
pump-probe experimental observable. 

III. RESULTS AND DISCUSSION 
In this section the excited-state [ Eq. (42) ] and reactive 

state [ Eq. (59) ] population functions will be displayed for a 
variety of parameters. The reactive state distribution func- 
tion [ eq. (58) ] and some experimental observables will also 
be calculated. The partial differential equations for the sur- 
vival probabilities were solved numerically. The formal 
treatment presented in Sec. II performed some of the neces- 
sary averaging analytically. It also formulated the problem 
in a manner amenable to numerical analysis. The Crank- 
Nicholson method5’ was used to solve these differential 
equations and Gaussian quadrature” was used for numeri- 
cal integration. In each case, great care was exercised to en- 
sure the accuracy of the numerical procedures. It was neces- 
sary to choose small enough distance and time steps to get 
stable and accurate solutions. The choice of the step sizes 
depend on the choice of parameters used. Typically, a dis- 
tance step of 0.1 A and time steps as small as 0.000 1 ns were 
used and gave solutions that converged in a few minutes 
using a DEC3100 work station. For parameters that give 
faster dynamics, smaller step sizes are necessary. However, 
there is another numerical method for solving the partial 
differential equations that converges faster with larger step 
sizes,35s5’ which can be used in these cases. 

A. Excited-state population (P,,(t)) 
The excited-state population is displayed in Fig. 2 as a 

function of time, concentration, and diffusion constant. The 
diffusion constants used were 0, 0.1, 1, 10, 100, and CO 
A*/ns. For D = 0, Eq. (42) was used with the solid solution 
result for the survival probability given in Eq. (7), and for 
D = 0.1, 1, 10, and 100 A*/ns the solution to Eq. (24) was 
used in Eq. (42). The case with D = CO is given by36 

(P,,(t)) =exp( -t/7) exp( - C(k)t), (61) 
where 

(k) =4n- 
I 

- k/(R)R ‘dR. (62) 
R”, 

This follows from Eq. (44). In the limit that the diffusion 

A 
c. 

0.6 

s 
“v 0.4 

0.2 

0 
0 4 8 12 16 20 

Time [ns] 

FIG. 2. Excited-state population probability as a function of time, concen- 
tration, and diffusion constant. The parameters used are r = 20 ns, R, = 12 
A, a, = 1 A,, R, = 9 A, and d = 1.2 A. The curves have concentrations 
C = 0.01,0.3, and 1 M, respectively. In each group of curves the diffusion 
constant ranged from D = 0,O. 1, 1, 10, 100, and 00 A*/ns. The upper curve 
in each group has D = 0 and the bottom one has D = CO. The other curves 
fall in between these two limits. 

constant goes to infinity, the survival probability S,, (t IR, ) 
goes to 1. The second term in Eq. (44) goes to zero and the 
first term gives Eq. (62). The concentrations used are 
C = 0.01,0.3, and 1 M ofacceptor. The other parameters are 
af= 1&R,= 12A,r=20ns,R, =9A,andd=7.2& 
These parameters were chosen because they are typical val- 
ues. The values for R, and d are for the rubrene/duroquin- 
one system.25 As can be seen, at each concentration the zero 
and infinite diffusion cases bracket the finite diffusion cases. 
There are analytical solutions for the sma1l35 and large36 
diffusion constant limits. For the parameters used in Fig. 2, 
the D = 0.1 A*/ns is in the small diffusion limit and the 
D = 100 A*/ns is in the large diffusion limit. The results 
agree well with the analytical results for these limiting cases. 
As is shown in Fig. 2 the excited-state population decreases 
more rapidly at higher acceptor concentrations and higher 
diffusion constants. When the diffusion constant is large 
enough the reaction rate is limited by the magnitude of the 
electron-transfer parameters. 

There are simpler models for diffusion influenced for- 
ward electron transfer; one is the Smoluchowski mode1.26 In 
this model, the reaction is completely diffusion limited and 
reaction occurs instantly (infinite reaction rate) upon colli- 
sion of the donor and the acceptor and does not occur other- 
wise. According to this theory the excited-state population 
is26 

(P,, (t)) = exp( - t/d 

X exp 2Rm >I t . 
(rrDt)“’ 

(63) 
Substituting values R, = 9 and the diffusion constants used 
in Fig. 2, Eq. (63) does not come close to giving the correct 
excited-state populations. It is possible to adjust the param- 
eters D and R, in Eq. (6 1) to attempt to fit the curves in Fig. 
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2. Adjusting the diffusion constant with R, = 9 does not fit 
any of the curves in Fig. 2. Adjusting R, while keeping D 
constant was only able to fit the D = 100 A’/ns curves with 
an R ,n = 0.95, which is much smaller than the contact dis- 
tance. The other curves could not be fit. Clearly, this shows 
that a distance dependent reaction is quite different from a 
diffusion limited contact reaction. 

A more sophisticated theory is the Collins and Kimball 
model.26 This is similar to the Smoluchowski theory except 
there is now a finite reaction rate (k) when the donor and the 
acceptor collide. Their result isz6 

(P,,(t)) = ev( - t/r) exp[ - CfcOl, (64) 

~ 0.6 - +---- Qre(D = 0) = 0.552 

M 
0.4 - 

0.2 - 

0-l 
0 20 40 60 80 100 

D [A* / ns] 

f(t) = 
4rrDR, k k 

4lrDR,, + k 
t+ 

437D 2R, a2 
[exp(a2Dt> 

and 

Xerfc(a@?) + (2a*//J;;) - 11) (65) 

4nDR,, + k 
a= 

4nDR ;, . 
(66) 

This theory is better at fitting the curves in Fig. 2. Using the 
diffusion constants and the R,, used to calculate the curves 
in Fig. 2 and only adjusting k, the transfer rate at contact, the 
D = 10, and 100 A*/ns curves were able to be fit. The fit 
values for k were 1550 A’/ns and 1350 A’/ns for the D = 10 
A*/ns and D = 100 i2/ns cases, respectively. The smaller 
diffusion constants were not able to be fit. Although it was 
possible to fit two different diffusion constants with this 
model, they still did not give a single set of reaction rate 
parameters that fit all the curves. Thus, for reactions with 
distance dependent sinks, Eq. (24) must be used for the sur- 
vival probability. An attempt to fit data with simpler models 
over a range of diffusion constants will not give a consistent 
set of parameters. 

Calculations show that increasing the diffusion constant 
has the effect of eliminating the effect of acceptor-acceptor 
excluded volume. In solid solution, the particle positions are 
fixed and on the time scale for electron transfer no two parti- 
cles can have overlapping volumes. In liquid solution, for 
large diffusion constants, the particle positions are changing 
rapidly on the time scale of electron transfer. Since the mo- 
tions of the molecules are so fast, two molecules may occupy 
the same volume of space, at different times, but that ex- 
change time is less than the time for reaction. Donor-accep- 
tor excluded volume is important at all diffusion constants 
since it determines the maximum transfer rate. 

B. Reactive state probability (P,,(t)) 

The reactive state probability is presented in Figs. 3-11 
for various parameters and for the three cases mentioned in 
Sec. I. In Fig. 3 the reactive state yield is presented as a 
function of diffusion constant. The reactive state yield, &, 
can be calculated from the relative fluorescence yield: 

4, = 1 - 4,,, (67) 

FIG. 3. Reactive state yield versus the diffusion constant. The yield in- 
creases rapidly to about 20 AZ/ns and then levels off to the limiting case of 
D = m, which has a reactive state yield of 0.82. The parameters are a, = 1 
A,R,=12d;,r=20ns,R,=9.&,d=7.2A,andC=0.3M. 

where A,, the relative fluorescence yield, is 

A, =+d- Pe,(t)Mt. (68) 

qS,, shows the total number of ions formed for a given set of 
forward electron-transfer parameters and diffusion con- 
stants irrespective of whether they back transfer to the 
ground state or escape. The reactive state yield can also be 
obtained using the reactive state probability function given 
by Eq. (59). Equation (59) in the limit that the back transfer 
rate goes to zero and time goes to infinity gives Eq. (67). The 
parameters used to calculate Fig. 3 were af = 1 A, R6 = 12 
&7.=20ns,C=0.3M,d=7.2&andR,=9.0A.The 
diffusion constants used are shown Fig. 3. As can be seen, as 
the diffusion constant increases the number of ions formed 
increases. This happens because diffusion brings acceptors 
that were too far away for electron transfer closer to the 
donor, effectively increasing the number of acceptors with 
which the donor interacts. The increase in the yield is great- 
est for small diffusion constants then levels off and ap- 
proaches the infinite diffusion constant result at large diffu- 
sion constants. 

The reactive state probability is plotted as a function of 
time and diffusion constant for each case defined in Sec. I in 
Fig. 4. Following t = 0, forward electron transfer creates 
reactive pairs, and back electron transfer is destroying them. 
At D = 0 and D = CO, the three cases give the same results. 
In solid solution the particles are fixed. In the case of infinite 
diffusion constant the particle motion is so fast that the reac- 
tive state once created moves far away from the donor and 
does not back transfer. If the recombination were not gemin- 
ate, and there was a constant background concentration of 
nongeminate acceptor molecules for the reactive state, then 
the three cases would be different and the probability would 
decay. 

For diffusion constants of 1, 10, and 100 A’/ns, the 
three cases are different. V( R ) is Coulombic and the relative 
permittivity (6, ) used for Fig. 6 is 78.5 (water). AI1 calcula- 
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FIG. 4. Reactive state probability as a function of time. The back transfer 
parameters are equal to the forward transfer parameters used in Fig. 3. Case 
I has an attractive Coulomb potential, case II has a repulsive Coulomb po- 
tential, and case III has no potential. e, = 78.5, the value for water. As the 
diffusion constant increases so does the reactive state probability. 

tions were performed using a temperature of 298 K. In the 
figures, case I has an attractive potential, case II has a repul- 
sive potential, and case III has no potential between the do- 
nor and the acceptor in the reactive state. The forward trans- 
fer rate is equal to the back transfer rate (the parameters are 
in the caption of Fig. 3). Faster back transfer results in a 
lower reactive state probability at any time. The repulsive 
case gives the highest reactive state probability while the 
attractive case gives the least. The differences among the 
curves are not great because of the high relative permittivity 
used in the calculation (see the following). 

In Fig. 5 the reactive state probability is plotted as a 
function of time and relative permittivity (E, ). The param- 
eters are the same as in Fig. 3, except D = 10 A*/ns for all 
curves. The E,‘S used are E, = 1 for free space, E, = 6.02 for 
ethyl acetate, and E, = 24.3 for ethanol. The neutral case is 

0.8 

$0.6 

? 
“v 0.4 

6.02 
24.3 

24.3 

0 20 40 60 80 100 
Time [ns] 

FIG. 5. Reactive state probability as a function of time and relative permit- 
tivity (6,). The parameters are the same used in Fig. 3 except D = 10 A*/ns 
and the relative permittivities are given in the figure. E, = 1 is the value for 
free space, e, = 6.02 is the value for ethyl acetate, and er = 24.3 is the value 
for ethanol at 298 K. The curves above the no potential case have a repulsive 
Coulomb potential while the curves below have an attractive Coulomb po- 
tential. 

given in Fig. 5 and lies between the attractive and repulsive 
cases and is independent of e,. For decreasing E,, the reactive 
state probability decreases for the attractive case and in- 
creases with the repulsive case. The Coulombic force be- 
tween a pair of ions is greatest in free space and decreases 
with increasing E,. 

The attractive case seems to be more dramatically af- 
fected by decreasing E, than the repulsive case. When the 
ions are repulsed their survival probability increases and the 
reactive state probability also increases but it cannot in- 
crease any faster then the rate of ion formation, which is 
determined by the forward transfer parameters and the dif- 
fusion constant. When the ions are attracted, their survival 
probability will decrease because the back transfer sink func- 
tion is largest at smaller separations. 

In Fig. 6 the reactive state survival fraction, f, (t), is 
plotted as a function of diffusion constant. The survival frac- 
tion is defined as the fraction of all reactive states formed 
that still survive at a time t. The reactive state probability is 
obtained from Eq. (59). The total number of reactive states 
formed by a time t is given by Eq. (59) in the limit that the 
back transfer rate goes to zero, (P,, (t) ) k,, = o. The survival 
fraction is then given by 

f,(t) = 
(P,,(t)) 

IP-2 ,*\\ (69) 

In the limit of long time this would give the reactive state 
escape probability. This is the fraction of all reactive states 
that did not undergo geminate recombination. In Fig. 6 the 
survival fraction at t = 100 ns is plotted as a function of 
diffusion constant for the three cases. In all three cases the 
survival fraction increases rapidly between zero and 20 
A2/ns. At larger diffusion constants the survival fraction 
increases more slowly. As was noted in Fig. 3 the reactive 
state yield also increases significantly in this range. Thus, not 
only are there more reactive states generated with larger dif- 
fusion constants but a greater percentage of them survive. 
Case I, which has the attractive potential, has the smallest 

O.- 0 1c 

D [A2/ ns] 

IO 

FIG. 6. Reactive state survival fraction at t = 100 ns as a function of diffu- 
sion constant. The parameters are the same used in Fig. 3 with e, = 24.3 and 
with the cases defined in the text. As the diffusion constant increases the 
survival fraction increases. 
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survival fraction while case II, which has the repulsive po- 
tential, has the largest survival fraction. The relative permit- 
tivity used in Fig. 6 was E, = 24.3 (ethanol). The other pa- 
rameters are in the caption of Fig. 6. At higher relative 
permittivities, the three cases would be closer while at 
smaller relative permittivities they would be further apart. 

In Fig. 7 the survival fraction is plotted as a function of 
relative permittivity for a diffusion constant of D = 10 
W’/ns with the other parameters the same as Fig. 6. As can 
be seen the no potential case (III) is independent of E, and 
lies between the repulsive (II) and attractive (I) cases. At 
sufficiently large relative permittivities, the three cases 
should converge to the same result. As seen in Fig. 7 the 
three cases get closer together and more symmetric about the 
no potential case at large relative permittivities. At smaller 
relative permittivities the cases become quite different. For 
the attractive case, the survival fraction falls almost to zero 
while the survival fraction for the repulsive case goes almost 
to one. 

The reactive state distribution function Pr, (RJ), given 
by Eq. (58), is plotted in Figs. 8-10 as a function of the 
donor-acceptor separation R. In the figures P, (R,t) is mul- 
tiplied by 4nCR ‘dR, where we have set dR = 1. This gives 
the probability that the donor and acceptor molecules in the 
reactive state have the separation R at a time f. This type of 
figure provides insight into the relative positions of the reac- 
tive pair. The total reactive state probabilities discussed are 
the integrals ofcurves like those in Figs. 8-10 integrated over 
R. In Fig. 8, the reactive state distribution function is plotted 
as a function of diffusion constant for the no potential case 
(III) at a time of 1 ns. The diffusion constants range from 0 
to 100 W’/ns. The other parameters are given in the caption 
of Fig. 8. As the diffusion constant gets larger the height of 
the distribution falls and moves to longer distances and the 
width of the distribution gets wider. The reactive state prob- 
ability at short distances gets smaller with increasing diffu- 
sion constant, and there is a greater probability for the reac- 
tive state pair to separate before it back transfers. 

- 0.8 - Y 
ln r “v 0.04 - 

8 0.6 - E 
E 0.02 - 

11 
” 
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25 
2 0.2 - 0-I 
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9 11 13 15 17 19 

R WI 
FIG. 8. Reactive state distribution function as a function of distance and 
diffusion constant. This is for the no potential case (III) at time t = 1 ns. 
Diffusion constants ( A2/ns) are given in the figure. The other parameters 
are the same as in Fig. 3. As the diffusion constant increases the distribution 
moves to longer distances and gets wider. 

Figure 9 gives the reactive state distribution function as 
a function of the relative permittivities for the attractive case 
(I). The diffusion constant is D = 10 A*/ns, and the time is 
1 ns. The other parameters are given in the caption of Fig. 9. 
At high relative permittivities, the distribution looks like 
that of the neutral case. A comparison of curve D 
(E, = 78.5) in Fig. 9 with curve D = 10 A*/ns in Fig. 8 
shows that they are similar in shape and magnitude. As the 
relative permittivity decreases the interaction potential in- 
creases between the ions in the reactive state and pulls the 
pairs closer together. This has the effect of increasing the 
magnitude of the reactive state distribution function at short 
distances while depleting it at large distances. Since the ions 
are closer the probability for back transfer is greater, thus the 
total reactive state probability is less. This is demonstrated in 

OV I 
0 20 40 60 80 

Er (relative permittivity) 

FIG. 7. Reactivestatesurvival fraction at I = 1OOnsasa function ofrelative 
permittivity. The parameters are the the same as in Fig. 3 except D = 10 
A’/ns. As the relative permittivity increases the three cases get closer to- 
gether while at small relative permittivities they diverge. 

NAI 
FIG. 9. Reactive state distribution function as a function of distance and 
relative permittivity E,. This is for the attractive case (I) for D = 10 A*/ns 
and t = 1 ns. The curves labeled A, B, C, and D correspond to relative per- 
mittivities 6.02, 15, 24.3, and 78.5, respectively. The other parameters are 
the same as in Fig. 3. The smaller the relative permittivity the greater is the 
reactive state probability at shorter distances while it is less at larger dis- 
tances. 
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Figs. 5 and 7, which display the reactive state probability and 
survival fraction, respectively, as a function of relative per- 
mittivity. 

Figure 10 gives the reactive state distribution function 
as a function of distance and relative permittivity for the 
repulsive case (II). The diffusion constant is D = 10 A*/ns, 
and the time is 1 ns. The other parameters are given in the 
caption of Fig. 10. As in Fig. 9, the case at high E, (D) is 
similar to the case with no potential given by curve D = 10 
A*/ns in Fig. 8. Relative to Fig. 9 the distribution has been 
pushed out because of the repulsive potential and the areas 
under the curves are greater. Since the ions in the reactive 
state are pushed further apart, the probability for back trans- 
fer is less than the neutral or repulsive cases. This results in a 
higher reactive state probability and a larger survival frac- 
tion. 

In Fig. 11, the reactive state probability (the total prob- 
ability unlike Figs. 8-10 that are functions of R), given by 
Eq. (59), is plotted for the full theory presented here and 
two approximate models for the reactive state survival prob- 
ability, S,, (t IR, ), for the no potential case (III). In all 
curves, the excited state survival probability, S,, ( t, 1 R, ), 
and the excited state probability, (P,, (t) ,) were calculated 
using Eqs. (24) and (42)) respectively. That is, the detailed 
method for the forward transfer was employed rather than 
the more approximate models discussed in relation to Fig. 2. 
The parameters used to calculate these are given in the cap- 
tion of Fig. 11. In curve A, the Collins and Kimball model is 
used to calculate S,, ( t IR, ) for Eq. (59) and is given by26 

S,,(t(R,) = 
k+:R,D) [erfc(Ro~-) 

- exp[a*Dt + a(R, -R,)] 

(70) 
S,(t~Ro)=l-$elfc 

0 

It is necessary to choose a value for k to be consistent with 
the detailed theory; k is given by Eq. (62), which for the 
parameters used here is k = 1275 A’/ns. Curve B uses the 
solution to Eq. (27)) which has a distance dependent sink 
function, and curve C uses the Smoluchowski model, which 
is given by the following equation:26 
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FIG. 10. The reactive state distribution function as a function of distance 
and relative permittivity E,. This is for the repulsive case (II) for D = 10 
A*/ns and t = 1 ns. The curves labeled A, B, C, and Dcorrespond to relative 
permittivities 6.02, 15, 24.3, and 78.5, respectively. The other parameters 
are the same as in Fig. 3. For smaller relative permittivities, the reactive 
state probability is less at shorter distances while it is greater at larger dis- 
tances. 
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FIG. 11. The reactive state probability as a function of time for various 
models for the reactive state survival probability, S, (t I& ) for the no po- 
tential case (III). The rate of reactive state formation is given by the model 
developed here. Curve A uses the Collins and Kimball model for S,, (t I& ), 
curve B has S,, (t 1% ) given by Eq. (27), and curve C uses the Smolu- 
chowski model for .S,, (I IR, ). The parameters are the same as used in Fig. 3 
except D = 1.0 A*/ns and k = 1275 a3/ns for the Collins and Kimball 
model and was calculated using Eq. (60). The Smoluchowski model under- 
estimates the reactive state probability while the Collins and Kimball model 
overestimates it. 

(71) 

As can be seen the Smoluchowski model underestimates the 
reactive state probability, while curve A, the Collins and 
Kimball, overestimates it. It must be pointed out that the 
Collins and Kimball model, although further from curve B 
than the Smoluchowski model, is better at higher diffusion 
constants. As the diffusion constant gets smaller the Collins 
and Kimball model will increasingly underestimate the 
amount of back electron transfer. This is because all the elec- 
tron transfer happens at contact in the Collins and Kimball 
model, while the model presented here allows transfer at 
separations other than contact. Moreover, the disagreement 
between the curves in Fig. 11 would be larger had the rate of 
ion formation been calculated using the Smoluchowski mod- 
el in curve C, and the Collins and Kimball model in curve A. 
This was demonstrated by the attempt to fit the curves in 
Fig. 2 with the Collins and Kimball, and Smoluchowski 
models in Sec. III A. Furthermore, if data taken as a func- 
tion of diffusion constant is fit with either the Collins and 
Kimball or Smoluchowski models, the electron transfer pa- 
rameters will not be consistent. It is interesting to note, how- 
ever, that the Collins and Kimball model is better at short 
time while the Smoluchoski model is better at long time. 
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C. Experimental observables 

Using the state probabilities calculated earlier, experi- 
mental observables can be calculated. It is possible to mon- 
iter the ground-state population using a ground-state recov- 
ery experiment such as a pump-probe experiment. It will be 
assumed that at the probe wavelength there are no other 
absorbing states besides the donor ground state and that 
there is no stimulated emission.52 The pump-probe observ- 
able for the ground state is then given by’ 

S(t) = A [ 1 - (J’,, CO)], (72) 
where A is a constant. After substituting Eq. (60) for the 
ground-state probability one obtains 

s(t) = A [(pa (t)) -t V’r, W]. (73) 
This has been calculated for a variety of diffusion constants 
for the no potential case (III) in Fig. 12. The other param- 
eters are in the caption. As can be seen, as the diffusion con- 
stant increases the extent of decay decreases, and for infinite 
diffusion the decay levels off to a constant. At short time, the 
signal is dominated by the fall in the excited-state popula- 
tion. This can be seen for the same parameters in Fig. 2 for 
C= 0.3 M. At long time, the excited-state population has 
decayed to zero for the larger diffusion constants and the 
observable is dominated by the reactive state probability. It 
is possible to measure the reactive state survival fraction by 
measuring the pump-probe observable out far enough in 
time that the excited state has decayed to zero. At this time 
the magnitude of the observable is the reactive state proba- 
bility at that time. The total number of reactive states formed 
can be obtained from a fluorescence yield measurement. 
From Eq. (67) the total ion yield can be obtained from the 
fluorescence yield. To obtain the survival fraction the long- 
time value of the observable is divided by ion yield as in Eq. 
(73) (for large t). 

IV. CONCLUDING REMARKS 
In this work a model has been presented which accounts 

for the effects of diffusion on photoinduced electron transfer 
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with geminate back transfer for transfer rates that are dis- 
tance dependent. Both donor-acceptor and acceptor-accep- 
tor excluded volume have been taken into account, as well as 
the effect of a Coulomb interaction potential between the 
donors and the acceptors. Comparisons to other theories 
were made, and we have shown where they might be applica- 
ble and where the theories differ. A wide range of diffusion 
constants from 0 to CO were used. At intermediate and small 
diffusion constants the Smoluchowski, and Collins and 
Kimball results do not yield consistent electron-transfer pa- 
rameters; therefore the model with a distance dependent rate 
must be used. The inclusion of an interaction potential has 
enabled us to compare three different cases for the reactive 
state. When there is no interaction potential there is free 
diffusion, and the dynamics are completely determined by 
the electron-transfer parameters and the diffusion constant. 
For the attractive and repulsive cases, as the relative permit- 
tivity gets smaller the interaction potential gets larger and so 
does the effect on the reactive state population. The attrac- 
tive potential will give a smaller reactive state yield and sur- 
vival fraction while the repulsive potential will give a larger 
reactive state yield and survival fraction. The reactive state 
yield is the total number of ions formed and the survival 
fraction is the fraction of the reactive state population still in 
existence at a time t. In the long-time limit (time long com- 
pared to the electron transfer and diffusion time scale) the 
reactive state survival fraction becomes the reactive state 
escape probability. It has also been shown how these quanti- 
ties can be related to experimental data. 
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FIG. 12. The pump-probe observable as a function of time and diffusion 
constant for the no potential case (III). The parameters are the same as 
those used in Fig. 3. As the diffusion constant increases the observable de- 
cays more slowly. 
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