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Electronic excitation transport among interacting polymer molecules lightly tagged with 
chromophore substituents is theoretically examined as a function of tagged polymer concentration 
in the polymeric solid. The results are compared to experimental data obtained in a previous study 
[Macromolecules 26, 3041 (1993)]. The dependence of time-resolved fluorescence observables on 
intermolecular polymer structure is of primary interest. A theory is presented which describes 
excitation transport for both donor-donor (DD) and donor-trap (DT) systems. For the case of DD 
transport, the theory is based on a first order cumulant approximation to the transport master 
equation. For DT transport, the theory does not involve approximations and is an exact 
representation of the assumed model. In both cases, the model makes use of the Flory “ideality” 
postulate by depicting the intramolecular segmental distribution as a Gaussian with a second 
moment that scales linearly with chain size. The only adjustable parameter in the treatment is the 
form of the intermolecular segmental pair distribution function g(r). The model is found to be 
extremely sensitive to the behavior of g(r) . Comparisons to experimental data indicate that g(r) is 
primarily made up of hard core interactions between the chromophore sites. The DT calculations 
display a higher sensitivity to the form of g(r) than the corresponding DD calculations. For 
purposes of comparison, the analysis is applied to a DT system in which every polymer chain has 
chromophore tags. The sensitivity of the method for 100% tagged systems to g(r) is comparable to 
the analysis for systems with only some of the chains tagged. 

1. INTRODUCTION 

The elucidation of intermolecular structure in solid poly- 
mer glasses and polymer liquids is an unresolved topic that 
has stimulated numerous theoretical and experimental 
investigations.‘-I3 There are many aspects to this problem. 
For example, the degree of interpenetration among neighbor- 
ing polymer coils may be extensive, leading to random pack- 
ing of the polymer segments.t4 In this case, the intermolecu- 
lar segmental pair distribution function g(r) which 
represents the relative probability that segments belonging to 
two different polymer molecules are separated by the dis- 
tance r, is a constant (unity) for all separations. Alternatively, 
certain systems may exhibit behavior where regions near the 
centers of gravity of Gaussian coils exclude segments be- 
longing to other molecules. In such a situation, the pair dis- 
tribution function is small for values of r similar to the radius 
of gyration (R,), but asymptotically approaches unity as r 
increases. This deficit in radial distribution probability is re- 
ferred to in the literature as a correlation hole? 

Knowledge of intermolecular polymer structure can be 
further applied to problems that focus on polymer blend mor- 
phology. The structure of nanophase separated domains in 
polymeric mixtures is not well understood. A nanodomain is 
a region where the segments of as few as two or three mol- 
ecules of one component have aggregated. It has been shown 
that nanodomains exist at temperatures well below the criti- 
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cal point in solid blends which appear macroscopically 
homogeneous.‘5-‘7 The structure of these domains can di- 
rectly affect the behavior of the glass transition temperature, 
since processes responsible for Tg are associated with dis- 
tance scales comparable to domain size. Independent mea- 
surements of Tg and nanodomain structure can therefore es- 
tablish detaiIed characteristics such as the critical distance 
associated with the glass transition.” 

Kinetic studies of polymer phase transitions can benefit 
from a detailed analysis of intermolecular structure. Phase 
separation in miscible polymer blends can be induced by 
variations in temperature, pressure, or composition. The fi- 
nal, equilibrium state contains different macroscopic regions 
(phases) dominated by different components of the blend. 
During the initial and intermediate stages of the phase tran- 
sition, the structure, local concentration, and size of the nan- 
odomains present must evolve toward the final state. By fol- 
lowing the trajectory of the nanodomain structure, new 
insight can be gained concerning the mechanisms of polymer 
phase transitions. 

In recent years, electronic excitation transfer (EET) stud- 
ies of chromophores bound to polymers or micelle assem- 
blies has become a useful tool for the elucidation of macro- 
molecular structure.‘,4-8,16,17,1g-24 Resonant dipolar coupling 
between the singlet electronic states of interacting chro- 
mophores was first described as a mechanism for EET by 
Fijrster.25*26 The l/r6 dependence of the transition dipole- 
t?sition dipole interaction has led to the determination of 
mterchromophore distances which are directly reIated to the 
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segmental distribution of tagged macromolecules.6’16’23 This 
is similar to the role nuclear dipolar relaxation (which also 
follows a llr6 dependence) has played in the determination 
of interatomic distances using nuclear Overhauser enhance- 
ment (NOE) studies.” The distance effectively sampled by 
the Forster interaction depends on the oscillator strength of 
the acceptor chromophore and the spectral overlap between 
the excited singlet state wave function of the donor and the 
ground state wave function of the acceptor.28 This interaction 
is characterized by the Forster transfer distance R, . Depend- 
ing on the specific system, R. may range between distances 
from 6 to 60 A.28 

There are two important categories of experimentally ac- 
cessible EET systems-donor donor and donor trap. Donor- 
donor (DD) systems involve energy transport among chemi- 
cally identical chromophores. This means all the 
chromophores have similar energies such that the excitation 
can “hop” from site to site. Thus, the trajectory of an initial 
excitation may follow a complicated pathway among sites 
before a radiative process (fluorescence) can occur. Donor- 
trap (DT) systems exhibit direct energy transport between 
two chemically distinct species. The “donor” chromophore 
is selectively excited and transfer of the excitation to a 
“trap” is irreversible. In a DT system, there is no significant 
back transfer to the donor. 

Recently, we have developed analytical methods to de- 
scribe DD and DT EET among chromophores embedded in 
spatially complex surfaces.21 The technique has been applied 
to DD studies of concentrated micelle suspensions with chro- 
mophores restricted to lie at the micelle surfaces,20 and to 
pendant chromophores covalently bound to the backbones of 
polymer chains.’ For the micelle system, the accuracy of the 
method has been confirmed by comparison to the results of 
Monte Carlo simulations.rg In both experimental situations, 
EET occurs within a chromophore cluster (e.g., a micelle or 
a polymer coil) and between clusters. 

For DD systems, the method makes use of a truncated 
cumulant approximation which is based on the assumption 
that the cumulative effect of all transfer processes is well 
described by a superposition of pairwise interactions.2g-32 In 
this way, the multiple step processes which occur in clustered 
systems may be partitioned into fast events internal to a clus- 
ter and the slower transfer steps between interacting clusters. 
This renormalizes a many-body problem into a tractable two- 
body problem that can be formulated analytically. Since the 
interaction between clusters is treated in analogy to the in- 
teraction between two “effective chromophores”, the tech- 
nique is called the effective chromophore (EC) method. 

The EC method has been successfully applied to experi- 
mental DD studies of intermolecular structure in a 
single component polymer glass [atactic poly(methyl- 
methacrylate)]. ’ Measurements of EET among pendant chro- 
mophores (Zvinylnaphthalene) randomly tagged to the back- 
bones of polymer coils in low concentration [atactic 6.5% 
poly(methylmethacrylate-co-2-vinylnaphthalene)] were em- 
ployed to determine the proximity of segments belonging to 
other tagged coils. The measurements were performed as a 
function of tagged copolymer concentration in an untagged 
polymer host. The analysis of these experiments made use of 

a theory based on an assumed form for the center-to-center 
intermolecular radial pair distribution function, g,,(R,) . Al- 
though the analytical theory reproduced the experimental 
data with a high degree of accuracy, the sensitivity of the 
calculations to the center-to-center pair distribution was not 
optimal. In this work, the analysis has been modified to in- 
terpret the experimental observables in terms of the segment- 
to-segment intermolecular radial pair distribution g(r). The 
intersegmental g(r) has the physical meaning of the relative 
probability of finding two segments on different chains sepa- 
rated by the distance r, averaged over all segment positions, 
and averaged over all chain configurations.3 The interseg- 
mental distribution is a more suitable function to characterize 
interpenetration among chain segments. It is shown below 
that the experimental observables in both DD and DT sys- 
tems are extremely sensitive to the functional form of g(r) . 

The time-dependent motion of an excitation within an 
ensemble of interacting chromophores can be characterized 
by the Green’s function solution to the Pauli master equation 
Gs(t).33 GS(t) is the self-part of the Green’s function. It 
represents the probability that the initially excited chro- 
mophore is still excited at some later time. Both DD and DT 
systems are characterized by the behavior of GS(t). A DD 
system can involve singlet or triplet excitation transport, 
while a DT system can also employ electron transfer. For the 
case of DD transport, the derivation of an analytical expres- 
sion for G”(t) requires approximations due to the infinite 
number of possible excitation pathways. The accuracy of the 
expression depends on the validity of the approximations. In 
a DT system, however, the number of excitation pathways 
are equal to the number of traps and to the probability that a 
particular pathway occurs is unaffected by another. Conse- 
quently, for DT systems, an analytical expression for GS(t) 
represents an exact description of the excitation dynamics. 

The usefulness of GS(t) lies in its relationship to the 
observables obtained from time resolved fluorescence ex- 
periments. In the case of energy transfer among chemically 
identical chromophores (DD transport), GS( t) is contained in 
the time dependent fluorescence anisotropy which is given 
by the time correlation function34 

r(t>=t2/5)(PzCIu,(t)-~u,(0)1). (1.1) 
Here ,u,~ and ,uu, are the unit vectors corresponding to the 
transition dipoles for absorption of the excitation and emis- 
sion of the fluorescence, P2(x) is the second Legendre poly- 
nomial, and the angle brackets indicate an ensemble average. 
r(t) represents the decay of polarization of the fluorescence 

r(t) = 
ZllW -zl(t) 

qw +2zL(t> ’ 0.2) 

where Z$t) and IL(t) are, respectively, the time dependent 
polarized fluorescence decays parallel and perpendicular to 
the polarization of the excitation pulse. A polarized excita- 
tion of an ensemble of randomly oriented chromophores re- 
sults in a polarization-selective initial state. Only chro- 
mophores with the appropriate transition dipole directions 
can be initially excited. Transfer of the excitation to sur- 
rounding molecules, which are randomly oriented, and sub- 
sequent emission leads to depolarization of the observed 

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994 
Downloaded 31 Jul 2002 to 171.64.123.74. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



9158 Marcus, Fayer, and Curro: Structure in a polymer glass 

fluorescence. This results in fluorescence anisotropies domi- 
nated by the configurational average of the Green’s function 
(GS(t)), provided other depolarization processes (such as 
chromophore rotation) occur on a slower time scale 

tern involves only contributions from interchain transfer pro- 
cesses. Thus, the fluorescence observable is directly related 
to the interchain segmental distribution. 

r(t)K@(t)-(GS(t)) (DD). (1.3) 

Here, Q(t) represents the rotational contribution to the 
fluorescence anisotropy. 

For the case of DT transport, ( GS( t) > represents the non- 
radiative decay of excitation probability from the ensemble 
of excited donor chromophores due to excitation or electron 
transport to traps. In the direct trapping limit, (GS(t)) is 
proportional to the time dependent decay of the total fluores- 
cence of the excited donor chromophores: 

This paper is organized in the following manner: In Sec. 
II, we present the EC method which describes DT and DD 
excitation transport among tagged guest chains in an un- 
tagged (but otherwise identical) host. This formulation of 
(GS(t)) depends on the intersegmental radial pair distribu- 
tion function g(r). In Sec. III, the dependence of the trans- 
port observables on the functional form of g(r) is discussed. 
In addition to the clustered chromophore system described 
by the EC method, an alternative experiment in which every 
polymer molecule has chromophore tags is introduced. Sec- 
tion IV contains a discussion of the results. 

Zt,t(t)ocexp(-t/7F).(GS(t)) WV, (1.4) 

where 7F is the fluorescence lifetime of the donor molecule 
in the absence of direct trapping processes. 

The behavior of DD transport for interacting clusters of 
chromophores can be understood as a superposition of pro- 
cesses which include both the internal dynamics of a single 
cluster and the external dynamics among cluster pairs. The 
decay of ( GS( t)) depends on the relative efficiency of com- 
peting high frequency transfer processes (those which occur 
among chromophores in the same cluster) and lower fre- 
quency events (transfer between chromophores on .different 
clusters) which increase in frequency and amplitude as the 
average cluster separation decreases. The limitations in the 
sensitivity of r(t) to g(r) can be understood in terms of the 
relative contribution to the fluorescence anisotropy from both 
intra- and intercluster excitation transfer. The anisotropy of 
the system of interacting tagged polymers contains a contri- 
bution r&t) due to the intramolecular EET. Because DD 
transfer on the initially excited chain can be fast, a detectable 
change in the total time dependent anisotropy requires a sig- 
nificant component from the concentration dependent chain 
to chain transport. Therefore, a detailed examination of the 
interchain structure may be limited by intramolecular trans- 
fer processes that compete with the centrally important inter- 
molecular processes. 

II. ANALYTICAL THEORY OF DT AND DD TRANSFER 
IN GAUSSIAN POLYMER COILS 

An alternative method utilizing DT transfer provides an 
improvement in sensitivity needed to study g(r) in more 
detail. This is achieved by eliminating the contribution of the 
intrachain transfer from the experimental observable. The 
polymer coils are labeled with two different types of chro- 
mophores. The first type of chromophore is a donor, while 
the second type is a trap. The donor is chosen so that its 
absorption spectrum does not overlap significantly with the 
absorption spectrum of the trap. After selective excitation of 
a donor molecule, the excitation may transfer to a trap on 
another polymer coil, but cannot transfer back to the donor 
position on the original coil. The donor tagged copolymer 
has one donor chromophore randomly tagged along the 
length of the “donor chain,” while the trap tagged copoly- 
mer has many traps randomly distributed along the “trap 
chain.” Measurements of the time dependent donor fluores- 
cence then contain the necessary information to determine 
the transfer rates between an excited donor interacting with 
an ensemble of traps. The transfer dynamics of this DT sys- 

In this section, an analytical description of DT and DD 
transfer among chromophores randomly tagged to the back- 
bones of polymer coils in the amorphous bulk state is pre- 
sented. The description is based on a model where only some 
of the polymer coils have chromophore tags. Although this is 
a nonessential feature for structural studies of one- 
component systems, such a model is necessary for the devel- 
opment of meaningful descriptions of EET in binary phase 
separated polymeric blends, which is the subject of a current 
study.17 The calculations are based on the positions of the 
chromophore tags. These positions are assumed to represent 
a random sampling of the coil segments. The formulation is 
similar to one previously presented in Ref. 1, however, here 
the intermolecular polymer structure is properly described by 
the intercoil site-to-site radial pair distribution function g(r) . 
Additionally, general treatments of DT transfer have been 
presented elsewhere.67’g335 Therefore, only the essential ex- 
pressions for both DT and DD polymer systems are given 
here. The reader is referred to the original sources for more 
details. 

A. Microsystem calculations-one donor and N- 1 
traps distributed within two Gaussian surfaces 

Consider two identical polymer coils with radius of gy- 
ration R,, separated by the distance R,. One is designated 
the “donor coil,” while the other is the “trap coil.” The 
donor coil has a single donor chromophore, while the trap 
coil has N- 1 traps. On both coils, the chromophores are 
randomly oriented and distributed along the chain back- 
bones. The intercoil separation R, may be large, so that the 
segments of the two molecules do not come into contact, or 
small so that the segments interpenetrate extensively. We ex- 
amine the case where the single chromophore on the donor 
coil is excited and incoherent energy transfer to surrounding 
traps can occur by a dipole-dipole mechanism.25*36 

The general expression describing the decay of the donor 
excited state probability due to excitation transfer for a sys- 
tem of one donor interacting with N- 1 traps is35 
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r1 ‘2 

X u(r3)exp[-w(r13)t]dr3... 
I 

u(rN) 
‘3 I TN 

(GS(t,R,))=27r ( 2ri;R;j) “%,,, j [GYr, 3 4#“-’ 

r:sin Or dri dOtI 

Xexp[-o(r,,)t]dr,. (2-l) 

In Eq. (2.1), the donor is labeled by position 1 and the traps 
by positions 2-N. For dipolar interactions, the rate constant 
w(r,J is given by 

(2.2) 

where RFT is the critical transfer distance for direct trapping, 
rii is the absolute distance between the donor and the ith 
trap, and TV is the fluorescence lifetime of the donor in the 
absence of traps. The critical transfer distance RF is defined 
as the distance between an isolated donor-trap pair for 
which the excitation transfer probability is equal to the prob- 
ability of deactivation of the donor excited state by fluores- 
cence. Since all of the traps have the same spatial probability 
distribution used to describe the trap coil’s segments, Eq. 
(2.1) becomes 

I N-l 

X 4@2)exdY- 4rd~lgh2Mr2 , 

(2.3) 

where u&J and z&J are, respectively, the spatial distribu- 
tions of the donor and trap coil’s sites, and g(r& is the 
site-to-site radial pair distribution function. The significance 
of g(r,J in Eq. (2.3) is discussed below. 

To perform the integrals in Eqs. (2.3), we adopt a mul- 
tiframe coordinate system. The space containing the donor 
and trap distributions are spanned by the vectors r, and r2, 
respectively. The donor-trap separations are then given by a 
coordinate transformation21 that depends on the distance be- 
tween the coil centers of gravity, Thus, r, = Ari,, where 
ri2 spans the space containing the trap molecules in a newly 
defined coordinate system. The donor and trap distributions 
are modeled as Gaussian functions after the Gaussian chain 
model37 

dr,=r$in 13~ drl de1 dq5,, 

+2)=( &)ew( & 2) 

dr2=r&in e2 dr2 d& d42. 
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X 
I s r2e2 

exp(-w[~12(e~,e2,rl,r2)lt) 

r&in tY2 dr2 d e2, 

(2.5b) 

where 

1r;2(81,e2,r,,r2)12=rT+r~+2R,[rz cos &-rI cos O,] 

-2rlr2 c0s(e2-e1)+R,2 (2%) 

and o(ri2) is given by Eq. (2.2). Equations (2.5) express the 
excitation dynamics between two coils separated by the dis- 
tance R, . ( GS(t,R,)) contains the details of the chromophore 
distributions and it represents the configurational average of 
the transport dynamics due to the pairwise interaction be- 
tween two coils. This step reduces the calculation to the 
equivalent of transfer between two “effective chro- 
mophores.” The internal structure of the chromophore clus- 
ters is contained in the calculation of (GS(t,R,)). This de- 
scription of the coil transport dynamics, which contains only 
coil-to-coil transport interactions, is sufficient to model the 
copolymer concentration dependence of ( GS( t)). 

B. DT calculations for tagged copolymers in the 
thermodynamic limit 

Substitution of Eqs. (2.4) into Eq. (2.3) and further simplifi- 
cation by symmetry arguments results in 

An extension of Eqs. (2.5) to experimental observables 
must consider the effect of molecular interactions on both the 
intramolecular structure and the intermolecular site-to-site 
radial pair distribution function. A complete description of 
the bulk structure would include the complex interdependen- 
ties of the possible intra- and intermolecular conformations. 
This task has been addressed over the years by several 
workers. 2,3,g~10V3s-43 The problem is vastly simplified by mak- 
ing use of the well-established fact that individual coils in 
dense melts and bulk glasses are ideal.g7’0 The concept of a 6’ 
condition as a reasonable description of the solid bulk state 
has been repeatedly verified in the literature.43 In these situ- 
ations, the forces which lead to intramolecular excluded vol- 
ume are balanced by those forces arising from the interaction 
between molecules. The Flory postulate predicts that the seg- 
mental distribution of an ideal chain (0 condition) is Gauss- 
ian for distances beyond a few statistical segment lengths 
with a second moment that scales linearly with the chain 
size.14 Since the chains in this study are lightly tagged with 
probe constituents (less than one probe per statistical seg- 
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FIG. 1. A schematic representation of the effect of g(r) on a Gaussian 
distribution of segments in one dimension. The acceptor chromophores 
(traps in DT transport) are assumed to have the same spatial distribution as 
the polymer segments. Gaussian functions with centers of mass close to the 
hard core are distorted. As the Gaussian center of mass is displaced to 
distances far from the reference position, the functional form of the Gauss- 
ian is restored. 

ment length), the average interchromophore separation is 
large enough for the energy transport observable to reflect 
the Gaussian intramolecular chain structure. 

The possibility of a perturbative affect of the chro- 
mophore tags on the intrachain structure was the subject of a 
previous study.15 In that work, a tagged copolymer 
[poly(methylmethacrylate-co-2-vinylnaphthalene)] was pre- 
pared as a function of molecular weight and tagging fraction. 
It was shown that for lightly tagged chains, EET studies of 
the isolated tagged copolymers embedded in an untagged 
PMMA matrix resulted in measurements of the rrns radius of 
gyration that are in perfect agreement with light scattering 
measurements made on the same molecular weight polymers 
in 8 condition solvents. Thus, the EET measurements are a 
nonintrusive probe of intramolecular chain structure in the 
bulk material. A similar analysis was performed on isolated 
tagged PMMA chains embedded in untagged poly(vinylac- 
etate) (PVAc). In this case, the rms radius of gyration was 
found to be compressed relative to the values obtained from 
the corresponding measurements of the tagged polymers in 
bulk PMMA (-15% compression). This result too, was 
shown to be independent of the chromophore tagging frac- 
tion. Since the presence of chromophore substituents does 
not influence the intrachain structure, it is a reasonable infer- 
ence that interchain structure is not affected either. 

The pair distribution in Eq. (2.5) g(r,,) has the effect of 
modifying the trap coil’s distribution of segments as seen by 
chromophore 1 on the donor coil. For example, if the trap 
coil is modeled as an ideal Gaussian distribution of chain 
segments, this Gaussian becomes distorted for donor-trap 
separations where the function g( r12) deviates from unity. 
This approximation is illustrated for one dimension in Fig. 1. 
An exponential function with a 15 A hard cutoff is arbitrarily 
shown to represent g( r12). As the distance between the do- 
nor (chromophore 1) and the center of the trap distribution 
(chromophore 2) is decreased, the volume exclusion between 

sites 1 and 2 is reflected by a “perturbed” Gaussian function. 
In the limit of large distances, g(r12) approaches unity and 
the intramolecular structure of the trap coil approaches the 
ideal Gaussian state. 

The thermodynamic limit of (G”( t,R,)) can be achieved 
by averaging over the coil pair separation, R, in the limit of 
infinite trap coil number and infinite volume. The ratio of 
trap coils to volume is restricted to equal the solution con- 
centration. It is straightforward to obtain a copolymer con- 
centration dependent expression for (G’(t,R,)) which in- 
cludes an average intermolecular center-to-center radial pair 
distribution function g,,jR,) (Ref. 21) 

(GYf,p))=exp 

x gc.,.(R,)R~dRs 3 
I 

(2.6) 

where p is the copolymer solution concentration. 
g,,,JR,)dR, represents the probability that the center of 

mass of a polymer molecule lies within the radial distance R, 
and R,+dR, from the reference coil’s center of mass. For 
the purposes of this work, we assume that all intermolecular 
center-of-mass separations are equally probable such that 
g,.,,(R,) = 1 for all R, . This is a very good approximation 
for one-component systems. In binary blend systems, how- 
ever, the center-to-center pair distribution will be an impor- 
tant characterization of the nature of nanodomain structure. 

The form of the site-to-site g(r12) serves to characterize 
the intermolecular structure as a measure of the degree of 
interpenetration among neighboring chain segments. The 
bulk may be comprised of ideal coils with segments that 
interpenetrate extensively. In this case, the intermolecular ex- 
cluded volume only includes the “hard core” repulsions be- 
tween chain segments. The site-to-site pair distribution func- 
tion then has values remarkably close to unity for distances 
greater than the length characterizing the chain thickness. 
Alternatively, some melt or bulk systems may exhibit density 
fluctuations that occur on longer length scales which extend 
out to the radius of gyration. Recent x-ray scattering inves- 
tigations of polyethylene melts3 in combination with a trac- 
table theoretical model have measured radial pair distribution 
functions dominated by hard core segmental repulsion. The 
form of g( r12), in this case, was zero for distances less than 
3.9 A (associated with the cross sectional contact distance in 
polyethylene) followed by an extremely rapid approach to 
unity. Since theoretical predictions for more complicated sys- 
tems are difficult, the EET experiments proposed in this 
work combined with Eq. (2.6) may provide a useful means to 
probe the form of g( rlz) . 

Equation (2.6) describes the decay of excitation prob- 
ability in a concentrated tagged copolymer solution due 
solely to intercoil DT transfer events. Within the context of 
the adopted model, this is an exact solution to the DT prob- 
lem for a system of interacting polymer molecules. 
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C. DD EET among tagged Gaussian chains in an 
untagged polymer host 

The cumulant approximation for DD EET among chro- 
mophores distributed within interacting Gaussian surfaces 
was introduced by Marcus et al. w For the DD calculations, 
the donor and trap coils are chemically identical with each 
coil containing N- 1 chromophores. It is consistent with the 
cumulant approximation to factor the Green’s function into 
two independent contributions-an intra- and an interchain 
Part 

(GS(t,p))=(G~,(t))(G~~t,p)). (2.7) 

In Eq. @7), (G”,,(t)> d escribes transport “on” the coil con- 
taining the originally excited chromophore. This part of the 
energy transport is internal to the coil and can be calculated 
or measured independently from the interchain transport.’ 
(GS,A(t,p)) describes forward and back transfer from the 
originally excited coil to chromophores on neighboring coils. 
This PM of(GYt>p)) re p resents the interaction between coil 
pairs and is calculated as a configurational integral over pair- 
wise interactions in direct analogy to the DT formulation 
presented above. The most notable differences between the 
DD and DT formulations are the following: Eqs. (2Sa) and 
(2Sb) are, respectively, replaced with 

(2.8a) 

and 

312 

In GS(r,,Bl)=(N-1)~ 

X exp{-2~C~~2(el,e2,rl,r2>lt} 

r$ sin O2 dr, d 02. 

If chromophores are randomly placed on every mol- 
ecule, the distribution of tags is then a representation of the 
distribution of chain segments. In this case, the Gaussian 
approximation made in the EC method is not necessary and 
the transport observable is more closely related to the site- 
to-site pair correlation function. Fredrickson has given a 
derivation for DT EET among chromophores attached to the 
ends of polymer chains.6 In that work, the fluorescence ob- 
servable depends on the radial pair distribution function of 
chain ends. Here, a formulation for DT and DD transfer 
among chromophores randomly tagged to any part of the 
chain is given. For the DD case, the two particle cumulant 
approximation is employed.32 Unlike the end tagged experi- 
ment proposed by Fredrickson, the experimentally deter- 
mined decay of (GS(t)) in a randomly tagged system de- 
pends directly on the site-to-site pair correlation function of 
chain segments. As in the EC formulation above, the donor 
chains each contain a single donor chromophore, while the 
acceptor chains may have one or more acceptor chro- 
mophores randomly distributed along their lengths. In the 
case of DT transport, the number of donor chains is small 
compared to the number of trap chains, so that statistically 
every donor is surrounded by traps. The position of the donor 
molecule is translationally invariant and the following equa- 
tion can be derived from Eq. (2.3)? 

(2.8b) 

The definition of ri2(6$ ,13~,r~ ,r2) is defined as in Eqs. 
(2.5). The definition of o(r) is the same as in Eq. (2.2) 
except that RtT is replaced with RiD, the corresponding For- 
ster critical distance for DD transfer. (G&&~t,p)) is obtained 
from Eqs. (2.8) by the spatial average described by Eq. (2.6). 
This concentration dependent expression is then substituted 
into Eq. (2.7) to obtain the total Green’s function decay 
(GSW)). 

(c’n(t))=[ G/o’u( ;{I +enpjao(r)il}) 

N-l 

X r2g( r)dr 1 (DD) 

and 

An important distinction between the DD and DT formu- 
lations is that there is no intracoil transfer present in the trap 
system. This allows the overall decay of GS [Eq. (2.6)] to 
approach unity [instead of the intrachain function (GS,,( t)) 
as in Eq. (2.7)] as the coil concentration approaches zero. 

(G:,(t)) = exP[ - .4r)tl 

N-l 

X r2g( r)dr PT) 
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D. DT calculations for the special case of tags on 
every chain 

The EC formulations for (G”(t)) depend on chro- 
mophore distributions which are not identical to the distribu- 
tion of the polymer chain segments. This is due to the neces- 
sity of accounting for chromophore correlations between tags 
on the same chain by employing the Gaussian approximation 
for intramolecular chain structure. The transport observable 
for two chains, as expressed by Eq. (2.3), contains the site- 
to-site pair distribution through an average over the Gaussian 
structure of the acceptor chain (an integration over the space 
spanned by r2). This is followed by an average over the 
donor chain distribution (spanned by r-r). In addition to these 
averages, the observable measured in an experiment contains 
the additional spatial average in the thermodynamic limit 
[Eq. (2.6)]. Hence, (G”(t)) obtained from a fluorescence 
measurement of tagged guest chains in an untagged host is a 
complicated function of the site-to-site radial pair distribu- 
tion. 

(2.9a) 

(2.9b) 
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where the distribution of acceptors has been chosen as 
ut(r)=(4m2)lV, V=(4s-Rz)/3, R,=[(3N)l(4~p)]“~, 
p=N/V, and w(r) is given by Eq. (2.2). Note that p has the 
meaning of trap chromophore concentration. Equations (2.9) 
are taken in the limit of infinite acceptor number and volume 
such that the concentration p is held constant. Thus, in the 
thermodynamic limit, Eqs. (2.9) become 

(G&(Xt))=exp 

where X=1 for DT transport and h=2 for DD transport. As 
in the EC formulation, (G&(r)) represents interchain trans- 
fer events and its relation to the total decay of the Green’s 
function is given by Eq. (2.7). For the DT case, there is no 
intrachain transfer and ( GS( t)) = (Gz&t>). For the case of 
DD transfer, however, the intrachain transfer processes make 
a contribution to the overall decay of initial excitation prob- 
ability. 

periments. In principle, all of the information contained in 
the functional form of g(r) is transformed into the time or 
wave vector domains through the transformations given by 
Eqs. (2.11) and (2.13), respectively. The corresponding in- 
verse transformations can be used to recover g(r) from these 
measurements. In practice, however, this is difficult because 
noise in the data can lead to gross inaccuracies in g(r). Thus, 
the most important limitation to high resolution measure- 
ments of g(r) is determined by the experimental signal to 
noise ratio. Until recently, the signal to noise ratio associated 
with conventional time resolved fluorescence techniques has 
prevented the direct inversion of the observable to obtain 
g(r). The development of state of the art detection tech- 
niques, such as time correlated single photon counting, has 
made it possible to obtain data that is essentially free of 
noise. Therefore, it is now possible to obtain a model inde- 
pendent measurement of g(r) by direct inversion of the time 
resolved fluorescence observable. 

It has been shown by Ohmine et aZ.44 that g(r) can be 
extracted from fluorescence measurements which obey the 
form of Eq. (2.10) by a Laplace transformation 

IILTHE RELATIONSHIP BETWEEN ( GS( t)) AND THE 
SITE-TO-SITE PAIR CORRELATION FUNCTION 

1 , (2.11) 

where A=ePN, s=Xw(r), and g(s)=(l/X) 
[ (2 7~r=)/( 3 Rg)] rg g(r). This implies that for systems with 
tags on every chain, there is a one to one correspondence 
between the function ( GS( t)) and the site-to-site pair corre- 
lation function. 

It is useful to compare Eq. (2.10) to the solution for the 
case g(r) = 1 for all r. This is the well-known Forster result 
for direct trapping in random, isotropic DT systems and the 
cumulant result for random, isotropic DD systems32 

In the previous section, it was shown that ( GS( t)) may 
be a complicated function of the pair correlation function. As 
suggested by other workers,6*44 the most straightforward 
method of extracting structural information from experimen- 
tal data is to make a comparison with Eq. (2.6) after a pro- 
posed form for g(r) has been inserted into Eqs. (2.5). Since 
we are interested in examining the sensitivity of the calcula- 
tions to the functional form of g(r), we employ model test 
functions for this purpose. 

A. Model radial pair distribution functions for the 
site-to-site g(r) 

(GP,dt))=exp[ -c wR&m’i2pr( i) ($) “‘1, (2.12) 

where I’(i) = 1.7725. In the polymer system, the extent to 
which (GS(t)) deviates from Eq. (2.12) is a measure of the 
depth and shape of the correlation hole. 

Until recently, the conventional methods used to study 
the correlation hole effect in polymer melts and in the bulk 
have involved x-ray or neutron scattering measurements.45 In 
general, the experimental observable measured in a scaiter- 
a experiment is the structure factor S(kJ 
= iha, + pi(k).46 The relationship between the scattering 
observable and the pair correlation function is given by a 
Fourier transformation 

Recent investigations by Narten et aZ.47 and Honnell 
et aL3 of polyethylene melts suggest the dominant_ feature of 
g(r) in this system is the monomeric hard core exclusion 
which depends on the contact distance associated with the 
site-to-site interaction. However, under certain conditions, 
the correlation hole may occur on the distance scale of the 
radius of gyration. For simplicity, we choose to model these 
situations with the following distributions: 

i(k) = 
I 

exp[ - ik.r]h(r)dr, (2.13) 

where i,,(k) is the single chain structure factor, h(r) 
=g(r) - 1 is called the total correlation function and 
k= (4 r/X)sin( fY2) is the magnitude of the scattering wave 
vector. Again, there is a one to one correspondence between 
the scattering observable and the pair correlation function. A 
comparison between Eqs. (2.11) and (2.13) suggests an ap- 
parent analogy between the fluorescence and scattering ex- 

g(r)=H(r-c)=O, if r<cr=l, if r>(+, (3.1) 

g(r)=l-exp[-(r-a)/X]. (3.2) 
The Heaviside step function (3.1) contains a hard core ex- 
cluded volume effect which turns on at the contact diameter 
(T. A “softer” excluded volume that abruptly turns on at u 
and then continues to climb toward unity can be simulated 
using Eq. (3.2). The “depth” of the hole depends on the 
characteristic length X. A small value for h corresponds to a 
deep hole, since this means g(r) is primarily the hard core 
interaction, and’ interpenetration among chain segments is 
otherwise complete. Progressively larger values of X result in 
more shallow holes corresponding to the exclusion of seg- 
ments belonging to other chains. In this context, Eq. (3.2) is 
strictly a phenomenological function that will serve to quali- 
tatively model long range correlations. 
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A more physically significant form for the intermolecu- 
lar pair correlation function can be obtained from the Gauss- 
ian string approximation to the reference interaction site 
model (RISM) theory for homopolymer melts4’ The string 
model is based on linear chains of hard spheres characterized 
by intersphere separations given by the statistical segment 
length I and the sphere diameter (7. Implicit in the model is a 
large separation between local and global length scales such 
that the dimension of the chain (R,) is large in comparison 
to (T and 2. The “aspect ratio” r= Z/a is a measure of the 
chain stiffness with F>l corresponding to a stiff chain and 
l?<l corresponding to a flexible chain. For the Gaussian 
string, the analytical approximation to RISM for g(r) has a 
screened Coulomb or Yukawa form. 

g(r)=l- & Cexp(-r/~~)-exp(-rj~~)l, (3.3) 

where p,,, is the site density of the monomers and is related 
to the packing density o= [(7r~,(+~)/6]. The two correla- 
tion lengths in Eq. (3.3) represent different properties of the 
chains in the melt. & is called the “correlation hole” length 
scale associated with the size of the chain and is given by 
R,l~2. $, is a density dependent short range correlation due 
to collective density fluctuations. It depends on the segmen- 
tal density, the aspect ratio, and the radius of gyration 
through the transcendental equation 

Equations (3.3) and (3.4) for the Gaussian string model have 
been shown to agree quite well with numerical RISM calcu- 
lations on Gaussian chains having finite size hard core 
diameters.47 

In Figs. 2(a) and 2(b), plots of Eqs. (3.2) and (3.3) are 
shown as functions of X, &, and sp, respectively. Because 
experiments discussed below employ naphthalene as the 
chromophore, the hard core interaction distance was chosen 
to be consistent with the hard sphere naphthalene diameter 
obtained from crystalline naphthalene ((r-6 A). In Fig. 2(a), 
the distribution function (3.2) that approaches unity most 
rapidly has h=O.Ol A. This is essentially the Heaviside step 
function with (r=6 A. Subsequently, longer range correla- 
tions have X=1, 5, 10, and 15 A. In Fig. 2(b) Eq. (3.3) has 
been plotted for five different values of the aspect ratio r. 
For this calculation, the parameters characterizing the poly- 
mer system were chosen to be similar to the experimental 
system (naphthyl-tagged PMMA in untagged PMMA) inves- 
tigated in Ref. 1. The radius of gyration was fixed at 
R,=57.9 A, the hard core distance was fixed at 6.0 A, and 
the packing fraction was fixed at a value of 9=0.5 typical of 
liquids. The statistical segment length (and consequently, the 
number of statistical segments) were varied to change the 
aspect ratio. The curves shown in Fig. 2(b) are based on 
F=O.83, 0.91, 1.0, 1.1, and 1.2. The corresponding values 
for $, obtained from Eq. (3.4) and used in Eq. (3.3) are 
i&=4.6, 3.5, 2.5, 1.6, and 0.032 A, respectively. The value 

4 

g(r) 

b) 

g(r) 

0 25 50 75 

9163 

0.8 

0.6 

0 25 50 75 

rc‘4 

FIG. 2. A comparison of model intermolecular segmental pair distribution 
functions. (a) The model distribution is an exponential function given by Eq. 
(3.2) with (r=6 A. The values of A are 0.1, 1, 5, 10, and 15 A. (b) The 
distribution is a Yukawa function given by l?q. (3.3) with u=6 A. The value 
of CC=41 .& The values of & are (in order of shallower holes) 4.6,3.5,2.S, 
1.6, and 0.032 .&, respectively. 

used for .$, was 41 A. Increasing the aspect ratio has the 
effect of stiffening the chain, resulting in less intramolecular 
screening and causing the correlation hole to become shal- 
lower. 

IV. RESULTS AND blSCUSSlON 

The application of fluorescence EET measurements to- 
ward the elucidation of intermolecular structure in melts, the 
bulk, or polymer solutions depend on the resolving power of 
the technique. The function (GS(t)) is obtained from time 
dependent fluorescence measurements which may be per- 
formed for a variety of time scales (10-‘4-10-7 s). A typical 
method employs time correlated single photon counting.4g 
This approach has several advantages-a low excitation pulse 
power (-nJ), good time resolution (-50 ps). and excellent 
signal to noise. Since the method involves the accumulation 
of data over many excitation shot cycles, the signal to noise 
improves as a function of acquisition time. In most cases, 
data may be collected over a long enough period to optimize 
the signal to noise ratio. Thus, it is possible to obtain ex- 
tremely accurate data which are relatively free of noise. 
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TABLE I. Physical characteristics of the guest [poly(co-2-vinylnapthylene- 
methylmethacrylate)] and host I$oly(methylmethacrylate)] polymers. M, is 
the weight average molecular weight, MJM,, is the polydispirsity, %2-VN 
is the number percent naphthyl subunits, (N,,,,,/coil) is the average number 
of chromophores per molecule, N,, is the number of monomers per mol- 
ecule, N,, is the number of statistical segments per molecule, and (Ri) 1’2 is 
the rms radius of gyration based on the random coil model. 

Polymer M, M,IM, %2-VN (NCti,&oil) N,,, N,,, (Ri)“* 

Guest 51900 1.47 6.5 32 501 80.2 57.9 A 
Host 93 300 2.01 0 0 932 149 79.1 8, 

A. Experimental DD investigation-naphthyl tagged 
PMMA guest in an untagged PMMA host 

Previously, experiments were carried out on solid mix- 
tures of 6% tagged poly(methy1 methacrylate-co-2- 
vinylnaphthalene) in a poly(methy1 methacrylate) host.’ In 
this study, time resolved fluorescence depolarization mea- 
surements of the naphthyl probes were made as a function of 
copolymer concentration. The physical characteristics of the 
system are reported in Table I. Six different samples, each 
with a different concentration, were examined. 

In addition to the volume fraction of the guest polymer, 
it is useful to consider the reduced concentration defined by45 

PNA 3 c*=-- - TR 3 
iv,4 g* (4.1) 

This is approximately the average number of guest polymer 
chains which can be found in a spherical volume of radius 
R, . For reduced concentrations larger than one, there is sig- 
nificant overlap between the tagged polymers, while for 
more dilute concentrations, there is little or no overlap. 
These and other relevant parameters characterizing the 
samples are reported in Table II. 

Figure 3 shows a comparison between fluorescence an- 
isotropy data originally presented in Ref. 1 and theoretical 
calculations based on the EC method for DD transp~rt.~~ The 
data are constructed from the time dependent parallel and 
perpendicular intensities by, point by point addition accord- 
ing to Eq. (1.2). The calculations are obtained by numerical 
integration of Eqs. (2.8) and (2.6) for a particular concentra- 
tion. The resulting function (G&-(~t,p)) is related to the an- 
isotropy through 

TABLE II. Intercoil EET samples. Vol. % is the copolymer volume percent, 
r is the measured radiative fluorescence lifetime, width is the sample thick- 
ness, c* is the calculated reduced copolymer concentration [from Eq. 
(6.20)], (RsePr) is the mean separation between copolymer centers of mass, 
and O.D. is the measured optical density at the absorption maximum 
(X,,=320 m). 

Vol. % 7 bs) Width (pm) c* 

20.0 47.2 40 2.3 
10.0 48.6 80 1.1 
5.0 50.0 150 0.6 
2.5 50.5 300 0.3 

3/s 49.0 1600 0.04 
l/8 49.0 1600 0.01 

<Rsepr) 6) O.D. 

27 0.2 
35 0.2 
43. 0.19 
54 0.19 

105 0.15 
167 0.05 

0.16 

0.12 

r(t) 
0.08 

0 
0 20 40 60 80 100 

time(ns) 

FIG. 3. Time-dependent anisotropy decays and theoretical calculations for 
the P(2VN-MMA)/PMMA DD systems characterized by Tables I and II. For 
these calculations, Ro= 12.3 8, and the segmental radial pair distribution 
function g(r)= 1 for all r. The lowest copolymer concentration 
(vol. %=0.125%) decays the least and represents intramolecular energy 
transfer. Subsequently decreasing decays contain contributions from inter- 
molecular energy transfer for copolymer concentrations 2.5%, 5%, lo%, 
and 20%. 

r(t.~)=r,ntt)(G~ff(t,~,>. (4.2) 

Here, i,,(t) represents the experimentally determined fluo- 
rescence anisotropy due to depolarization processes that oc- 
cur on isolated, noninteracting polymer coils. It contains the 
intracoil EET as well as contributions to the anisotropy from 
chromophore rotation. Since we are only interested in inter- 
coil EET, for simplicity the measured anisotropy of the iso- 
lated coil was fit to a triexponential function 

r,,(t)=0.0968 exp[-(t/1.67 ns)] 

+0.0469 exp[-(t/25.7 ns)] 

f0.043 exp[-(t/457 ns)]. (4.3) 

Equation (4.3) provides a smooth curve for use in Eq. (4.2). 
The isolated coil data were obtained from the most dilute 
samples (p=O.375% and 0.125%) listed in Table II. The 
anisotropies obtained from both of these low-concentration 
samples were identical, indicating that the dilute, intracoil 
EET limit had been achieved. 

The fluorescence lifetimes of all the samples were deter- 
mined from the total fluorescence Itot(t) = Zll( t) + 21, (t). 
These decays were monoexponential with radiative lifetimes 
listed in Table II. The independence of 7 on concentration 
and the monoexponential form of Zt,J t) indicate the absence 
of concentration dependent processes such as excimer trap- 
ping or radiative reabsorption. 

For the calculations presented in Fig. 3, the intermolecu- 
lar site-to-site pair distribution function g(r) = 1 for, all r, 
corresponding to the absence of a correlation hole. The ori- 
entationally dependent Fijrster transfer distance R, 
= 12.320.6 A.16 The intracoil decay (p=O.375%) is the 
slowest. The calculated line through these data is Eq. (4.3). 
The curves that lie below represent intercoil EET for concen- 
trations p=2.5%, 5%, lo%, and 20%. As the coil concentra- 
tion is increased, the rate of EET also increases. This shows 
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FIG. 4. Comparisons of experimental time-dependent anisotropy decay for 
the 20% sample with theoretical calculations based on hard shell g(r) given 
by Eq. (3.1). In (a) Ro= 12.3 A, while in (b), R, = 12.8 A. In both figures, 
the decays correspond to c=(a) 12; (b) 10; (c) 8; (d) 6; (e) 4; (f) 2; and 
64 0 A. 

that at these copolymer concentrations, intercoil EET is ef- 
fectively competing with intracoil EET. The slight disagree- 
ment for the highest concentrations at very short time is due 
to a trace fluorescent impurity in the host PMMA. The 
fluorescence from this impurity occurs only at very short 
time and is detectable for the lowest concentration samples 
(3/8% and 118%). This leads to a small inaccuracy of Eq. 
(4.3) at very short time which is amplified by Eq. (4.2). 
Despite this difficulty, the theoretical calculations with no 
adjustable parameters are in quantitative agreement with the 
data. The theory, based on a random distribution of ideal 
polymer coils, correctly predicts both the amplitude and the 
functional form of the anisotropy decays. 

Although Eq. (4.2) fits the data exceptionally well, it is 
necessary to analyze the sensitivity of these calculations to 
the possible form of g(r). Clearly, the assumption g(r) = 1 
for all r is unrealistic for distances smaller than the hard core 
contact distance associated with the naphthyl substituents. 
Figures 4(a) and 4(b) show a comparison of the 20% data 
with calculated anisotropies based on the hard shell cutoffs 
given by Eq. (3.1). In Fig. 4(a), the Fijrster distance 
Ro= 12.3 8, while in Fig. 4(b), it has been set equal to 12.8 
A, which is within the error bar associated with R. . In both 
figures, the values of (T are 0, 2, 5, 6, 8, 10, and 12 A. The 
fastest calculated decays correspond to the smallest contact 
distances. Increasing the magnitude of cr tends to slow the 

theoretical decays because the coil segments are prevented 
from interpenetrating to this extent. In Fig. 4(a) (which uses 
the smaller of the two values for Ro), the calculations for 
a=0 and 2 A are almost indistinguishable and appear to fit 
the data best at times longer than 10 ns, although at shorter 
times, the calculation with a=5 A follows the data more 
closely. For (+=6, 8, 10, and 12 A, the agreement is poor, 
indicating a range of contact values that are clearly inconsis- 
tent. In Fig. 4(b), the calculations for cr=O and 2 k fall 
below the data, most noticeably during the first 50 ns. The 
calculation for a=5 A, however, is consistent with the data. 
Subsequently larger values for (T decay much slower than the 
data. The functional form of the theoretical decays appear to 
match the, data more closely when the larger value for R. 
(12.8 A) is used. 

In the previous experimental study, the physical signifi- 
cance of the contact parameter cr was interpreted as a mea- 
sure of the dross sectional dimension of the polymer chain. 
To estimate the chain cross section, we constructed a mo- 
lecular model consisting of three methylmethacrylate sub- 
units. According to this model, an approximate value of 
(T= 10 A was determined. In light of the results presented in 
Figs. 4(a) and 4(b), however, this value appears too large to 
be in agreement with the data. It is possible that a more 
accurate interpretation of g(r) in this experiment would in- 
volve a sidechain site-to-site pair distribution function. In 
this case, it is reasonable to associate the value of (+ with the 
dimension of the naphthyl chromophore substituent (-6 A). 
The comparisons made in Figs. 4(a) and 4(b) serve to illus- 
trated the sensitivity of the DD calculations to the hard core 
cutoff. Further studies could improve the determination of 
R. , making statements about the value of u even more quan- 
titative. 

Figure 5 shows comparisons of experimental data and 
the DD calculations for p=20% based on the model radial 
distributions given by Eqs. (3.2). The value of R. used in 
these calculations is 12.3 A. In Fig. 5(a) the fastest decay 
corresponds to the radial distribution given by Eq. (3.1) with 
a=6 A. Sbbsequently slower decays correspond to Eq. (3.2) 
with increasing values of X= 1,5, 10, and 15 A. The smallest 
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FIG. 5. Comparisons of theoretical time-dependent anisotropy decays and 
experimental data for the 20% sample based on the model distribution de- 
scribed by Eq. (3.2). The decays correspond to the exponential function 
(3.2) with a=6 A and X=(a) 15; (b) 10; (c) 5; (d) 1; and (e) 0.1 A. 
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length h=l A is only slightly distinguishable from the hard 
shell distribution. Larger values of X, however, are obviously 
very different from the hard shell, and can be easily distin- 
guished from data. These comparisons strongly suggest that 
the form of g(r) in this system resembles the most narrow 
hole distributions shown in Fig. 2(a). Similar to the findings 
of Honnell et al., the correlation hole must consist primarily 
of a hard core contact interaction between the chromophore 
substituents, in this case, s6 A. 

B. DT calculations for tagged Gaussian chains in an 
untagged host 

For the DD calculations presented above, the limitations 
in the sensitivity of r(t) to g(r) can be understood in terms 
of the relative contribution to the fluorescence anisotropy 
from both intra- and interchain energy transfers. According 
to Eq. (4.2), the anisotropy of the system of interacting 
tagged polymers contains a multiplicative factor r&t) due 
to the intrachain EET. Since r&t) may be small for all t, a 
detectable change in r(t) may require a relatively significant 
change in the factor ( G&(x~, p)) describing the concentration 
dependent interchain transport. Therefore, a detailed exami- 
nation of the interchain structure is limited by intrachain 
transfer processes that compete with the interchain processes 
we are interested in. This problem, however, is eliminated 
when considering the equivalent DT situation. 

Figures 6-9 show plots of DT calculations for two types 
of systems described above. In one case, only some of the 
trap chains have chromophore tags, and in the other case, all 
chains (except the donor chain) are tagged. In both cases, the 
experimental observable is the time dependence of the total 
fluorescence intensity which is related to (GS(t)) through 
Eq. (1.4). For all the DT calculations presented below, the 
value used for RF’=12.3 A and that used for the fluores- 
cence lifetime rF= 5 0 ns. 

Figures 6(a) and 6(b) show comparisons of calculated 
decays of ( GS(t)) and the normalized total donor fluores- 
cence Z(t)ll, using the hard core cutoffs given by Eq. (3.1). 
In these calculations, p=5%. The values of w are the same as 
those used in Figs. 4(a) and 4(b). The DT calculations dis- 
play similar behavior to the DD calculations discussed 
above. The most important difference is that the resolution 
appears to be much better for the DT case, due to the absence 
of intrachain transport processes. 

If tags are placed on every polymer molecule as de- 
scribed in Sec. II D, the decay of ( GS( t)) is described by Eq. 
(3.5). Figures 7(a) and 7(b) show hard core calculations for 
(GYt)) and I(WZo, respectively. In these calculations, the 
concentration of naphthyl substituents is chosen such that 
p= 10” cmU3. For a system of tagged molecules with 
M,=51 900~ and the density of PMMA (1.2 g cmV3), this 
corresponds to seven traps per chain with a smkll number of 
chains having a single donor. The values of (+ are the same as 
those used in Figs. 4 and 6. A comparison between Figs. 6 
and 7 shows that the effect of tagging every chain results in 
a different functional form in the decay of ( GS( t)) then when 
only some of the chains are tagged (EC method). The EC 
calculations characteristically have a rapidly decaying com- 
ponent at short time (<20 ns) followed by a slower compo- 

nent at longer times. In contrast, the system with tags on 
every chain demonstrates a more uniform decay of (GS(t)) 
over two fluorescence lifetimes. Another important distinc- 
tion is the difference in sensitivity. While the hard core de- 
cays with cr=O and 2 A are distinguishable from one another 
for the EC calculations, they are not when every chain has 
tags. For hard core interactions alone, the EC method ap- 
pears to be more sensitive to the size of (+ than Eq. (2.10). 

A comparison between the sensitivity of the EC method 
and the 100% tagged chain system to the pair correlation 
function given by Eq. (3.2) is given in Figs. S(a) and S(b), 
respectively. The values used for v and X are the same as 
those used in Fig. 5. Again, the pattern established in the DD 
calculations is repeated. Similar to the hard core comparisons 
above, the EC method is slightly more sensitive to the form 
of the long range correlations determined by h. 

It is clear from the above comparisons that the DT EC 
method is more sensitive to the form of g(r) than the 100% 
tagged DT method which in turn is more sensitive than the 
DD EC method. DD calculations for tags on every chain will 
show comparable sensitivity to g(r) as the DT 100% tagged 
system, although it will be slightly worse due to the intrac- 
hain contribution to the total decay. This intrachain part, 
however, will be relatively unimportant since there are only a 
few chromophores per polymer chain (-7). 
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FIG. 6. Comparisons of DT calculations for the 5% tagged polymer system 
described in Table I. The calculations are based on the hard core model 
distribution functions given by Eq. (3.1). In (a) the decays of (GS(t)) are 
shown. Values of cr are (a) 0; (b) 2; (c) 4; (d) 6; (e) 8; (f) 10 A. In (b) the 
decay of the normalized total fluorescence is shown (based on ~~=50 ns). 
The values of u are (a) 0 and 2; (b) 4; (c) 6; (d) 8; (e) 10; and (f) 12 A. 
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FIG. 7. Comparisons of DT calculations for a 100% tagged polymer system 
described in Sec. IV C. The calculations are based on the hard core model 
distribution functions given by Eq. (3.1). In (a), the decays of (GS(t)) are 
shown. Values of o are (a) 0 and 2; (b) 4; (c) 6; (d) 8; (e) 10; (f) 12 A. In (b), 
the decays of the normalized total fluorescence is shown (based on r,= 50 
ns). The values of o are labeled as in Fig. 8(a). 

DT calculations for the 100% tagged system based on 
pair correlation functions obtained from the Gaussian string 
model [Fig. 2(b)] are shown in Fig. 9. Since the sensitivity of 
this system is comparable to the EC approach, Fig. 9 serves 
to illustrate the effect of changing the chain’s aspect ratio. 
The values used for the aspect ratio are the same as those 
used in Fig. 2(b). The effect of stiffening the chain leads to a 
more shallow correlation hole and a subsequently slower de- 
cay of ( GS(t)). These differences can be distinguished in an 
experiment. 

V. CONCLUDING REMARKS 

The analysis presented above is the first detailed exami- 
nation of the dependence of excitation transport on the inter- 
molecular pair distribution function g(r) in a controlled sys- 
tem of concentrated tagged polymer coils. The results 
indicate that calculations of fluorescence observables, based 
on the configurational models depicted here, are extremely 
sensitive to the form of g(r). 

Comparisons between theoretical predictions and experi- 
mental data taken from Ref. 1 suggest that the form of g(r) 
consists primarily of a hard core contact interaction between 
the naphthyl chromophore substituents (-6 A). For this sys- 
tem, atactic 6% poly(methy1 methacrylate-co-2-vinyl- 
naphthalene) in atactic poly(methy1 methacrylate), the chro- 
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FIG. 8. Comparisons of DT calculations for (a) the 5% tagged polymer 
system (EC method) and (b) the 100% tagged DT system. The calculations 
are based on the exponential model distribution described by Eq. (3.2). In 
both figures, the decays correspond to the values o=6 8, and h=(a) 0.1; (b) 
1; (c) 5; (d) 10; (e) 15 A. 

mophore probes are intrinsic side group components of the 
polymer molecules. Therefore, a more accurate interpretation 
of g(r) will involve a model that describes the side group 
pair distribution function. More detailed information can be 
obtained from this data provided the value of the Fijrster 
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FIG. 9. DT calculations for a 100% tagged polymer system described in 
Sec. II D. The calculations are based on the pair correlation functions de- 
scribed by Eq. (3.3). The values used for cr, &, and $ are the same as those 
used in Fig. 2(b). The differences in the decays illustrate the sensitivity of 
the method to an intramolecular property such as chain stiffness. 

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994 
Downloaded 31 Jul 2002 to 171.64.123.74. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



9168 Marcus, Fayer, and Curro: Structure in a polymer glass 

transfer distance is determined to a higher degree of preci- 
sion. 

mental instrumentation grant (No. CHE 88-21737) which 
provided computer equipment used in the calculations. 

An important consequence of the above comparison be- 
tween theory and data is that current models for chain- 
molecule fluids are not sufficient to describe real systems. 
Most theories involve simplified models such as the freely 
jointed “pearl necklace” hard chain, in which molecules are 
composed of tangentially bonded hard spheres.51 Typically, 
the sphere diameter determines the nearest neighbor contact 
distance, since this is the closest approach between two seg- 
ments. In some approaches, the sphere diameter is equal to 
the statistical segment length For the experimental PMMA 
system, 1,,=16 A. This is clearly inconsistent with the near- 
est neighbor distance (-5-6 A) determined in the analysis. 
A more realistic model will involve internal structure which 
can account for the locations of the chromophore substitu- 
ents. Such calculations are possible using multisite polymer 
RISM theory,, where the intramolecular structure is ac- 
counted for in a realistic manner. 
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