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A simple tractable theory of vibrational relaxation of polyatomic molecules in polyatomic solvents, 
which is also applicable to solid solutions, is presented. The theory takes as its starting point Fermi’s 
golden rule, avoids additional assumptions such as the rotating wave or random phase 
approximations, and treats both the internal degrees of freedom of the relaxing molecule and the 
bath degrees of freedom in a fully quantum mechanical manner. The results yield intuitively 
understandable expressions for the relaxation rates. The treatment of the annihilation as well as the 
creation of all participating bosons allows the theory to go beyond earlier analyses which treated 
only cascade processes. New predicted features include temperature effects and asymmetry effects 
in the frequency dependence. The theory is constructed in a manner which facilitates the use of 
recent developments in the analysis of instantaneous normal modes of liquids. 0 1994 American 
Institute of Physics. 

I. INTRODUCTION 

Vibrational relaxation of polyatomic molecules in poly- 
atomic solutions, liquid or solid, is of central importance to 
many problems in chemistry, physics, and biology. It is in- 
volved in thermal chemistry, shock-induced chemistry, elec- 
tron transfer, photochemistry, photophysical processes such 
as excimer formation, and photobiological processes such as 
vision and photosynthesis.‘-9 The advent of picosecond tun- 
able mid-infrared laser sources” is making it possible to 
study vibrational dynamics in a wide variety of systems. A 
large number of different molecules have been studied in 
liquids at room temperature. Vibrational relaxation of an ini- 
tially excited mode*0-16 and the flow of vibrational energy 
into other modes’7-22 have been observed. Recently, the tem- 
perature dependencies of several polyatomic solute/solvent 
systems have been reported23324 and the first vibrational pho- 
ton echoes in liquids and glasses24P25 and the first Ran-tan 
echoes in liquids26-28 have been described. These experi- 
ments are beginning to reveal the great complexity of the 
dynamics associated with the mechanical degrees of freedom 
of polyatomic molecules in media that are themselves com- 
posed of polyatomic molecules. 

Such experimental results have raised basic theoretical 
questions. Many years ago, the observation of an extremely 
long lifetime of vibrational excitation in liquid nitrogen29’30 
had already begun to raise fundamental questions regarding 
the precise manner in which relaxation in such a diatomic 
system occurs into the low frequency continuum bath modes. 
Recent observations show that in polyatomic systems at 
fixed temperature, the vibrational lifetime of a solute mode 
changes when the solvent is changed.‘1-‘3331’32 Furthermore, 
temperature-dependent measurements in these systems have 
displayed in one instance an “inverted” temperature 
dependence.23 The vibrational lifetime actually becomes 
longer as the temperature is increased. Clearly, there is need 
for a theoretical description that can address issues such as 

the solvent dependence of relaxation and the surprising in- 
verted temperature dependence. 

The phenomenon under investigation is, thus, the relax- 
ation of an initially excited internal vibrational mode of a 
polyatomic molecule embedded in a polyatomic medium. 
The system could be a solute in a liquid or glassy solvent, or 
a guest molecule in a mixed molecular crystal. For conve- 
nience, we will use the terms solute and solvent in all cases. 
A high frequency vibration, lying well above the continuum 
of low frequency mechanical states of the system, is excited 
by a fast infrared pulse tuned to the O-+1 vibrational transi- 
tion, or by Raman or stimulated Raman excitation. The ini- 
tial excitation decays through pathways that involve the ex- 
citation of one or more vibrations of the solute or solvent, 
and one or more excitations of the low frequency continuum 
of the medium. In a mixed crystal sample, the low frequency 
continuum is composed of the well-defined acoustic and op- 
tical phonons of the crystal. In a liquid, the continuum is 
composed of the instantaneous normal modes33-37 whose 
quanta will also be referred to as phonons in this paper. The 
requirement of energy conservation generally involves one 
or more of these phonons in the relaxation process since the 
probability that some combination of the discrete molecular 
vibrations of the solute and the solvent have a combined 
energy exactly equal to that of the originally excited mode is 
rather small. Anharmonic coupling among modes allows en- 
ergy to flow from the initially excited mode into a combina- 
tion of other modes. In the case of a cubic anharmonicity, 
relaxation occurs through the deexcitation of the initially ex- 
cited vibration, the excitation of a solute or solvent vibration, 
and the excitation of a phonon. A quartic anharmonicity 
would correspond to a pathway involving, e.g., the deexcita- 
tion of the initial excitation along with the excitation of two 
vibrations, solute or solvent, and a phonon. The theory we 
develop in this paper provides relaxation rate expressions for 
arbitrary order processes through an easily understood ex- 
pression and discusses in greater detail the cubic and quartic 
processes. 

10618 J. Chem. Phys. 101 (12), 15 December 1994 0021-9606/94/l 01(12)/l 0618/12/$6.00 0 1994 American Institute of Physics 

Downloaded 31 Jul 2002 to 171.64.123.74. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Important theoretical advances have been made in this 
field by a large number of workers.38-54 However, despite 
the excellent foundation laid down by previous theoretical 
work, recent experimental work, particularly in polyatomic 
systems, requires new theoretical advances to describe vibra- 
tional relaxation. The goal of the present paper is to begin the 
construction of a comprehensive theory in this direction by 
focusing attention on some of the following specific ques- 
tions: 

(i) How can the semiclassical theory of Oxtoby and of 
Adelman et a1.52V54 be modified so that the bath is not clas- 
sical, but is composed of quantum mechanical oscillations? 

(ii) Does such modification give rise to a novel tempera- 
ture dependence of the vibrational relaxation rate, particu- 
larly at low temperatures? 

(iii) How is the relaxation rate changed if the rotating 
wave approximation (RWA), made by Nitzan and 
collaborators42-45 in their fully quantum mechanical treat- 
ment, is not used? Are any important features of the relax- 
ation phenomenon lost through the use of the RWA or does 
the convenience and ease of calculation it appears to provide 
make up for whatever physics it misses? 

(iv) The diagrammatic expansion techniques of Califano 
et al.s0*53 produce expressions for the vibrational relaxation 
rates that appear to have little relation to intuitively expected 
results. Thus, if the relaxation of an oscillator of frequency !J 
occurs through the interaction of a discrete vibration of fre- 
quency w and a phonon band producing a continuous density 
of states p, the relaxation rate according to Califano et al. is 
of the form50*53 

K,=(l +nw+nn-o)pn-w+(no-nR+,)Pn+,, (1.1) 

where the n’s are Bose occupation factors, and where con- 
stant terms and frequency-dependent coupling strengths have 
been absorbed into the density of states p. What is the rela- 
tion of expressions such as 1 + n,+ nrrew to the product 
( 1 + n,)( 1 + nn - ,) which might be expected on intuitive 
grounds2” and which would approximate the expression in 
Q. (1.1) only f or t emperatures low enough to neglect the 
product nwnR _ o? And what is the significance of a difSer- 
ence n, - no + o of occupation numbers in Eq. (1. I)? 

(v) Is there anything in these theories which has the po- 
tential to produce the inverted temperature dependence ob- 
served in the experiments of Tokmakoff et aZ.?23 

Vibrational relaxation cannot be said to be understood 
unless we know how to treat quantum mechanical baths, how 
to apply existing theory deveioped largely in the context of 
simple diatomic molecules to complex polyatomic mol- 
ecules, how to go beyond technical approximations such as 
the rotating wave assumption, and fully understand their 
limitations and range of validity, and how to resolve the ap- 
parent contradiction between vibrational relaxation rates pro- 
vided by different authors for the same systems.23P50,53 The 
theory we present in this paper attempts to fill in these gaps 
and to provide answers to the questions posed above, making 
contact with, and employing features of, recent theoretical 
calculations of the density of instantaneous normal modes of 
liquids.““-37 

This paper is laid out as follows: The basic theoretical 
development is presented in Sec. II following the level dia- 
gram relevant to typical experimental systems currently un- 
der investigation. With a Fermi golden rule as a point of 
departure, a correlation function expression for the relaxation 
rate is obtained in a form that makes particularly clear the 
separate contributions to the vibrational relaxation rate aris- 
ing from the various vibrational manifolds participating in 
the process. A general expression is obtained which can be 
applied to polyatomic molecules in quantum reservoirs. In 
Sec. III, three specific cases are treated including those per- 
tinent to cubic and quartic processes, and novel conse- 
quences of the theory are discussed. In Sec. IV, a comparison 
of our results is made with other work appearing in the lit- 
erature. The relation of our theory to classical treatments is 
presented along with a clarification of the range of validity of 
assumptions such as the rotating wave approximation made 
in earlier treatments. A discussion forms Sec. V. 

II. GENERAL FORMULA FOR VIBRATIONAL 
RELAXATION RATE 

As in most earlier calculations available in the literature, 
the present paper will focus on the calculation of the rate 
constant for leaving an initially populated vibrational state. 
The detailed kinetics of relaxation will be described in a 
subsequent publication. Of the various interactions respon- 
sible for the coupling between the initial vibrational state, 
other vibrational states of the solute or solvent, and the in- 
stantaneous normal modes of a liquid or the phonons of a 
crystal, the simplest nontrivial one is the so-called cubic 
term, in which the vibrational quantum of the initial state is 
annihilated, and a vibrational quantum of the solvent or sol- 
ute is created along with a phonon. For such a cubic process 
to be responsible for the relaxation of a high frequency vi- 
brational mode, i.e., one lying well above the continuum of 
low frequency modes, another vibrational mode of the sys- 
tem must have an energy close enough to the initial energy 
for conservation of energy to be made possible by a phonon 
within the limited range of the phonon bandwidth. The band- 
width is typically 100 to 200 cm-’ for molecular liquids33-36 
and crystals.50P55 Therefore, in many systems, quartic or 
higher order processes come into play. Figure 1 displays a 
prototypical set of energy levels and one particular pathway 
that could arise for vibrational relaxation induced by a quar- 
tic interaction. The initial vibration is annihilated (down ar- 
row) and two vibrational modes (solute or solvent) and one 
phonon are created (up arrows). An example is provided by 
the system tungsten hexacarbonyl [W(CO),] in chloroform 
(CHCl,) solution, in which the asymmetric CO stretching 
mode at 1976 cm-’ is likely to relax through a quartic (or 
higher order) interaction.23 In W(CO), , the highest frequency 
mode below the 1976 cm-’ mode is at 580 cm-‘. CHCl, has 
a mode at 1250 cm- ‘. Therefore, relaxation cannot occur via 
a cubic interaction and requires a quartic process involving a 
combination of those two modes and a phonon of about 150 

-I. In a related system of experimental interesL2” viz. 
T&JO) 6 in carbon tetrachloride (Ccl,) solution, the fact that 
the highest frequency Ccl, solvent mode is 780 cm-’ pre- 
vents even a quartic process from causing relaxation, and at 
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A, B: Discrete 
Vibrations 

Solute Solvent 

FIG. 1. A level diagram showing a typical configuration of interacting vi- 
brations in a system of interest. The relaxing vibration of the solute has 
frequency R which equals the sum of the frequency w, of a discrete vibra- 
tion of the solute, the frequency o, of a discrete vibration of the solvent, and 
the frequency tic of an appropriate phonon from the continuum provided by 
the solvent. Values characteristic of the system tungsten hexacarbonyl 
[W(CO),] in chloroform (CHCl,) solution are a=1976 cm-’ (this is the 
asymmetric CO stretching mode), o, =580 cm-’ [this is the second-highest 
W(CO), mode] and 0,=1250 cm-’ (this is a CHCl, mode). The band 
phonon wc required for energy conservation is about 150 cm-‘. Shown here 
is the usual cascade process. As explained in detail in the paper, this cascade 
process is only one of seven possible processes for this quartic configura- 
tion. 

least a fifth order process is required. With the intention of 
describing all processes of this kind, we derive below expres- 
sions for the relaxation rate for arbitrary order and then dis- 
cuss in greater detail third and fourth order processes as spe- 
cial cases. 

We begin our analysis with the assumptions that the 
system-bath interaction is weak enough and the experimen- 
tal probe times are long enough to justify making the stan- 
dard weak-coupling and Markoffian approximations. The 
point of departure is then the Fermi golden rule for the re- 
laxation rate K, of the level a, 

,L d,r’J 

I eepEr\ x ZR ’ !- I (2.1) 

where c and (T’ denote the initial and final states of the 
relaxing system, r and r’ denote those of the reservoir, i.e., 
of the rest of the degrees of freedom, V,, is the system- 
reservoir interaction, Z, is the reservoir partition function, 
and E, is an eigenvalue of HOR the reservoir part of the 
unperturbed Hamiltonian Ho. The complete Hamiltonian H 
of the system-reservoir complex is 

H= Ho+ VSR= Has+ H,,+ V,, (2.2) 

the eigenvalues of Ho being E,,,=E,+E,, the sum of the 
respective eigenvalues of Ho, and of H,,. 

The standard technique of expressing the delta function 
in Eq. (2.1) in terms of the infinite time integral 
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K,=(fi2Z,)-’ I -+:F (a,rle-BHORe-if(HOR+HOS)Ih 

X VsRe-it(H~R’HO~)‘sVs~~,,r)dt. (2.4) 

We stress that Eq. (2.4) contains a thermal sum over the 
reservoir states r, but describes a single relaxing level c of 
the system. While trivial, this is a definite difference between 
Eq. (2.4) and expressions usually written down in the 
literature.42*43’52 Equation (2.4) is applicable to the usual ex- 
perimental situation23 in which the relaxing state (T is pre- 
pared initially via light excitation so as to have full, rather 
than thermal, population. 

While the interaction V,, can generally be of arbitrary 
form, it is most frequently of the product form V,,= V,V, . 
For instance, if the reservoir and the relaxing system are both 
represented by oscillators, the natural expansion of the inter- 
action potential about the potential minimum in a Taylor 
series,5’ followed by a retention of the lowest nonvanishing 
terms, would lead to the above product form with V, and V, 
both proportional to oscillator displacements. For the rest of 
the calculations, we will assume the product form. It is 
straightforward to generalize the results to the related case 
when the interaction is a sum of products. In the completely 
general case, one may always return to Eq. (2.4) as a point of 
departure. 

Under the assumption of the product form in Eq. (2.4), 
one obtains 

K,=(h2)-’ I ::(V,ct,v,) 5 1(~lV~l~‘)12ei~“~u~jdt. 

(2.5) 
The vibrational relaxation rate is essentially the time integral 
of the product of the reservoir correlation function and a 
similar quantity characteristic of the relaxing system. We 
stress again that the results we derive are special to initial 
occupation of a single system state as is appropriate to the 
experimental situation we analyze. If the initial system state 
were thermal, Eq. (2.5) would be replaced simply by the time 
integral of the product of a system correlation function and a 
reservoir correlation function. This product form stems from 
two features: the assumed product form of the interaction 
and the use of the weak-coupling result with the consequent 
appearance of only the unperturbed Hamiltonian Ho in the 
exponential expressions describing the time dependence of 
the correlation function. In Eq. (2.5) and below, the notation 
used is 

(A(t)B)z(ZR)-* Tr e-PHoReirHoR’hAe-itHoR~hB. 
CW 

If a single energy difference fin (single final state energy of 
the states a’) is involved in the system transition, Eq. (2.5) 
reduces to 

K,= U, 
I 

+“ei’“~( V,( t) VR)dt, 
--m (2.7) 

(2.3) 

leads to 

where U, is given by (~2)-1~~rI(~VsI~‘)12. 
Equation (2.7) is simple, practical, and a direct conse- 

quence of the weak-coupling and product-form assumptions. 
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It describes the vibrational relaxation rate as being propor- 
tional to the square of the system interaction matrix element 
and to the Fourier component of the reservoir interaction 
correlation function evaluated at a frequency equal to the 
system transition frequency. 

The calculation of the correlation function (V,(t) VR) 
requires the explicit knowledge of the interaction V, . A Tay- 
lor series expansion as in Eq. (3) of Velsko and Oxtoby” 
gives 

Qa+; c a2vR 
a y JQ,JQ, {Q=o} 

QaQ, 
. 

f... 
7  w3) 

where the Q’s are normal mode or vibrational coordinates. It 
is thus of importance to evaluate Eq. (2.7) for cases in which 
the interaction consists of the product of the displacement 
operators of several oscillators. Of use in this evaluation is 
an easily derivable explicit expression for the correlation 
function of the displacement operator xj of a harmonic oscil- 
lator of frequency 0,) 

[( 1 +n~j)e-irwi+n,jeirwj]. (2.9) 

Here M, is the mass of the particle forming the harmonic 
oscillator, the boson occupation number n E is given by 

n,=(ehpE- 1)-l, p= llkT, (2.10) 

k is the Boltzmann constant, and T is the temperature. The 
derivation of Eq. (2.9) is straightforward and is therefore not 
detailed here. If the reservoir interaction is itself the product 
of N separate factors each proportional to one oscillator dis- 
placement, one obtains 

N 

In most systems, a sum of some set of discrete vibrational 
energies does not equal the energy difference between the 
final and initial states. However, in any realistic situation, at 
least one oscillator provides a continuum density of states, 
making energy conservation possible. In a solid, such a con- 
tinuous energy spectrum corresponds to a phonon band, and 
in a liquid, to what has been termed instantaneous normal 
modes.33-37 Because the role the latter play is analogous to 
that of phonon modes in a crystal, we will use for their 
description the term liquid phonons, or simply phonons. We 
denote the continuous density of states of such an oscillator 
(band) by pE, where E is the argument of the density of 
states function. We take our system to consist of one such 
oscillator band and N other discrete oscillators as in Eq. 
(2.11) and earlier in the above analysis. In some systems, 
energy conservation may require two or more phonons. 
While the present treatment can be extended to include such 
cases, we restrict the development here to the case of a single 
phonon. We rewrite Eq. (2.14) for the N+l oscillators, take 
the continuous band terms out of the product, carry out the 
summation of the delta functions over the continuous spec- 
trum, and finally obtain 

K,=C Cg 
5 

(V~(t)V~)=cOnstlJ (Xj(t)Xj) 

j=1 

=C CteeitRf 
[ I 

fi (nwj+ej) , 
I j=l 

(2.11) 

where C( is product of coupling constants involving factors 
such as A/2Mjw, and the appropriate x derivatives of VR, 
the quantity Ej takes the values 1 or 0, where 5 denotes a 
particular distribution of these values over the N oscillators 
j, and where for any such distribution, the weighted alge- 
braic sum of the frequencies of the oscillator is written as 

fly=-; (-l)‘fwj. 
j=l 

x[(l+nn-ns)Pn-n~+(nnS-n)PnS-nl. (2.15) 

Since no states exist at negative values of the argument of 
the density of states function, only one of the two terms in 
the second square bracket in Eq. (2.15) is nonvanishing for 
each distribution 5. As stated above, each of the distributions 
corresponds to a separate process involving the creation or 
annihilation of quanta of the various interacting vibrations. If 
the discrete vibration frequency sum sZ$ is less than the re- 
laxation frequency R, relaxation requires the creation of the 
band phonon, and the first of the two terms in the square 
bracket in Eq. (2.15) is nonzero. If, on the other hand, the 
discrete vibration frequency sum 0: is larger than 0, relax- 
ation requires the annihilation of the band phonon, the first of 
the two terms in the square bracket in Eq. (2.15) vanishes, 
and the second term is nonzero. The fact that the Bose dis- 
tribution function satisfies 

(2.12) n-E=-(l+IZE) (2.16) 

allows us to rewrite Eq. (2.15) in three other convenient 
forms. The first is Each of the distributions 5 corresponds to a particular pro- 

cess involving the annihilation (creation) of those vibrational 
quanta j for which ej has the value 1 (9). The precise mean- 
ing of the 5 summation is 
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The vibrational relaxation rate as given by Eq. (2.7) is now 
immediately written down by carrying out the time integra- 
tion 

(2.14) 

(2.13) 
c,=O,l s*=O.l cj=o,l rpf=O,l 

f&=x C< 
5 i 1 ii h,+ $1 

j=l 

x(l+n~-nS)(Pn-nf-Pn~-n), 
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(0 (ii) (iii) 

oA+wC wA-w, *A+(% 

(a) cubic 

0) (ii) (iii) (iv) w 04 (vii) [ 

q+ OS+ y toA- aa+ WC - loA+ “$ UC c$+ m,- UC WA- oB- UC - aA+ s- ‘oc - c+- we+ WC / 

(b) quartic 
_..................-.-- - -.-.--- -.- ..-.. -_-___ ..-......-....-...-..-.-.-.-.............-..-..........! 

FIG. 2. Individual transitions involved in the (a) cubic and (b) quartic processes. The number of configurations (transitions) 5 involved is three for the cubic 
process, and seven for the quartic process as shown. The band phonon is represented by a wiggly line and has frequency 0,. The discrete vibration bosons 
are represented by solid lines and have frequencies W, and 0s. The relaxing vibration has frequency R. in (a), the first of the three transitions shown, viz. (i) 
is the usual cascade process treated in earlier theories. The transition shown as (ii) is present if w,,>CI. The transition (iii) is significant only if the band cutoff 
does not prevent the existence of continuous phonons at the large frequency oc required. In (b) (i) represents again the usual cascade process, as in Fig. 1, 
and as treated in earlier theories. Transitions (ii) and (iii) are present if f2 is smaller than one of the participating frequencies W, or ws As in (ii) of (a), 
transitions (iv)-(vi) of (b) represent processes in which the continuous spectrum phonon is annihilated rather than created. Transition (vii) is analogous to (iii) 
of (a) in that it is significant only if the band cutoff does not prevent the existence of continuous phonons at the large frequency oc required. 

in which, once again, only one of the two density of state 
terms is nonvanishing for each distribution. The second form 
is 

K,= c cg 
5 

(2.18) 

in which the density of states is measured at the absolute 
value of the difference C!--s2$, and the sign of the latter 
determines the value of CY~, 

‘y*=l, for R>fln,’ and cr*=O, for C!<fiR,5. 
(2.19) 

The third equivalent form uses the definition of the symbol 
m related to the occupation number n through 

mE=njEI=(e ‘PE-l)-‘, if E<O, 

mE=nE+ 1=( 1 -e-*@)-l, if E>O, (2.20) 

and is 

K,= $I C*[ i (nwj+ ~~~]-~-0~~p-d~~ (2.21) 

Equation (2.15), along with its equivalent forms (2.17), 
(2.18), and (2.21), constitutes one of the central results of 
this paper. Each of those equations expresses the vibrational 
relaxation rate K, for leaving an initially occupied level CT of 
the relaxing molecule in terms of configurational sums of 
products of factors involving the Bose occupation numbers 
of individual oscillators participating in the relaxation pro- 
cess and the density of states of the continuous spectrum. 
The configurations consist of all possible realizations of the 
creation and annihilation of the participating bosons. It will 
be seen below that this feature of our theory, viz. the consid- 

eration of all possible configurations, is one of the elements 
which sets it apart from earlier treatments in which only 
cascades were considered. 

III. APPLICATION OF THEORY TO CUBIC AND 
QUARTIC PROCESSES 

We consider three particular examples corresponding to 
the case of the reservoir containing no discrete vibration (N 
=O), one discrete vibration (N=l), i.e., the cubic process, 
and two discrete vibrations (N=2), i.e., the quartic process, 
In each case, we consider a system with a phonon band pro- 
viding the continuous density of states. The first of these 
cases, although not very realistic, is mentioned for illustra- 
tive reasons. It corresponds to the reservoir consisting of no 
discrete vibration, but only a phonon band with a continuous 
density of states. The reservoir interaction operator is simply 
the oscillator displacement operator. The correlation function 
of the interaction is given essentially by the right-hand side 
of Eq. (2.9). In our general formula (2.18), there are no o’s 
and ti$=O. Since no states exist at negative values of the 
argument of the density of states function, we have 

K= C,( 1 + no)Po . (3.1) 

In Eq. (3.1) and the rest of the paper, we drop the label CT on 
K. Only creation (not annihilation) of the continuous band 
phonons is possible and the relaxation rate is proportional to 
the density of states at the value of the relaxing frequency. 

Realistic examples are provided by the cubic and the 
quartic processes depicted in Fig. 2. We derive the relaxation 
rate for those cases below and discuss novel predictions of 
our calculations for these processes. 
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TABLE I. Cubic relaxation process parameters for Eq. (2.18) 

Process in 
c 0% Qf Comments Fig. 2(a) 

1 1 +6J i-DC.0 (9 
1 0 +W Cl<W (ii) 
0 1 --o (iii) 

A. The cubic process 

The reservoir in this case consists of one discrete vibra- 
tion of frequency w in addition to the phonon band. Every 
elemental transition involves three ladder operators. The cor- 
relation function of the interaction is given by the product of 
two expressions such as that in the right-hand side of Eq. 
(2.9). The application of our general formula (2.18) proceeds 
as follows: There are two configurations 5 corresponding to 
the value of 1 and 0 assigned to &, respectively. The corre- 
sponding values of @ are fw and -0, respectively. Table I 
provides the necessary quantities for input into our general 
formula. Equation (2.18) then yields 

K=nJ 1 +nn+,)m+,Ca+, 

+( 1 +n,)(a+nln-wl)Pln-olCln-ol t (3.2) 

where the quantity a is given by the relative values of the 
relaxing frequency fl and the discrete vibration frequency o, 

Ly= 1, if Ck>w and CY=O, if R<w. (3.3) 

The first term in Eq. (3.2) describes a usually improbable 
process in which the discrete vibrational quantum is annihi- 
lated rather than created, and the continuous phonon is cre- 
ated, its improbability stemming from the fact that the den- 
sity of states required is at a rather high value of the 
argument-the phonon band often has a cutoff at frequency 
values far exceeded by the relaxing frequency. This process 
is depicted as (iii) in Fig. 2(a). The second term in Eq. (3.2) 
involves the creation of the discrete vibration quantum. If the 
frequency of the latter is smaller than the frequency of the 
relaxing vibration, the continuous band phonon is also cre- 
ated and the multiplying factor is 1 +nn-w. We have then the 
cascade process depicted as (i) in Fig. 2(a). If, on the other 
hand, the frequency of the discrete vibration quantum ex- 
ceeds the frequency of the relaxing vibration, the continuous 
band phonon is annihilated and the multiplying factor is 
n,-n. The situation is shown in (ii) of Fig. 2(a). In both (i) 
and (ii), the density of states factor has an argument which is 
the absolute value of the difference between the two frequen- 
cies. 

B. The quartlc process 

We now consider the reservoir to consist of two discrete 
vibrations of frequencies WA and w, in addition to the pho- 
non band. These discrete vibrations could be of oscillators 
belonging either to the solute alone, to the solvent alone, or 
one to the solute and the other to the solvent. The application 
of our general formula (2.21) now proceeds as follows: 

TABLE II. Quartic relaxation process parameters for Eq. (2.18). 

Process in 
4 4 9 fi,z Comments Fig. 2(b) 

1 1 1 @A+wB n>ti,+wB (8 
1 0 1 wA-“B a>w,-wB (ii) 
0 1 1 wt3- *A fl>0,-W, (iii) 
1 1 0 wA+OB fl<O,+OB (iv) 
1 0 0 @A-*B n<6J,--wB (4 
0 1 0 oB-wA f14WB-OA 64 
0 0 1 -(WA+ WE) (vii) 

There are four configurations .$ corresponding to the various 
processes as shown in Table II. Our general formula then 
yields 

K=[noAn,B(l+nn+WA+OB)f~+WA+W 8 

+hJ 1 +n,B)mn-(o,-oA41n-(w8-~A)t 

(3.4a) 

fv= PVC,. (3.4b) 

In Eq. (3.4), we have used the general form (2.21) which 
contains the symbol m defined in Eq. (2.20). As in Eq. (3.2), 
the first term in Eq. (3.4) describes an usually improbable 
process involving annihilation rather than creation of quanta 
of both discrete vibrations [see (vii) in Fig. 2(b)]. The second 
term involves creation of the quanta of both discrete oscilla- 
tors. In this case, if the sum of wA and w, is less than a, the 
normal cascade situation occurs. This is depicted as (i) in 
Fig. 2(b) and is also the process shown in the illustrative Fig. 
1. If, on the other hand, the sum of WA and wB exceeds a, the 
second term in Eq. (3.4) describes the process shown in (iv) 
of Fig. 2(b). It involves the annihilation of the continuous 
spectrum phonon (represented by a wiggly line). The third 
and fourth terms describe the annihilation of a vibrational 
quantum of one of the two oscillators (A or B) and the cre- 
ation of a quantum of the other. The corresponding processes 
are, respectively, depicted in Fig. 2(b) as (ii) and (iii) in 
which the continuous band phonon is created, and (v) and 
(vi) in which it is annihilated. The reason there is no term 
involving the annihilation of the quanta of all the vibrations 
including the continuous spectrum phonon is simply that the 
initial state of our experiment consists of the relaxing oscil- 
lator already in an excited state. Generally, the number of 
processes 5 is given by 2N+’ - 1. For the quartic process 
there are, thus, seven processes, while for the cubic process, 
there are three. 

In all cases, the value of the factor f,, which is the 
product of the density of states and the coupling constant, 
allows or forbids the processes and determines the strength 
of the allowed processes. While the Bose occupations are a 
strong source of the temperature dependence of relaxation, 
the factor f, could, in principle, have a nontrivial tempera- 
ture dependence particularly in liquids as shown elsewhere.23 
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PIG. 3. Asymmetry effects arising in the frequency dependence of the re- 
laxation rate as predicted by our theory. Plotted is the relaxation rate K 
arising in a cubic process as a function of the difference between the fre- 
quency w of a discrete vibrational oscillator participating in the relaxation 
and the frequency Cl of the relaxing vibration. The density of states of the 
continuous band phonon, shown in the insets, has the form given in Eq. (3.5) 
in (a) and the form in Eq. (3.6) in (b). The coupling constant has been 
assumed independent of frequency for simplicity. The asymmetry in the 
relaxation rate is an explicit quantum effect. 

C. Novel predictions 

There are a number of interesting consequences of ex- 
pressions such as Eqs. (3.2) and (3.4), which we have de- 
rived above. To illustrate one of them, we consider the cubic 
process and investigate the dependence of the relaxation rate 
on the frequency o of the vibration involved in the relaxation 
pathway. An easily understood effect is that the relaxation 
rate rises in magnitude as w nears the value R of the relaxing 
vibration. The quantum mechanics of the difference between 
emission and absorption of bosons (the possibility of spon- 
taneous emission) results in a more interesting effect. If 0 is 
smaller than R [see process (i) in Fig. 2(a)], relaxation in- 
volves the creation of the band phonon. Spontaneous emis- 
sion is possible and the relaxation rate is therefore nonvan- 
ishing at absolute zero. If, however, w is larger than R, only 
annihilation of the band phonon is possible [see process (ii) 
in Fig. 2(a)], there is no spontaneous process and the relax- 
ation rate vanishes at absolute zero. 

This asymmetry effect is displayed in Fig. 3, where we 
plot the relaxation rate K for a cubic process as a function of 
the difference w-0. We have assumed two reasonable func- 
tional forms for the density of states and have ignored the 
frequency dependence of the coupling constant term C. The 
forms for the density of states are in qualitative accord with 
calculations of the instantaneous normal modes of liquids. In 

Fig. 3(a), we take a Gaussian density of states biased to make 
it vanish at zero frequency 

po=const w exp[ - ((rhzg2]. (3.5) 

We have taken %=20 cm-’ and Am=60 cm-‘. The inset in 
Fig. 3(a) shows the density of states function. The asymme- 
try effect as well as the resonance effect on the vibrational 
relaxation rate are quite obvious. In Fig. 3(b), we take a form 
for the density of states that has been used previously57 and 
represents theoretical calculations35 

(3.6) 

We have taken B = 50 cm-’ and C = 100 cm-‘. Both forms 
have their areas normalized to unity. The inset in Fig. 3(b) 
shows this form. The asymmetry and resonance effects are 
again clear. The maximum of the relaxation rate does not 
occur at the resonance position o=s1 because of the values 
of the density of states factor. In Fig. 3(a), we see an addi- 
tional interesting feature near resonance. The three curves in 
Figs. 3(a) and 3(b) correspond to three different tempera- 
tures. The lowest trace in each panel is for T=lO K, the 
middle trace is for T= 100 K, and the top trace is for T= 300 
K. At the lowest temperature, essentially the entire curve in 
each panel is in the negative frequency range. This corre- 
sponds to ~<a, i.e., spontaneous emission of a phonon. At 
10 K, only the low frequency part of the continuum of states 
will be populated. Relaxation of the initially populated vibra- 
tion by absorption of a phonon (o>R) can only occur for 
L+O. As the temperature is increased, the occupation num- 
bers of phonons throughout the continuum of states becomes 
significant. For ~<a, stimulated emission enhances the 
spontaneous emission. For o>R, phonon absorption be- 
comes increasingly likely. At sufficiently high temperature, 
stimulated emission overwhelms spontaneous emission and 
the relaxation rate of the initially excited vibration by pro- 
cesses with o<fi and w>fi approach each other (under the 
assumption of equal coupling constants). 

The corresponding temperature dependence of the rate is 
displayed in Fig. 4. The density of states used corresponds to 
Fig. 3(b), i.e., to Eq. (3.6). Four different values of the dif- 
ference 0-a are taken (a) -40; (b) f40; (c) -100; and (d) 
+ 100 cm-’ . The coupling constant C is taken to be the same 
for the four cases and to be temperature independent. For 
cases 4(a) and 4(c), spontaneous emission of the continuous 
band phonon is involved and the relaxing rate is therefore 
nonvanishing at T=O K. This prediction of our theory is 
beyond the reach of classical theories. For cases 4(b) and 
4(d), the band phonon is annihilated and the relaxation rate 
vanishes at absolute zero. Cases 4(a) and 4(b) are near reso- 
nance, while Figs. 4(c) and 4(d) are far from resonance. The 
magnitudes of the rate are appropriately larger for the former 
two. We see that the classically appropriate linear depen- 
dence on T is obtained as the temperature is increased. 

The combined dependence of the vibrational relaxation 
rate on frequency and temperature is displayed in Fig. 5. The 
density of states form chosen is as given by Eq. (3.5) and 
thus corresponds to Fig. 3(a). The asymmetry effects dis- 
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FIG. 4. The temperature dependence of the relaxation rate for the process 
represented in Fig. 3(b) for four different values of the difference w-n (a) 
-40; (b) +40: (c) - 100; (d) + 100 cm -I. For cases (a) and (c), spontaneous 
emission of the continuous band phonon is involved and the relaxation rate 
does not vanish at T=O K. For cases (b) and (d), the band phonon is anni- 
hilated and the relaxation rate vanishes at T=O K. Cases (a) and (b) are near 
resonance, while (c) and (d) are far from resonance. 

played in these plots are a direct consequence of quantum 
mechanics and would be absent in theories such as those in 
Refs. 52 and 54 which treat the bath classically. 

IV. THE RELATION TO OTHER TREATMENTS 

It is not our purpose in this section to carry out a com- 
parative review of the entire literature on vibrational relax- 
ation theory. Rather, we will touch upon only a few interest- 
ing questions and return to a comparative study of various 
treatments of vibrational relaxation including the present one 
in a future publication. Here we will address three specific 
issues: (a) the relation of our expressions with those obtained 
by Califano et al.50*53 which appear to be quite different at 
the outset; (b) the differences brought about by the inclusion 
of the quantum mechanical nature of the reservoir in our 
treatment vis a vis the classical treatment of other authors 
such as Oxtoby and Adelman et aE.;52*54 and (c) the role of 

FIG. 5. A  three-dimensional representation of the relaxation rate K  as a 
function of the frequency difference o-n and the temperature T corre- 
sponding to the cubic process described in Fig. 3 and in Eq. (3.3) of the text. 
The density of states function is assumed to be quasi-Gaussian as in 
Fig. 3(a). 

J. Chem. Phys., Vol. 101 

the rotating wave approximation and the random phase ap- 
proximation in the analysis of Nitzan and collaborators.42-45 

A. Relation of our results to those of Califano et al. 

Through the use of diagrammatic expansion techniques, 
Califano et aZ.50*53 have obtained results that look consider- 
ably different from those obtained in our treatment. It is of 
importance to know what features of the theoretical deriva- 
tion, if any, are responsible for the seeming discrepancy in 
the expressions. We restrict the comparison to the cubic pro- 
cess and write the form of Eq. (3.2) for the specific case 
when the relaxing frequency is larger than the discrete vibra- 
tional frequency participating in the relaxation process. The 
result that emerges from our present treatment is then 

+(l+n,)(l+nn-o)Pn-wC~-~. (4.1) 

The corresponding result of Califano et a1.5o*53 can be written 
as 

K=(nw -~n+JPn+w~+f(~ +&l+wko)Pn-w~- 9 
(4.2) 

where the D’s are proportionality constants. While written in 
a form which facilitates comparison to Eq. (4.1), Eq. (4.2) is 
essentially identical to Eq. (16) of Ref. 53. Expressions simi- 
lar to Eq. (4.2) have also been written down by Dlott and 
Fayer,’ Chesnoy,” and by Nitzan et a1.43 The seeming dis- 
parity of Eqs. (4.1) and (4.2) presents a problem of recon- 
ciliation. The respective second terms appear at the outset to 
be equal to each other only under low temperature conditions 
which allow the neglect of the product of Bose factors, and 
the first terms seem to have little in common. Given that 
intuitive reasoning of the kind given in Ref. 23 seems not to 
yield expressions of the kind presented in Eq. (4.2), this 
comparison becomes important to resolve. 

In order to understand the remarkably simple relation 
that exists between our result (4.1) and the Califano result 
(4.2), it is enough to write out the factor l+n,+~~n-~ ex- 
plicitly in terms of the Bose distribution function and show 
that it is related to the product ( 1 + n ,,,) ( 1 + rzn - ,) appearing 
in Eq. (4.1) through 

(l+n,+nn-,)=(1-e +@)( 1 +n,)( 1 +nn-&J. 
(4.3) 

When one also notices that the same proportionality constant 
relates the other two factors appearing in Eqs. (4.1) and (4.2), 
viz, n,(l +n~+,> ad n,-~+~, 

(nw-nn+o)=(l -e-“pn)nw(l +nn+,), (4.4) 

it is clear that the result of Califano et al.50,53 and that ob- 
tained by us in the present paper, are completely equivalent 
to each other. The proportionality constants D, of Califano 
et al. are given in terms of our C’s through 

D-=Cflt,(nn+ 1). (4.5) 

Deeper insight into this relation is provided by investi- 
gating the calculational methods employed. Our method is 
based on an evaluation of the Fourier transform of an expres- 
sion such as (V,(t) VR) in Eq. (2.7). There exists a general 
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sion processes from the relaxation pathway at absolute zero, 
their quantitatively incorrect description at temperatures low 
with respect to hw,lk and kw,lk (and also with respect to 
tiw,lk, although this restriction is less stringent), and the 
complete loss of the asymmetry effects in the frequency de- 
pendence depicted in Figs. 3-5 are among the casualties of 
the classical approximation. The classical treatments52,54 be- 
come completely acceptable if used to address only observa- 
tions at high enough temperatures. 
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relation between the Fourier transform of an equilibrium cor- 
relation function of two operators A(t) and B and that of 
either their commutators or their anticommutators. This rela- 
tion has been known for a long time since the time of Kubo59 
and has been republished many times. The basic result is 

I 
+mei’n(A(t)B)dt=en@n +mei’“(BA(t))dt. (4.6) --m I -cc 

It is obtained by considering a complex time (or inverse 
temperature) in the definition (2.6), making general physical 
assumptions which allow one to make an analytic continua- 
tion of the correlation function in the complex plane, specifi- 
cally to replace t by t - ihp in the left-hand side of Eq. (4.6), 
and performing cyclic permutations within the trace to obtain 
the right-hand side. Equation (4.6) allows one to relate the 
Fourier transform of (A(t)B) to that of the correlation func- 
tion of the commutator as well as the anticommutator of the 
corresponding operators. Thus, Eq. (4.6) leads directly to 

I 
-Ie”b”(A(t)B)dt=( 1 -e-nan)-1 

C. The relation to RWA and RPA treatment of Nitzan 
et al. 

I +reif”l(A(t)B)dt=(l+e-‘pn)-l 
--m 

X 
I 

+mei’“({A(t),B})dt. (4.8) --II 

The use of Eq. (4.7) allows one to write our primary relation 
(2.7) in the form of a commutator correlation function 

yG-= U,(nn+ 1) I 

+?a 
e”“$[VR(t),VR])dt. (4.9) --m 

An inspection of the multiplicative factor in Eq. (4.9) makes 
clear the source of relation (4.5) between Eqs. (4.1) and 
(4.2). Results such as those of Califano et al. are obtained 
from the commutator correlation function, the differences 
such as n,- nn+u being representative of the operator dif- 
ference in a commutator. 

There are few existing quantum mechanical treatments 
of vibrational relaxation. Notable among them is that of Nit- 
zan and Silbey43 and Nitzan and Jortner.42 These authors 
have given a thorough treatment of several issues. One of the 
differences between their treatment and ours is their use, in 
all cases, of the rotating wave approximation (RWA) and, in 
some cases, of the random phase approximation (RPA) to 
calculate the evolution. The random phase approximation as 
employed in Ref. 42 consists of the replacement of certain 
operators by their thermal averages. While an oversimplifi- 
cation, it gives results which differ little from those obtained 
via other methods such as cumulant expansions43 when the 
expansion is truncated in the usual manner. The RPA is use- 
ful when a particular calculational procedure, the Heisenberg 
equation method, is employed because it introduces substan- 
tial simplifications into the evolution. However, as our treat- 
ment shows, it is not necessary to make the RPA. This is not 
meant to say that the approximations represented by the RPA 
are avoided in our treatment. They are instead incorporated 
in the single assumption of the validity of the Fermi golden 
rule rate. While the latter is by no means an exact conse- 
quence of the dynamics, the nature and extent of the assump- 
tions involved is familiar. The fact that we do not have to 
make further approximations after the assumption of the va- 
lidity of the Fermi golden rule is, therefore, a definite asset of 
our development. 

B. The relation to classical bath treatments such as 
those of Oxtoby 

Oxtoby,52 Adelman et uZ.,~~ and others have treated vi- 
brational relaxation in the limit in which the reservoir may 
be approximated as being classical. The relationship of the 
theory of the present paper to such analyses is straightfor- 
ward. Equation (4.8) derived above can be used to relate the 
correlation function of the bath operators to the correlation 
function of the anticommutators of the bath operators. The 
classical limit52,54 replaces the anticommutator correlation by 
a classical correlation. The domain of validity of this replace- 
ment is thus the domain of validity of the treatments of Refs. 
52 and 54. It is particularly clear that all processes involving 
spontaneous emission which we have described in equations 
such as Eq. (2.15) and in Fig. 2 are beyond the reach of the 
classical treatments. In particular, the disappearance of emis- 

The rotating wave approximation (RWA) is the other 
prominent ingredient of the treatment of Refs. 42-45. The 
basic idea, which consists of ignoring a large number of 
terms in the interaction Hamiltonian on the basis of near- 
resonance arguments, is a product of quantum optics 
investigations.60*61 We will focus attention on a quartic pro- 
cess involving the deexcitation of the relaxing oscillator 
whose quantum is destroyed by a. The actual interaction 
Hamiltonianisa(b, + bi)(bB + bi)(bc + b$) alongwithits 
adjoint. This form is a direct consequence of expressing the 
interaction in terms of the Taylor expansion (2.8). The RWA 
of Refs. 42 and 43 employs the approximate replacement 

a(b,+b:)(bs+b~)(bc+b~)~ub~bl;b~ (4.10) 

as is clear from equations such as Eqs. (66) and (67) of Ref. 
43 or Eq. (2.4) of Ref. 42. A glance at Fig. 2(b) in the present 
paper makes it clear that Eq. (4.10) immediately removes 
from consideration all six of the processes (ii)-(vii) in Fig. 
2(b) and retains only the cascade process of (i) or of Fig. 1. 
The RWA employed by Nitzan and collaborators can never- 
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theless be a reasonable approximation when the cascade pro- 
cess is the only one that for various system reasons has high 
probability. 

What is important to realize, however, is that the RWA is 
not necessav at the level of approximation employed. In 
quantum optics contexts, the RWA sometimes makes exact 
solutions possible as in the case of the Jaynes-Cummings 
model .6z In those cases, it is worthwhile to employ the RWA. 
In treating our present system, whether via our methods or 
via the procedures employed by Nitzan et al., there is no 
additional advantage to be gained by making the RWA. A 
very similar situation arises in the treatment63@ of the analy- 
sis of the relaxation of a ferromagnet model, as pointed out 
many years ago by one of the present authors.63 

V. DISCUSSION 

The goal of the study in this paper has been to begin the 
construction of a simple and tractable theory of vibrational 
relaxation particularly geared to address polyatomic solutes 
in polyatomic solvents. The point of departure is the Fermi 
golden rule expression (2.1) along with the general Hamil- 
tonian (2.2). Under the assumption of product interactions, 
Eqs. (2.5) and (2.7) are obtained as general consequences 
and, with the Taylor expansion expression (2.8) for the inter- 
action, Eqs. (2.15), (2.17), (2.18), and (2.21) are obtained as 
explicit usable expressions for the vibrational relaxation rate. 
Specific instances for cubic and quartic processes are Eqs. 
(3.2) and (3.4), and the corresponding pictorial representa- 
tion of the processes included in our theoretical description 
are in Fig. 2. Some interesting consequences are shown in 
Figs. 3-5. 

We have refrained from making the RWA in our analysis 
and have thereby allowed for all combinations of possible 
processes. We have obtained intuitively understandable ex- 
pressions for the vibrational relaxation rate and shown their 
equivalence to some of the earlier results such as those of 
Califano et al. which possess a strikingly different appear- 
ance. We have also commented on other earlier theories 
which have been developed under more restrictive assump- 
tions. 

One of the main advantages of our theory is the simplic- 
ity of approach-we do not employ complex diagrammatic 
expansions, uncertain RWAs, or uncontrollable RPAs. 
Rather, we use only straightforward exact manipulations 
starting from the Fermi golden rule. Our results thus inherit 
all the strengths and weaknesses (all reasonably well known 
and none hidden) of the Fermi golden rule. The possibility of 
treating annihilation as well as creation of ALL the partici- 
pating bosons which emerges from our theory is also a defi- 
nite advantage. All the earlier treatments appear to involve 
only the cascade process. Our results can be written down 
easily intuitively by using arguments of the kind described in 
Ref. 23. Our treatment is quantum mechanical-we do not 
treat classical baths and thereby miss any quantum effects. 
Our treatment does not merely treat discrete vibrations as in 
some earlier theories, but is realistic in its inclusion of con- 
tinuous density of states. Such density of states factors ob- 
tained in modem treatments of liquids can be easily put into 

our theory. Finally, our theory is particularly constructed to 
be useful to experiments on complex systems. 

Although our formal theory does not require it, we have 
assumed implicitly that the coupling of the initially excited 
vibration to other vibrations (solute and solvent) is stronger 
than the coupling to phonon modes of the liquid or solid 
solvent. This is reflected in a “least number of phonons” 
depiction of the relaxation pathways. It means that an ini- 
tially excited high frequency mode well above the low fre- 
quency continuum has been assumed to relax through path- 
ways which employ a small number of other high frequency 
vibrations to match the initial energy to within that of one (or 
more) phonons from the continuum. Such pathways do not 
involve a large number of low frequency phonons. The as- 
sumption means that the system is taken to relax by the 
lowest order process consistent with energy conservation. 
However, if required, our general theory can handle any 
number of discrete vibrations and any number of continuum 
phonons. 

Of the questions (i)-(v) raised in Sec. I, our treatment 
answers (i)-(iv) as discussed above. In its present form, it is 
able to address the inverted temperature dependence ob- 
served in Ref. 23 only by assuming that the liquid phonon 
density of states, and/or the coupling constants, have an ap- 
propriately strong temperature dependence in the opposite 
direction to that of the Bose occupation factors.23 The normal 
tendency of the Bose occupation factors could then be over- 
whelmed and the rate would decrease with temperature. If 
the system is a mixed crystal, the continuum of low fre- 
quency states is the phonon spectrum of the crystal. The 
theory for a solute molecule in a liquid solution is identical 
except that the phonon spectrum of a crystal is replaced with 
the density of states of the low frequency instantaneous nor- 
mal modes of the liquid. The real part of the INM spectrum 
corresponds to true oscillatory modes. Unlike the case in 
solids, the INM have an imaginary component which is re- 
lated to the time evolution of the liquid structure. Although 
any mode in the real part of the spectrum is transitory, exist- 
ing for only a short time period, these modes still provide a 
density of states from which energy can be removed and into 
which energy can be deposited. The density of states given 
by recent calculations33-37 can provide an explicit input into 
our theory. 

As in essentially all existing quantum mechanical theo- 
ries of relaxation, we have calculated only the rate of leaving 
the initially excited vibration. Experiments have shown that 
in systems in which there is another mode with energy close 
to that of the initially excited mode, rapid equilibration of 
population can occur. For example, the IR active mode of 
w(co), at 1976 cm-’ has a Raman active mode only 32 
cm-’ higher in energy. By performing IR pump/anti-Stokes 
Raman probe experiments,22 it has been shown that these 
two modes exchange population rapidly (-1 ps). Equilibra- 
tion occurs and then the two modes decay together with a 
lifetime of -700 ps (in Ccl, solution). The present theory 
does not describe population returning to the initially excited 
vibrational level following relaxation out of it. This return 
actually occurs and can have a profound impact on experi- 
mental observables. Two nearby levels can equalize their 
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populations on a very fast time scale by a cubic process. 
Subsequent relaxation on much slower time scales can re- 
quire higher order processes. The equilibration of the two 
levels will reduce the population of the initially excited level 
to 0.5, not to 0. A biexponential decay can result in a popu- 
lation decay experiment. The rapid equilibration can also be 
a source of optical dephasing. In a photon echo experiment 
on vibrations in liquids,24 the fast leaving rate from the ini- 
tially excited state produces lifetime line broadening if the 
time for return of the population is comparable to, or longer 
than, the inverse of the frequency difference between the 
levels. Thus, population equilibration between a pair of lev- 
els will cause a pump-probe signal to decay to 0.5, but it can 
cause a photon echo signal to decay to 0. However, if the 
scattering out of, and into, the initially excited level is fast 
enough, motional narrowing of the line can occur. This could 
result in a complex temperature dependence in a photon echo 
decay experiment. 

Following standard practice, we have considered all the 
participating oscillators in our system to be harmonic, the 
anharmonicity responsible for the relaxation stemming from 
the interactions among the oscillators. We believe that anhar- 
monicity within the unperturbed oscillators themselves can 
be quite important in the theory of vibrational relaxation, 
particularly in the context of liquids. For this reason, we 
have begun calculations of the displacement autocorrelation 
function, and of the consequent characteristics of the vibra- 
tional relaxation rate, for anharmonic systems such as Morse 
oscillators. These matters, as well as the consequence of fi- 
nite lifetime of the discrete modes, will be dealt with in a 
separate publication. 
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