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A theoretical treatment is presented that demonstrates universal dynamical behavior in the isotropic
phase of liquid crystals on ultrafast time scales and short distance scales. The theoretical
development generates a temperature independent power law for the short time scale decay of the
molecular orientational correlation function. This provides a theoretical rationale for the postulate of
universal behavior based on recent experimental observations on two liquid crystal systems. A
temperature independent power law decay with the identical exponent, 0.63, was observed for the
two systems. First, an alternative theoretical approach reproduces the Landau de Gennes results for
the long distance scale, slow time scale orientational dynamics in the isotropic phase. This approach
is also capable of examining the short distance scale and short time scale dynamics, and yields a
temperature independent power law decay with exponent 0.5. Then critical correlations of
fluctuations and local symmetry considerations are included. The Ising model of critical systems is
employed. This detailed analysis yields the experimentally observed exponent, 0.63, without
recourse to adjustable parameters. Modern theories of dynamic critical phenomena like dynamic
scaling theory, the kinetic Ising model and the stochastic model of Karder–Parisi–Zhang are
considered as alternative approaches. While these theories can generate some of the features found
in experiment, it is not possible to reproduce the observed experimental results without internal
inconsistencies or unwarranted adjustable parameters. ©1995 American Institute of Physics.
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I. INTRODUCTION

The isotropic phase of liquid crystals has been exte
sively studied experimentally and theoretically.1–12 In the
temperature range somewhat above the nematic to isotr
phase transition, the pretransitional region, there exists s
stantial orientational order of the liquid crystal molecule
This order extends over a distance scalej, the correlation
length. The local order has been referred to as pseudonem
domains. As the temperature is lowered toward the isotrop
nematic phase transition,j increases. The correlation lengt
tends to diverge at the temperatureT* slightly below the
phase transition,Tni . In the nematic phase, orientational o
der exists over macroscopic distances. In the isotropic ph
nearTni , the pseudonematic domains can be large, with c
relation lengths of many tens of Å.

The dynamics of the pseudonematic domains on sl
time scales~tens of ns! and long distance scales, on the ord
of j, have been studied experimentally and theoretically.10,13

Experimental studies have employed the optical Ke
effect10,13 to induce an orientational anisotropy into th
sample. It is found that this anisotropy decays as a sin
exponential with a decay rate constant that is highly tempe
ture dependent. AsTni is approached from above, the deca
slows dramatically. It tends to diverge and becomes v
large at the phase transition. This can be understood in te
of the correlation length of the pseudonematic domains. O
distance scale less thanj, there is pseudonematic order wit
an associated local director. The slow time scale exponen
is the decay of the orientational correlation of the pseudo
matic domains. As the temperature is lowered,j grows, and
the time for the decay of the orientational correlation i
creases. At the isotropic-nematic phase transition, this ti
J. Chem. Phys. 102 (10), 8 March 1995 0021-9606/95/102(10)/
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diverges; in the nematic phase long range orientational co
relation is maintained indefinitely.

de Gennes extended the Landau theory of the seco
order phase transitions to the weakly first order nemati
isotropic phase transition1,2 to analyze the slow time scale
and long distance scale dynamics of pseudonematic domai
The Landau–de Gennes~LdG! theory correctly describes the
temperature dependence of the exponential decay of the o
entational dynamics in the pretansitional region.1,10 Some of
the LdG results are given below.

In this paper we present a different theoretical approac
to the description of the orientational dynamics in the isotro
pic phase of liquid crystals. This approach, which is based o
well established theoretical concepts and methods, is capa
of describing the fast time scale, short distance scale dyna
ics in the pretansitional phase of liquid crystals as well a
recovering the LdG results in the appropriate slow tim
scale, long distance scale limit. The dynamics are analyz
in terms of the fluctuation modes of the pseudonematic d
mains. These modes have wave vectors~q! corresponding to
length scales from a molecular size to the domain correlatio
length. When the long wave length limit is taken, the LdG
results are obtained. When the sum is performed overq for
large uqu ~uquj@1! and critical correlations of fluctuations are
ignored, the short time scale orientational correlation func
tion decays as a temperature independent power law,t2a,
with a50.5. However, when a more detail analysis is pe
formed, using the Ising model of critical systems14–17 after
symmetry considerations and including critical correlation
of fluctuations, a temperature independent power law is o
tained with a50.63. Thus the theory predicts a universa
behavior for the fast times scale orientational dynamics
the isotropic phase of liquid crystals.
41934193/10/$6.00 © 1995 American Institute of Physics
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4194 A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
The temperature independent power law,t20.63, ob-
tained without recourse to adjustable parameters, is ident
to the results of recent experiments. These experiments
the motivation for the theory presented below. To understa
the nature of the problem, it is important to give a brief, b
relatively complete, description of the experiments and e
perimental results.

II. A BRIEF DESCRIPTION OF RECENT
EXPERIMENTAL RESULTS

Fast time scale orientational dynamics of the liqu
crystals 5-cyanobiphenyl ~5CB! and
N-~methoxybenzylidene!butylaniline ~MBBA ! in their iso-
tropic phases have been studied recently using the trans
grating optical Kerr effect~TG-OKE! technique.12,18–20The
TG-OKE experiments were performed over a wide tempe
ture range and examined orientational relaxation from tens
fs to tens of ns. The experiments revealed several interes
features of the dynamics of the orientationally correlated d
mains and intradomain molecular dynamics. These exp
ments examined the orientational dynamics over mu
broader ranges of times and temperatures than had been
ied previously. The TG-OKE measurements agreed with p
vious experiments on the slow time scale~.10 ns! and over
the limited temperature range of the earlier studies.10,13 The
slow time scale orientational relaxation is a single expone
tial decay that follows the LdG temperature dependence
the pretransitional regime.

The fast time scale orientational relaxation~1 ps to 1 ns!
are attributed to intradomain orientational motions. It w
found that the intradomain dynamics are independent of te
perature and viscosity~h! over wide ranges ofh/T although
over the same ranges, the orientational relaxation dynam
of the domains themselves, occurring on a much longer ti
scale~.1 ns!, change dramatically. At sufficiently high tem
perature, both 5CB and MBBA begin to make a transiti
from a locally ordered liquid to a simple liquid; the slow
dynamics start deviating from LdG theory and the intrad
main dynamics become temperature dependent. The dyn
ics within the domains are temperature independent beca
the local pseudonematic structures are preserved during
relaxation. Thermal fluctuations change the local structu
on the much longer time scale of the overall domain rela
ation described by the LdG theory.

Figure 1~a! shows a log–log plot of four short time scal
data sets of MBBA taken at 52.6, 60.8, 68.5, and 78.2
~Tni546.9 °C!. Within experimental error, all of the data se
display identical highly nonexponential decays. The deca
are viscosity/temperature independent in contrast to the s
dynamics that change by a factor of;170 over this same
temperature range. The shear viscosity changes by a facto
10.3 The faster dynamics become temperature dependen
;90 °C. This is the same temperature at which the sl
dynamics of MBBA begin to deviate from LdG theory, i.e
the temperature range in which the correlation length b
comes so small that pseudonematic domains no longer e
The fast data for 5CB~1 ps to 1 ns! @see Fig. 1~b!# display
the same behavior,12 i.e., they areh/T independent from the
phase transition temperature~Tni535.2 °C! up to;70 °C. As
J. Chem. Phys., Vol. 10
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long as the correlation length is sufficiently long for pseu
donematic domains to exist, as demonstrated by the slo
dynamics obeying the LdG theory, the fast intradomain dy
namics areh/T independent. This is in spite of the fact that
the relaxation times for the slow dynamics change by mor
than an order of magnitude over the temperature ranges
LdG theory applicability in both MBBA and 5CB. Thus, the
fast, intradomain dynamics are not coupled to the hydrody
namic modes, and the results indicate that the dynamics a
strongly influenced by the pseudonematic domain structure

As can be seen in Fig. 1~a!, for times shorter than 1 ns,
the data fall on a straight line, corresponding to a power law
decay of the response function

G~ t !5G0t
2a.

From the data,a is 0.6360.03. The 5CB data@Fig. 1~b!# is
also a power law witha50.6360.02. Thus, qualitatively and
quantitatively, the orientational relaxation dynamics in the

FIG. 1. ~a! Fast decay data sets of MBBA at four temperatures
~52.6 °C→78.2 °C! are plotted vs time on a log–log plot. The decays are
superimposable, showing that the fast MBBA dynamics are viscosity
temperature independent. The dotted line is a straight line through the da
showing that the decays obey a power law (t2a) with a50.636.03. ~b!
Data taken on the liquid crystal 5CB also display a power law decay wit
the identical exponent,a50.636.02. Both the MBBA and 5CB data are
viscosity/temperature independent until the correlation length falls below
3j0. The striking similarities in the temperature dependent dynamics o
MBBA and 5CB may indicate a universal behavior in the isotropic phase o
liquid crystals.
2, No. 10, 8 March 1995
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4195A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
isotropic phases of both liquid crystals, MBBA and 5CB, ar
identical. The fast dynamics in both systems exhibitpower
law behavior with the same exponent, 0.63, and the slow
dynamics in both systems begin to deviate from LdG beha
ior at the same correlation length,;3j0, wherej0 is on the
order of a molecular length.9 When the correlation length
becomes less than 3j0, the fast dynamics in both systems
become temperature dependent. The remarkable similari
in the dynamical behavior of these systems suggested
existence of a universal principle that governs the dynam
in the pretransitional isotropic phase of liquid crystals an
motivated the theoretical treatment presented in the next s
tions.

Dynamics observed in TG-OKE experiments start wit
an anisotropy induced in the sample by the two crossed
excitation pulses. The coupling of the radiation field to th
molecules involves stimulated Raman scattering excitati
of a subset of the modes of the liquid, i.e., librationa
modes21–25of the molecules. These essentially harmonic m
tions are modes of the potential surface arising from th
fixed local structure of the liquid that exists on the ultrasho
time scale of the excitation pulses. The laser excited libr
tions add to the isotropic distribution of thermally excite
librations, making the ensemble of excited librations anis
tropic. The initial ultrafast transient~;100 fs! seen in
TG-OKE experiments consists of a rise in the signal as t
overdamped librators begin to undergo angular displacem
and the partial decay of the signal as the librational motio
dephases and damps. In a dense liquid, coherent motion
pairs, triplets, etc., of molecules can also be driven to som
extent and will lead to a very short lived contribution to th
signal through interaction induced polarizabilities.26,27

In a crystal, stimulated Raman scattering excites optic
phonons. Because of the well-defined lattice structure, dam
ing of the optical phonons returns the molecules to the
original positions, leaving no residual anisotropy. In a liquid
damping of the optically excited librations can result in or
entational displacements from the initial isotropic configura
tions. This leaves a longer lived residual orientational anis
tropy that will decay by some form of orientational relax
ation.

The long range correlation of initially excited librations
is determined by the fringe spacing of the transient gratin
~grating wave vector!. Librational damping~dephasing! de-
pends on the local molecular environment. Therefore, spa
variations in orientational correlation extend to highq ~short
distance scales! following librational damping~hundreds of
fs!. Thus the relaxation of the residual anisotropy on tim
scales greater than;1 ps occurs over a broad range ofq’s
that extend from the molecular length scale~q;0.1 Å21! to
the grating fringe spacing~q;2.531024 Å21!. The theo-
retical development presented in the following sections e
amines the influence of fluctuations over the full range ofq
on the orientational dynamics in the pretransitional isotrop
phase of liquid crystals.

III. THEORY

The isotropic-nematic phase transition of liquid crysta
is an important example in a chemical system in which crit
J. Chem. Phys., Vol. 102
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cality is superimposed on a weak first order transition.9 A
small but finite entropy change, characteristic of the first o
der transition, is observed at the nematic-isotropic transitio
temperatureTni , where a sharp transition in the system’s
symmetry occurs. The heat capacity shows divergence atT*
slightly belowTni . This is a characteristic feature of second
order thermodynamic criticality. Many pretransitional phe
nomena are observed in the isotropic phase of nematic liqu
crystals.9 They are explained as critical behavior, and orien
tational correlation is identified as the order parameter. Th
physical origin of critical anomalies is the increase in th
correlation length of the order parameter on approaching t
critical temperature from above. The increase in the range
correlated regions leads to a corresponding increase in
time scales for dynamic processes~critical slowing down!.28

The correlation extends over distances that are increasin
long and times that are much longer than those associa
with the dynamics of microscopic elements of the system
Anisotropic intermolecular interactions and correlation o
fluctuations cause cooperativity in the alignment of the pe
manent dipole moments of the liquid crystal molecules.

The order parameter, which is useful for the descriptio
of order–disorder transitions, can be identified for any crit
cal transition. The order parameter makes it possible to fo
mulate a unified description of the order–disorder transition
in many different critical systems.29,30The local orientational
order in the isotropic phase of a nematic liquid crystal i
characterized by a microscopic scalar order parameter,S,

S5 1
2 ^3 cos2 u 21&, ~1!

whereu is the angle between the axis of the rodlike molecul
and the reference direction, the director.1,31 This is the same
definition that is used to define the order parameter in th
nematic phase. In the nematic phase,SÞ0 on a macroscopic
distance scale. In the isotropic phase,S50 on a macroscopic
distance scale. However, on a distance scale of<j, SÞ0. If
the local order possesses some axial symmetry, one of
symmetry axes can be chosen as the director about whichS
has the highest value. For local nematic order, it is the loc
nematic axis. In the isotropic phase of a nematic liquid cry
tal, a macroscopic symmetric traceless tensor order para
eter of rank 2,Q, is used to describe the anisotropy of ther
modynamic properties, e.g., magnetic and dielectr
anisotropy.9 The elements ofQ are determined by the values
of the microscopic order parameter.9

A. Theory without including critical correlations of
fluctuations

Landau–de Gennes theory provides a good descripti
of the phase transition in the pretransitional region. d
Gennes extended the Landau theory of the second ord
phase transitions to the weakly first order nematic-isotrop
phase transition.1,2 LdG theory describes the slow time scale
long distance scale dynamics in the isotropic phas
Landau–de Gennes theory as applied to liquid crystals d
fines the free energy as an expansion in powers of the ord
parameter. By neglecting the spatial variation of the directo
and the order parameter, the free energy is expanded as
, No. 10, 8 March 1995
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4196 A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
Fn5Fi1AS22BS31CS4, ~2!

whereFn is the free energy of the nematic phase,Fi is the
free energy of the isotropic phase,A, B, C are constants, and
S is the microscopic order parameter. Since the nemat
isotropic transition is a weak first order transition, the mag
nitude ofB is small.A is inversely proportional to the bire-
fringence when the sample is in a magnetic field, and goes
zero on approaching the transition temperature fro
above,1,9

A5a~T2T* !g. ~3!

In this manner, the system produces large fluctuations in t
order parameter near the temperatureT* with minimum ex-
pense to the free energy. This is the thermodynamic origin
pretransitional phenomena.T* is the temperature where a
second order phase transition should occur, but it is actua
slightly below the nematic-isotropic transition temperatur
Tni . For systems where mean field theory is valid, the su
ceptibility critical exponentg '1.9

To describe the fast time scale, short distance scale d
namics, it is necessary to expand on the considerations e
ployed by de Gennes to describe the isotropic phase. T
spatial variations of the local alignment contribute to the fre
energy through terms involving spatial derivatives of the o
der parameter. In the isotropic phase, these terms are imp
tant for fast time scale dynamics that occur on short distan
scales. The total free energy in the isotropic phase can
expressed in terms of the fluctuations of the macroscop
order parameterQ,9

F5F01 (
abg

A~Qbg!21L~]aQbg!2, ~4!

wherea, b, g are indices referring to the laboratory referenc
frame and]a5]/]xa . F0 is the free energy at the minimum.
L is the elastic constant in the isotropic phase; its magnitu
is smaller than in the nematic phase and is only weakly d
pendent on temperature. The fluctuations can be expande
terms of fluctuation normal modes,

Q~r ,t !5(
q

Q~q,t !eiq–r. ~5!

For simplicity the indices are omitted. Thus, the free energ
associated with the fluctuations of the order parameter
wave vectorq is

f q5~F2F0!q5AQq
2~ t !1Lq2Qq

2~ t !. ~6!

Qq can be expressed in terms of a microscopic order para
eterSq which describes the molecular orientational order o
various distance scales,

Sq5^S&q , ~7!

where the averaging is performed over a distance scale
uqu21. The relaxation of a fluctuation is determined by th
slope of the free energy surface on the relevant distan
scale. Then

]Sq
]t

}
]Qq

]t
52

1

2hq

] f q
]Qq

52GqQq . ~8!
J. Chem. Phys., Vol. 102,
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hq is a viscosity coefficient on the corresponding length
scale. The normal modes are chosen such thatQ~q,t!’s are
uncorrelated, and their time dependencies are separable. F
a parabolic surface, the time evolution is exponential with a
decay constantGq . From Eqs.~6! and ~8!,

Gq5
1

hq
~A1Lq2!. ~9!

In the isotropic phase, just above the phase transition, ther
are regions of orientationally correlated molecules. In the
LdG theory the correlations have an Ornstein–Zernike form9

^S~0!S~r !&'
1

r
expS 2r

j D ; ~10!

j is the correlation length, andr is the distance. Above the
critical temperature, this form of the correlation function is
good for r@j.15,16 j is related to the constantsL and A,
j5(L/A)1/2.9 From Eq.~3!, it is possible to see the manner
in which the temperature dependence of the correlation
length shows critical behavior9

j5j0S T*

T2T* D
g/2

~11!

de Gennes identifiesj0 as a molecular dimension. Experi-
ments by Courtens,4,5 Chu et al.,6,7 and Stinson and Litster8

have determinedj0 and found it to be in the range 5.5–7 Å.
This is comparable to the cube root of the molecular volume
~;8 Å! of a liquid crystal molecule such as MBBA. For
comparison the molecular length of MBBA is 18 Å.

Introducingj5(L/A)1/2 into Eq. ~9!, the dispersion for-
mula forGq is obtained,

Gq5
L

hq
~q21j22!. ~12!

At short distances whereqj@1, the relaxation depends on
the fine structure of free energy surface, andGq5Lq2/hq .
This is what we refer to as intradomain relaxation, the fast
orientational dynamics. These dynamics have not been inves
tigated previously. Results of the TG-OKE experiments dis-
cussed in Sec. II provide a detailed picture of the intrado-
main dynamics.L is weakly dependent on temperature, and
the viscosity at high wave vector and high frequency is tem-
perature independent.28,32A fundamentally important point is
that for large wave vectors, both L andhq are independent of
q.9,32 As will be shown below, Eq.~12! and theq indepen-
dence ofL andhq for largeq lead to the temperature inde-
pendence of the fast time scale dynamics.

For qj!1, orientational relaxation depends only on the
critical lengthj, and the relaxation time obtained from Eq.
~12! is

t5G0
21}

h~T!

~T2T* !g . ~13!

h(T) is the long distance scale, bulk viscosity, which is
highly temperature dependent. Thus the LdG result of critica
divergence for the slow time scale relaxation is recovered
This slow relaxation can be visualized as orientational diffu-
sive randomization of the pseudonematic domains. In the
No. 10, 8 March 1995
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4197A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
LdG model of liquid crystals,g calculated from Eq.~13! has
been found to be;1,16 indicating the validity of the appli-
cation of mean field theory forthe slow orientational dynam-
ics of the domains.9 @In the general theory of critical phe
nomena, the correlation length exponent and the ‘‘critic
slowing down’’ exponent are referred to asn andnz, respec-
tively; z is the dynamic critical exponent. The general sc
ing relations do not necessarily follow the LdG relation
among the exponents~see Sec. IV!.# It has been found ex-
perimentally that 3j0 is the minimum correlation length do
main size for which the LdG theory applies.16At higher tem-
peratures, the correlation length drops below this value, a
the isotropic phase approaches the behavior of a normal
uid.

While the slow time scale isotropic phase orientation
relaxation is a single exponential with the temperature d
pendent decay constant given in Eq.~13!, as discussed in
Sec. II, the short time scale orientational relaxation is a te
perature independent power law decay with exponent, 0
The fast orientational relaxation is dominated by largeq con-
tributions ~intradomain dynamics!. Mean field theory does
not apply, and as will be shown below, the slow time sca
scaling of exponents also fails in this regime.

The TG-OKE response functionG(t) is related to the
spatial Fourier components of the time correlation of t
order parameter fluctuation,

G~ t !}(
q

G~q,t !5(
q

^Q~q,t !Q* ~q,0!&

5(
q

^Q~q!Q* ~q!&exp~2Gqt !. ~14!

Since

^Q~q!Q* ~q!&5G̃~q!

5E dDr12^Q~r2!Q* ~r1!&e
2 iq•~r22r1!,

therefore,

G~ t !}(
q

G̃~q!exp~2Gqt !. ~15!

For t,t0 , the sum in Eq.~15! depends on theq’s
sampled. Fort.t0 , the system is ergodic. Consider the slo
dynamics first. Fort.t0 , only one distance scale,j, becomes
important as suggested by criticality and the relaxation o
curs at distance scales corresponding toq<q0; where
uq0u5~2p/j!, the wave vector for the correlation length,j. At
distances larger thanj, the spatial correlation varies slowly
with distance and therefore,

G̃~q<q0!;G̃~q0!5const. ~16!

This yields a single exponential slow orientational relaxati
of the pseudonematic domains

G.~ t !} (
q<q0

G̃~q!exp~2Gqt !}exp@2G0~T!t#. ~17!
J. Chem. Phys., Vol. 102
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This is the hydrodynamic regime described by LdG theor
which givesG0(T) @Eq. ~13!#.

For t,t0 ,

G,~ t !}E
qc

qm
dqq2G̃~q!exp~2Gqt !, ~18!

whereqm is the inverse of the molecular length scale andqc
corresponds to the inverse of an average correlation leng
over the entire time scale of intradomain relaxation. From
the equipartition theorem and the expression forf q at largeq
@Eq. ~6!#, one findsG̃~q!5(kBT/Lq

2). For largeq, L andhq

are q independent.9,32 Gq5Lq2/h` @Eq. ~12!#, whereh` is
the largeq and high frequency viscosity which, in addition to
beingq independent, is also temperature independent.32 Con-
sidering the relative values ofqc andqm, an analytical ex-
pression can be obtained by making the rea
onable approximation of extending the limits of integration
to qc50 andqm5`,

G,~ t !}
kBT

L E
0

`

dq exp@2~L/h`!q2t#, ~19!

G,~ t !}
kBT~ph`!1/2

2L3/2
t21/2. ~20!

This analysis yields a universal power law time decay with
temperature independent exponent of 0.5. The prefactor
Eq. ~20! is only temperature dependent throughkBT sinceh
andL are temperature independent on a short distance sca
The prefactor shows that the amplitude of the decay is tem
perature dependent. However, in an actual TG-OKE expe
ment, this temperature dependence would not be expected
be observed. The details of the temperature dependence
the coupling of the radiation field to the sample and th
damping of librations to produce the residual anisotropy~the
observable! have not been considered. The result given i
Eq. ~20! is universal because the derivation does not depe
on the details of the intermolecular interactions. Howeve
the difference between the calculated and the measured va
of the exponent is real since the error bars on the data a
very small. The more detailed analysis given in the nex
section resolves this difference.

B. Theory including critical correlations of
fluctuations

In the calculation above we have ignored the correlation
of fluctuations that occur in a critical system. Since the ex
perimental system shows critical behavior, the critical corre
lations of fluctuations are important. In the neighborhood o
T5Tc , the Fourier transform of the two point spatial corre
lation function in a critical system is of the form16

G̃~q!5^Q~q!Q* ~q!&5
f ~qj!

q22h , ~21!

where h is the spatial correlation critical exponent whose
value depends on the dimensionality of the system;j is the
correlation length;f (z) is some function of a single variable,
and it tends to a finite limit asz→`. At T5Tc , j→` and
therefore

G̃~q!;q221h. ~22!
, No. 10, 8 March 1995
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4198 A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
At T.Tc , for qj@1 ~inside the domains!

G̃~q!;q221h ~23!

as f (qj)→constant. This implies that on the short distanc
scale (r,j) the spatial correlation function behaves as if th
correlation length is infinite. Therefore aboveTc , on a dis-
tance scale smaller than the correlation length, behav
characteristic of critical phenomena will be observed. This
responsible for the existence of domains with nematic ord
in the isotropic phase of liquid crystals. On a distance sca
short compared toj and on a time scale fast compared to th
LdG relaxation of the local domain structure, the system e
hibits properties characteristic of the nematic phase, and
correlation functionG̃~q!}q221h. Exact calculations ofh
have been done only for one dimensional and two dime
sional Ising models,14–16 and for higher dimensions various
approximate models and computational techniques15–17have
been developed with limited success.

Using G̃~q!}q221h and substituting in Eq.~15! and Eq.
~18! we obtain

G,~ t !}(
q

q221h exp~2Gqt !, ~24!

G,~ t !}E
qc

qm
dqq2~q221h!exp~2Gqt !. ~25!

Direct x-ray evidence for antiparallel local ordering in
the isotropic phase of 5 CB has been reported by Leadbe
et al.11 This is consistent with pseudonematic domains e
hibiting local nematic order. Thus, there exists uniaxial (C`)
symmetry about the local director. Because of the uniax
symmetry, the order parameter variation inside the doma
also will be symmetric about the director; the spatial varia
tion of the order parameter is the same in any axial pla
containing the symmetry axis of the domain. If the axis o
the polar coordinates is chosen along the director, orien
tional fluctuations will involve the fluctuation of both the
anglesu and w of the molecular axis. However, the orde
parameter depends on onlyu, and theu fluctuations conserve
the axial symmetry of the order parameter about the loc
director.@While thew fluctuations do not conserve the sym
metry, they also do not affect the order parameter~see Fig.
2!.# This means that, inside the domain at any instant of tim
the two point orientational correlation,^S~r1!S~r2!&, will be
the same as the correlation^S(r1)S(r28)& which is in the axial
plane containingr1 and the director;r28 is the mapping ofr2
onto the r1 axial plane.@r1[(r 1 ,u1 ,w1); r2[(r 2 ,u2 ,w2);
r28 [ (r 2 ,u2 ,w1) ~see Fig. 3!.# Thus, the correlation of the
order parameter between any two points is the same as
correlation between two points in the same axial plane.

Since theu variation in each axial plane is primarily
determined by the interactions in that plane,each axial plane
can be considered as a critical subsystem of reduced dim
sionality of two. The correlation function in each axial plane
will therefore behave like that of a two dimensional critica
system.

Because of the axial symmetry, the three dimension
critical system is reduced to a set of many two dimension
subsystems. Although we have to perform the ensemble
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erage over three dimensions, we need a critical exponent,h,
for a two dimensional critical system to use in Eqs.~24! and
~25!.

Application of the two dimensional Ising model.Since
the Hamiltonian is invariant tow, the orientational interac-
tion energy between molecules 1 and 2,U12 can be written
as10,33

U1252lS1S2 , ~26!

wherel is a positive constant with the dimension of energy;
Si5

1
2~3 cos

2 u i21!, whereu i is the angle between the local
director and the molecular axis of thei th molecule. Further,
we can make the problem discrete by restricting the possib
values ofSi to its limiting values21/2 and 1, corresponding
to u590° andu50°, respectively. An average of these two
values with suitable weights is mathematically equivalent to

FIG. 2. Order parameters and theu fluctuations of the axis of the molecules
are symmetric about the directorn̂, but thew fluctuations are not symmetric.
In configuration~a! both the molecular alignment and the order parameter
are symmetric aboutn̂. In configurations~b!, ~c!, and ~d! the molecular
alignments are not axially symmetric, but the order parameters are. Config
ration ~d! illustrates that the order parameter does not change if the molecu
lar axis points up or down. The small arrow on the cone represents th
molecular axis. The cones represent the probable range ofw fluctuations for
a fixed value ofu corresponding to a particular value of the order parameter

FIG. 3. Consider two distinct axial planes of a pseudonematic domain con
tainingr1 (r 1 ,u1 ,w1) andr2 (r 2 ,u2 ,w2). n̂ is the director of the domain and
also the chosen axis of the polar coordinates.r28 (r 2 ,u2 ,w1) is the mapping
of r2 onto ther1 axial plane. Since the order parameter is symmetric abou
n̂, the correlation of the order parameter^S(r2)S(r1)& 5 ^S(r28)S(r1)&.
Thus the correlation of the order parameter between any two points is th
same as the correlation between two points in the same axial plane.
, No. 10, 8 March 1995
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4199A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
any of the possible continuous values ofSi . The problem is
now analogous to that of a two dimensional Ising spin sy
tem. The two dimensional Ising model has been solv
exactly.14 The calculated critical exponent for the spatial co
relations of the two dimensional Ising spin system will b
employed. Ising models for square and triangular lattic
have been found to produce the same critical exponents.14 In
those exact calculations, only short range interactions
considered. The lack of dependence on the lattice struc
suggests that the exponent is not very sensitive to the e
details of the spatial arrangement in two dimensions. T
fact that pseudonematic domains exist down to very sh
correlation lengths~j>3j0! suggests that the important inte
actions are short range. Therefore, it is not unreasonabl
use the critical exponent for the two dimensional Isin
model.h for the two dimensional Ising model is 0.25.14,15

The correlation function behaves like a two dimension
Ising model because the orientational distribution in ea
axial plane is determined solely by in-plane interactions. T
symmetry in the hydrodynamic and critical regime being d
ferent, the value ofh deviates from the three dimensiona
mean field value. Therefore,

G̃~q!5^Q~q!Q* ~q!&}q2210.25. ~27!

For a finite correlation length, the correlation functio
diverges atq50. So the expression for the correlation fun
tion in Eq. ~24! is not valid for q50 at T@Tc .

16 We can
nonetheless perform the integral in Eq.~25! by considering
the limiting case ofqc50 andqm5` as the integrand is still
bound. Although the correlation functionG̃~q! is same as the
two dimensional Ising system, it must be emphasized that
sum in Eq.~24! must be performed over all the modes of th
system which is three dimensional. A sum over all the tw
dimensional axial planes constituting the domain implies th
a three dimensional integral must be used. Using the t
dimensional Ising model correlation function and substitu
ing the expression for the highq limit Gq from Eq. ~12!, we
obtain

G,~ t !}E
0

`

dqq2~q2210.25!exp~2Gqt !, ~28!

}E
0

`

dqq0.25 exp@2~L/h`!q2t#, ~29!

}
1

2 S h`

L D 0.625t20.625. ~30!

The final result is a temperature independent power law ti
decay with an exponent 0.625.This is identical to the mea-
sured value, 0.63, within the significant figures of the mea
surement. If our ansatz@Eq. ~27!# for the correlation function
is valid for all nematic liquid crystals, then the calculate
temperature independent power law decay is universal.
static critical properties, Ising models give more accura
values for critical exponents than the Landau–de Gen
model.15,16The Landau–deGennes model givesh50. Using
this value in Eq.~27! would result in a power law exponen
of 0.5 as obtained in Eq.~20! using a different approach.
J. Chem. Phys., Vol. 102
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In addition to obtaining agreement with experiment, the
results potentially have another importance. It is consisten
with the fact thatthe fast time scale, short distance scale
dynamical properties of a critical system, like long time
scale34,35and static15,16critical properties, may depend only
on general featureslike the dimensionality,D, of the space,
the dimensionality,n, of the order parameter, and the sym-
metry of the interactions, but do not depend on the details o
the interactions. To our knowledge, this theoretical approac
explains for the first time the fundamentally new experimen
tal results briefly described in Sec. II and establishes th
possibility of universal aspects of the dynamics of a critica
system on an ultrafast time scale.

IV. OTHER THEORETICAL METHODS

In the treatment given above, we used well known theo
retical concepts combined with knowledge of the symmetry
properties and distance scales associated with the system
obtain a detailed description of the fast time scale dynamics
The approach also yields the LdG results for slow time scal
dynamics. It is important to consider application of other
methods to this problem. In the literature, one finds that dy
namic scaling theory,34,35 the kinetic Ising model,36–44quan-
tum field theory45 and stochastic models like that of Karder–
Parisi–Zhang~KPZ! ~Refs. 46,47! have been applied to the
understanding of critical dynamics. The idea of universality
class in dynamic critical phenomena is based on dynami
scaling concepts.34,35 Theoretically a large number of dy-
namic universality classes could be observed for one stat
universality class.45 There has been considerable recen
progress in theories of dynamic critical phenomena, but wor
is still continuing. In this section, the application of these
modern theories to the problem of the observed ultrafast dy
namics of isotropic phase of liquid crystals will be consid-
ered, and some of the difficulties will be explicated.

Dynamic scaling theory states that the Fourier trans
formed space–time correlation function in a critical system
follows the scaling law:34

Cj
Q~q,v!52p@vj

Q~q!#21Cj
Q~q! f qj@v/vj

Q~q!#, ~31!

where f qj is the shape of the frequency spectrum for the
qth mode,Cj

Q~q! is the mode density, andvj
Q~q! is called the

characteristic frequency.Q denotes the order parameter andj
the correlation length ofQ. For the case whereCj

Q~q,v! is a
Lorentzian of widthGq for theqth mode, centered about zero
frequency, it can be shown34 that

vj
Q~q!5Gq . ~32!

In the context of dynamic scalingvj
Q~q! can be identified

with Gq in Eq. ~15!. In dynamic scaling theory, it is as-
sumed that vj

Q~q! is a homogeneous function ofq and
j21,34,35

vj
Q~q!5Vcq

zV6~qj!, ~33!

with different functions above and belowTc ~indicated by
6!. It is assumed that atTc the characteristic frequency is
unique,35 i.e.,

V1~`!5V2~`!51. ~34!
, No. 10, 8 March 1995
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4200 A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals
For a nematic liquid crystal, the characteristic frequen
is found to be independent ofq in the hydrodynamic regime
(qj!1),

vj
Q~q'0!5t0

21}~T2T* !/h~T!. ~35!

In the critical regime (qj@1), the fast dynamics in isotropi
nematic liquid crystals are temperature independent, th
fore vj

Q(q) must be independent of temperature and m
not depend onj. For a continuous transition from the hydro
dynamic to the critical regime, the appropriate homogene
scaling function is

V1~qj!5@11~qj!2z#. ~36a!

To introduce the observed viscosity dependence we ass

Vc5V0 /hq ; ~36b!

hq is the q-dependent viscosity andV0 is independent of
temperature,q andj. Thus forqj!1 andq'0, the critical
slowing down can be obtained from Eqs.~36a! and ~36b!,

t0
215G05vj

Q~q'0!5Vcj
2z}V0~T2T* !nz/h~T!,

~37!

wheren is the correlation length critical exponent andh(T)
is the bulk viscosity. Similarly, in the critical regim
(qj@1),

Gq5vj
Q~q!5Vcq

z5~V0 /h`!qz; ~38!

in the highq limit h` is independent of temperature andq.
Substituting Eq.~38! in Eq. ~28!, an expression for the powe
law exponent can be obtained,

a5
11h

z
. ~39!

The observed temperature dependence of the slow orie
tional dynamics of the domains suggests thatnz51 or z51/
v. The well known mean field values of the critical exp
nents in three dimensions areh50, n50.5 and thus from
Eq. ~39!, a50.5. It shows that the mean field theory does n
apply to intradomain dynamics.

It is tempting to use the computational results fro
Monte Carlo simulations48 of the three dimensional Ising
model,h50.037 andn50.63, in Eq.~39! in order to obtain
a better value ofz51.587 anda50.65. In this way a power
law exponent within error of the experimental value of 0.
is recovered without violating the dynamic scaling theo
However, experimental results do not support the dyna
scaling argument since the experimentaln is quite different.
Stinton and Lister8 performed an independent measurem
of the correlation length critical exponentn for MBBA in the
isotropic phase and observed the mean field value ofn50.5.
Susceptibility measurements also confirmed the three dim
sional mean field value ofg51 for nematic liquid crystals in
their isotropic phase.9 In order to be compatible with the
conventional theory of critical slowing down, the scalin
z522h is appropriate for a nonconserved ord
parameter.35 In the mean field limit, this relation holds tru
for the slow orientational dynamics of the domains but it
not compatible with the fast intradomain dynamics. The d
namic scaling argument clearly fails for the fast intradom
J. Chem. Phys., Vol. 102
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dynamics, and in order to obtain the experimentally observ
power law exponent, one has to treat bothh andz as adjust-
able parameters. As adjustable parameters, no physical ba
can be found for a legitimate choice ofh andz.

Next some specific models will be considered wherez
has been actually computed. Exact calculations ofz have
been possible only in the one dimensional model36,49 and in
the context of mean field theory.50 Computation ofz for a
model without conserved densities often employs the kinet
Ising model~or Glauber model!.36,41The field theoretical es-
timate givesz52 in three dimensions.51,52 If we have to use
the three dimensionalh, the value ofz required to obtain the
experimentally observed power law exponent is far from th
estimate. In two dimensions different calculations yield va
ues ofz in the range 1.75~the exact lower bound! <z<2.3
and values ofh between 0.2 and 0.3.41,53 Therefore the
choice ofz andh is not unique, and to obtain the experimen
tally observed power law, one has to treat them as adjusta
parameters. Renormalization group theory approaches to
kinetic Ising model have been attempted on fractal lattice
with no success in obtaining a general relation between d
namic and static exponents. For some specific fractal geo
etries, different values of the dynamic exponentz are ob-
tained; 2df , df11/n, and 11df ~df andn are, respectively,
the fractal dimension and the correlation length
exponent!.54,55Therefore, it is not surprising that in the case
of systems with nonconserved order parameter, the dynam
exponent bears no simple relation to static exponents a
dynamic scaling applied to slow dynamics may breakdow
for ultrafast dynamics in the critical regime.

Slow time scale stretched exponential and power la
behavior have been derived with the dynamic Isin
model.42–44 In these cases, the stretched exponential and t
power law exponents are dependent on temperature and
universal as they are dependent on the critical point (Tc).
The fastest power law calculated in three dimensions is wi
an exponent 0.065 for6J interaction distribution.43 Until
now, whenever dynamic scaling theory, the kinetic Isin
model, and the stochastic model of KPZ are applied to ca
culations of explicit time dependence, they are limited t
much slower dynamics that are really macroscopic, e.g., k
netics of interface roughening during crystal growth46 and
dynamics of domain growth during spinodal decompositio
in block copolymer melts.47

These methods, briefly discussed above, cannot yet d
scribe the fast dynamics in the isotropic phase of liquid cry
tals. The approach in Sec. III B considers the symmetry
the order parameter fluctuation and the Hamiltonian for or
entational interaction. These give rise to a spatial correlatio
which is the same as that of an exactly solved model~the two
dimensional Ising model!. The results reproduce the experi-
mentally observed temperature independent power law w
no adjustable parameter. While the theoretical approach p
sented in this paper is not as general as other theoreti
methods, it is useful for the specific problem of intradomai
dynamics of the isotropic phase of nematic liquid crystals
Our approach is equivalent to havingz52 ~field theoretical
result in three dimensions! and h50.25. ~h is allowed to
deviate from the three dimensional mean field value in th
, No. 10, 8 March 1995
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critical regime where the dynamic scaling fails.!
The question remains; why does the universal behav

on a fast time scale relate to critical exponents other th
those observed for the slow time scale, long distance sc
behavior. The slow time scale universal behavior is asso
ated with the IR fixed point in renormalization group~RG!
flow of the Hamiltonian.45,56We speculate that it is possible
on a fast time scale~in the nonergodic limit! different fixed
points exist and therefore create the possibility of observ
different universal behavior not predicted by convention
theories of critical phenomena or dynamic scaling theori
The results of the femtosecond TG-OKE experiments in
cate that on a fast time scale, the interactions confined to
axial planes of a domain may lead the RG flow to a fix
point which is the same as in the two dimensional Isi
model. Now if there is very weak interactions present b
tween the axial planes, they are insignificant on a fast ti
scale, but they will grow slowly with renormalization. A
sufficiently long time, crossover to an equilibrium fixed poi
occurs, and the slow, long distance scale dynamics o
mean field scaling which is different from the two dimen
sional Ising model.56 If this speculation is correct, differen
classes of critical behavior associated with the ‘‘other’’ fixe
points might be explored by ultrafast measurements.

V. CONCLUDING REMARKS

We have presented a theoretical treatment of the f
time scale, short distance scale orientational dynamics in
isotropic phase of liquid crystals. Because the nematic i
tropic transition is a critical transition, in the isotropic phas
on a distance scale short compared to the correlation len
the local structure is like that of the nematic phase. T
permits the theoretical concepts of critical phenomena to
applied to the analysis. Uniaxial symmetry of the pseudo
matic domains reduces the three dimensional system to a
of two dimensional subsystems. The Ising model of two
mensional critical systems is used. The results yield a te
perature independent power law time decay with expon
0.625, in exact agreement with experimental observat
without recourse to adjustable parameters. These res
should also have implications for dynamics in the nema
phase on fast time scales. The development depends on
wave vector independence of the elastic constant and
viscosity on short distance scales and the uniaxial symme
of the system. These are also features of the nematic ph
and, particularly on a fast time scale, the problem would
similar. In actual experiments, the problem may becom
more complicated since the nematic phase is very suscep
to surface effects that are not important in the isotrop
phase. Wave vector dependent variation of the director
second order variation of the order parameter may need to
considered.

This work displays a universal character for the fast d
namics in the isotropic phase of liquid crystals. It may be
more general significance because it demonstrates that
cepts of critical behavior can be applied to ultrafast tim
dependent phenomena. The theoretical approach present
this paper may seem deceptively simple, yet it is succes
and fully consistent with the molecular picture of liquid crys
J. Chem. Phys., Vol. 10
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tals. It would be interesting and important to show that the
rigorous application of more general theoretical methods can
reproduce the experimental results without unwarranted ad
justable parameters.
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