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Atheoretical treatment is presented that demonstrates universal dynamical behavior in the isotropic
phase of liquid crystals on ultrafast time scales and short distance scales. The theoretical
development generates a temperature independent power law for the short time scale decay of the
molecular orientational correlation function. This provides a theoretical rationale for the postulate of
universal behavior based on recent experimental observations on two liquid crystal systems. A
temperature independent power law decay with the identical exponent, 0.63, was observed for the
two systems. First, an alternative theoretical approach reproduces the Landau de Gennes results for
the long distance scale, slow time scale orientational dynamics in the isotropic phase. This approach
is also capable of examining the short distance scale and short time scale dynamics, and yields a
temperature independent power law decay with exponent 0.5. Then critical correlations of
fluctuations and local symmetry considerations are included. The Ising model of critical systems is
employed. This detailed analysis yields the experimentally observed exponent, 0.63, without
recourse to adjustable parameters. Modern theories of dynamic critical phenomena like dynamic
scaling theory, the kinetic Ising model and the stochastic model of Karder—Parisi—Zhang are
considered as alternative approaches. While these theories can generate some of the features found
in experiment, it is not possible to reproduce the observed experimental results without internal
inconsistencies or unwarranted adjustable parameters99% American Institute of Physics.

I. INTRODUCTION diverges; in the nematic phase long range orientational cor-
relation is maintained indefinitely.

The isotropic phase of liquid crystals has been exten- de Gennes extended the Landau theory of the second
sively studied experimentally and theoreticaity? In the  order phase transitions to the weakly first order nematic-
temperature range somewhat above the nematic to isotropisotropic phase transitidrf to analyze the slow time scale
phase transition, the pretransitional region, there exists suland long distance scale dynamics of pseudonematic domains.
stantial orientational order of the liquid crystal molecules.The Landau—de GennélsdG) theory correctly describes the
This order extends over a distance scélahe correlation temperature dependence of the exponential decay of the ori-
length. The local order has been referred to as pseudonematatational dynamics in the pretansitional regtdfiSome of
domains. As the temperature is lowered toward the isotropicthe LdG results are given below.
nematic phase transitiog,increases. The correlation length In this paper we present a different theoretical approach
tends to diverge at the temperatufé slightly below the to the description of the orientational dynamics in the isotro-
phase transitionT ;. In the nematic phase, orientational or- pic phase of liquid crystals. This approach, which is based on
der exists over macroscopic distances. In the isotropic phaseell established theoretical concepts and methods, is capable
nearT,;, the pseudonematic domains can be large, with coref describing the fast time scale, short distance scale dynam-
relation lengths of many tens of A. ics in the pretansitional phase of liquid crystals as well as

The dynamics of the pseudonematic domains on slowecovering the LdG results in the appropriate slow time
time scalegtens of ny and long distance scales, on the orderscale, long distance scale limit. The dynamics are analyzed
of ¢, have been studied experimentally and theoreticafly.  in terms of the fluctuation modes of the pseudonematic do-
Experimental studies have employed the optical Kermains. These modes have wave vectgjscorresponding to
effect®®® to induce an orientational anisotropy into the length scales from a molecular size to the domain correlation
sample. It is found that this anisotropy decays as a singléength. When the long wave length limit is taken, the LdG
exponential with a decay rate constant that is highly temperaresults are obtained. When the sum is performed oqvinr
ture dependent. A%, is approached from above, the decaylarge|qg| (|g|é&>1) and critical correlations of fluctuations are
slows dramatically. It tends to diverge and becomes verygnored, the short time scale orientational correlation func-
large at the phase transition. This can be understood in termi®n decays as a temperature independent power tiah,
of the correlation length of the pseudonematic domains. On with «=0.5. However, when a more detail analysis is per-
distance scale less th@nthere is pseudonematic order with formed, using the Ising model of critical systefhs’ after
an associated local director. The slow time scale exponentigymmetry considerations and including critical correlations
is the decay of the orientational correlation of the pseudoneef fluctuations, a temperature independent power law is ob-
matic domains. As the temperature is lowerédyrows, and tained with «=0.63. Thus the theory predicts a universal
the time for the decay of the orientational correlation in-behavior for the fast times scale orientational dynamics in
creases. At the isotropic-nematic phase transition, this timénhe isotropic phase of liquid crystals.
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The temperature independent power law? %3 ob- .
tained without recourse to adjustable parameters, is identical
to the results of recent experiments. These experiments are
the motivation for the theory presented below. To understand 2]
the nature of the problem, it is important to give a brief, but
relatively complete, description of the experiments and ex-
perimental results.

II. A BRIEF DESCRIPTION OF RECENT
EXPERIMENTAL RESULTS

In(sqrt(signal)-Slow Exp.)

Fast time scale orientational dynamics of the liquid
crystals 5-cyanobiphenyl (5CB) and -5
N-(methoxybenzylidenbdutylaniline (MBBA) in their iso-
tropic phases have been studied recently using the transient
grating optical Kerr effectTG-OKE) techniquet?18-2°The
TG-OKE experiments were performed over a wide tempera-
ture range and examined orientational relaxation from tens of
fs to tens of ns. The experiments revealed several interesting |
features of the dynamics of the orientationally correlated do-
mains and intradomain molecular dynamics. These experi-
ments examined the orientational dynamics over much
broader ranges of times and temperatures than had been stu
ied previously. The TG-OKE measurements agreed with pre-
vious experiments on the slow time sc&tel0 n9 and over
the limited temperature range of the earlier studfe$.The
slow time scale orientational relaxation is a single exponen-
tial decay that follows the LdG temperature dependence in
the pretransitional regime.

The fast time scale orientational relaxatidnps to 1 n s -1 105 -10 95 9
are attributed to intradomain orientational motions. It was Log(time){Seconds]
found that the I.ntrad.omam dyna_lmlcs are independent of terT‘EIG. 1. (8 Fast decay data sets of MBBA at four temperatures
perature and viscosityy) over wide ranges of/T although (556 °G.78.2 °Q are plotted vs time on a log—log plot. The decays are
over the same ranges, the orientational relaxation dynamicsiperimposable, showing that the fast MBBA dynamics are viscosity/
of the domains themselves, occurring on a much longer timgmperature independent. The dotted line is_a strgight line through the data
scale(~1 ns, change dramaiically. AL suffcientl high tem- S1oV10 11 e Secor ovey ¢ pover et it = 005 010
perature, both 5CB and MBBA begin to make a transitionie identical exponente=0.63+.02. Both the MBBA and 5CB data are
from a locally ordered liquid to a simple liquid; the slow viscosity/temperature independent until the correlation length falls below
dynamics start deviating from LdG theory and the intrado-3%- The striking sim_ilar_ities in th_e temperature erenQent dynamics of
main dynamics become temperature dependent. The dyna'ﬁffi%Ac?;gng may indicate a universal behavior in the isotropic phase of
ics within the domains are temperature independent because
the local pseudonematic structures are preserved during the
relaxation. Thermal fluctuations change the local structurefong as the correlation length is sufficiently long for pseu-
on the much longer time scale of the overall domain relaxdonematic domains to exist, as demonstrated by the slow
ation described by the LdG theory. dynamics obeying the LdG theory, the fast intradomain dy-

Figure 1a) shows a log—log plot of four short time scale namics arey/T independent. This is in spite of the fact that
data sets of MBBA taken at 52.6, 60.8, 68.5, and 78.2 °Ghe relaxation times for the slow dynamics change by more
(T=46.9 °Q. Within experimental error, all of the data sets than an order of magnitude over the temperature ranges of
display identical highly nonexponential decays. The decay$dG theory applicability in both MBBA and 5CB. Thus, the
are viscosity/temperature independent in contrast to the slofast, intradomain dynamics are not coupled to the hydrody-
dynamics that change by a factor ofL70 over this same namic modes, and the results indicate that the dynamics are
temperature range. The shear viscosity changes by a factor sfrongly influenced by the pseudonematic domain structure.
103 The faster dynamics become temperature dependent at As can be seen in Fig.(@), for times shorter than 1 ns,
~90 °C. This is the same temperature at which the slowthe data fall on a straight line, corresponding to a power law
dynamics of MBBA begin to deviate from LdG theory, i.e., decay of the response function
the temperature range in which the correlation length be- o ea
comes so small that pseudonematic domains no longer exist. G(D)=Got =
The fast data for 5CB1 ps to 1 ng[see Fig. 1b)] display  From the datag is 0.63+0.03. The 5CB dat@Fig. 1(b)] is
the same behavidf i.e., they aren/T independent from the also a power law witlw=0.63+0.02. Thus, qualitatively and
phase transition temperatuig,=35.2 °Q upto~70 °C. As  quantitatively, the orientational relaxation dynamics in the
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isotropic phases of both liquid crystals, MBBA and 5CB, arecality is superimposed on a weak first order transitioh.
identical. The fast dynamics in both systems exhgutver  small but finite entropy change, characteristic of the first or-
law behavior with the same exponge63, and the slow der transition, is observed at the nematic-isotropic transition
dynamics in both systems begin to deviate from LdG behavtemperatureT,;, where a sharp transition in the system’s
ior at the same correlation length,3&,, whereg, is on the  symmetry occurs. The heat capacity shows divergen@é at
order of a molecular lengthWhen the correlation length slightly belowT,;. This is a characteristic feature of second
becomes less thanég the fast dynamics in both systems order thermodynamic criticality. Many pretransitional phe-
become temperature dependent. The remarkable similaritieBymena are observed in the isotropic phase of nematic liquid
in the dynamical behavior of these systems suggested thaystals’ They are explained as critical behavior, and orien-
existence of a universal principle that governs the dynamicgational correlation is identified as the order parameter. The
in the pretransitional isotropic phase of liquid crystals andphysical origin of critical anomalies is the increase in the
motivated the theoretical treatment presented in the next seceorrelation length of the order parameter on approaching the
tions. critical temperature from above. The increase in the range of

Dynamics observed in TG-OKE experiments start withcorrelated regions leads to a corresponding increase in the
an anisotropy induced in the sample by the two crossed fime scales for dynamic procesdesitical slowing down.?®
excitation pulses. The coupling of the radiation field to theThe correlation extends over distances that are increasingly
molecules involves stimulated Raman scattering excitatiomong and times that are much longer than those associated
of a subset of the modes of the liquid, i.e., librationalwith the dynamics of microscopic elements of the system.
mode$!~2°of the molecules. These essentially harmonic mo-Anisotropic intermolecular interactions and correlation of
tions are modes of the potential surface arising from thdluctuations cause cooperativity in the alignment of the per-
fixed local structure of the liquid that exists on the ultrashortmanent dipole moments of the liquid crystal molecules.
time scale of the excitation pulses. The laser excited libra- The order parameter, which is useful for the description
tions add to the isotropic distribution of thermally excited of order—disorder transitions, can be identified for any criti-
librations, making the ensemble of excited librations aniso<cal transition. The order parameter makes it possible to for-
tropic. The initial ultrafast transien{~100 fg seen in mulate a unified description of the order—disorder transitions
TG-OKE experiments consists of a rise in the signal as thén many different critical systentS:*°The local orientational
overdamped librators begin to undergo angular displacememtrder in the isotropic phase of a nematic liquid crystal is
and the partial decay of the signal as the librational motiorcharacterized by a microscopic scalar order paramgter,
depha;es and damps. In a dense liquid, cohergnt motions of S=1(3 cog 6 — 1), 1)
pairs, triplets, etc., of molecules can also be driven to some
extent and will lead to a very short lived contribution to the where@ is the angle between the axis of the rodlike molecule
signal through interaction induced polarizabilitfi@g’ and the reference direction, the directdt.This is the same

In a crystal, stimulated Raman scattering excites opticaflefinition that is used to define the order parameter in the
phonons. Because of the well-defined lattice structure, dampematic phase. In the nematic phaSe&,0 on a macroscopic
ing of the optical phonons returns the molecules to theidistance scale. In the isotropic phaSe;0 on a macroscopic
original positions, leaving no residual anisotropy. In a liquid, distance scale. However, on a distance scale §fS#0. If
damping of the optically excited librations can result in ori- the local order possesses some axial symmetry, one of the
entational displacements from the initial isotropic configura-symmetry axes can be chosen as the director about véich
tions. This leaves a longer lived residual orientational anisohas the highest value. For local nematic order, it is the local
tropy that will decay by some form of orientational relax- nematic axis. In the isotropic phase of a nematic liquid crys-
ation. tal, a macroscopic symmetric traceless tensor order param-

The long range correlation of initially excited librations eter of rank 2Q, is used to describe the anisotropy of ther-
is determined by the fringe spacing of the transient gratingnodynamic properties, e.g., magnetic and dielectric
(grating wave vector Librational damping(dephasingde-  anisotropy’ The elements of) are determined by the values
pends on the local molecular environment. Therefore, spatiaf the microscopic order parameter.
variations in orientational correlation extend to higitishort
distance scalgdollowing librational damping(hundreds of
fs). Thus the relaxation of the residual anisotropy on timeA. Theory without including critical correlations of
scales greater tharl ps occurs over a broad range@$  fluctuations
that extend from the molecular length scéie-0.1 A1) to
the grating fringe spacingg~2.5x10"% A™1). The theo-
retical development presented in the following sections ex
amines the influence of fluctuations over the full rangey of
on the orientational dynamics in the pretransitional isotropi
phase of liquid crystals.

Landau—de Gennes theory provides a good description
of the phase transition in the pretransitional region. de
Gennes extended the Landau theory of the second order

hase transitions to the weakly first order nematic-isotropic

hase transitioh? LdG theory describes the slow time scale,
long distance scale dynamics in the isotropic phase.
Landau—de Gennes theory as applied to liquid crystals de-
fines the free energy as an expansion in powers of the order

The isotropic-nematic phase transition of liquid crystalsparameter. By neglecting the spatial variation of the director
is an important example in a chemical system in which criti-and the order parameter, the free energy is expanded as

lll. THEORY
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F,=F,+AS-BS+CS", 2) 7q IS a viscosity coefficient on the corresponding length
scale. The normal modes are chosen such @at)’s are

f f the isolronic phask. B. C ant q uncorrelated, and their time dependencies are separable. For
Sre.e etlrwlergyp €10 rop&c phase, ’t arSe_ constrf:ln S, an i a parabolic surface, the time evolution is exponential with a
is the microscopic order parameter. Since the nema 'Cdecay constarit,. From Eqs.(6) and(8),

isotropic transition is a weak first order transition, the mag-

whereF, is the free energy of the nematic phabg,is the

nitude ofB is small.A is inversely proportional to the bire- 1 )

fringence when the sample is in a magnetic field, and goes to Fq:,?_q (A+La%). ©

zero on approaching the transition temperature from ) ] ) »

abovel® In the isotropic phase, just above the phase transition, there

are regions of orientationally correlated molecules. In the

A=a(T-T*). (3)  LdG theory the correlations have an Ornstein—Zernike form

In this manner, the system produces large fluctuations in the 1 —r

order parameter near the temperattifewith minimum ex- (S(0)S(r))~ T exr{ ?) (10

pense to the free energy. This is the thermodynamic origin of

pretransitional phenomend* is the temperature where a ¢ is the correlation length, andis the distance. Above the

second order phase transition should occur, but it is actuallgritical temperature, this form of the correlation function is

slightly below the nematic-isotropic transition temperature,good for r>¢£.256 £ is related to the constants and A,

T.i- For systems where mean field theory is valid, the sus¢=(L/A)*'2° From Eq.(3), it is possible to see the manner

ceptibility critical exponenty ~1.° in which the temperature dependence of the correlation
To describe the fast time scale, short distance scale dyength shows critical behavior

namics, it is necessary to expand on the considerations em- T\ 2

ployed by de Gennes to describe the isotropic phase. The E= fo( ) (12)

spatial variations of the local alignment contribute to the free T-T

energy through terms involving spatial derivatives of the or-yo Gennes identifieg, as a molecular dimension. Experi-

der parameter. In the isotropic phase, these terms are impQliants by Courter&® Chu et al.57 and Stinson and Litstir

tant for fast time scale dynam|c_s that occur on short distancg,ye determined, and found it to be in the range 5.5-7 A.

scales. The total free energy in the isotropic phase can benis js comparable to the cube root of the molecular volume

expressed in terrgs of the fluctuations of the MAacroscopig_g A) of a liquid crystal molecule such as MBBA. For

order paramete®, comparison the molecular length of MBBA is 18 A.

Introducingé=(L/A)*? into Eq.(9), the dispersion for-

F=Fo+ X A(Qg)’+L(3:Qp,) 4 mulaforT is obtained,
aBy
L
whereq, B, y are indices referring to the laboratory reference Fq:ﬂ_ (q2+&2). (12
q

frame andj = d/ 9%, . Fy is the free energy at the minimum.

L is the elastic constant in the isotropic phase; its magnitud@t short distances whergé>1, the relaxation depends on
is smaller than in the nematic phase and is only weakly dethe fine structure of free energy surface, dhpEqu/ Nq-
pendent on temperature. The fluctuations can be expanded This is what we refer to as intradomain relaxation, the fast

terms of fluctuation normal modes, orientational dynamics. These dynamics have not been inves-
tigated previously. Results of the TG-OKE experiments dis-
Q(r,H)=, Q(q,t)e'dr. (5) cussed in Sec. Il provide a detailed picture of the intrado-
q main dynamicsL is weakly dependent on temperature, and

S - : the viscosity at high wave vector and high frequency is tem-
For simplicity the indices are omitted. Thus, the free energy erature ingepengeﬁﬁ'.SzA fundamentallygimpo?tant p)(;int i

i withthﬂttinfhrrrmraﬁ1 .
associated e fluctuations of the order paramete atfor large wave vectors, both L ang, are independent of

wave vectorq is q.>%2 As will be shown below, Eq(12) and theq indepen-
fqo=(F— Fo)quQS(t)Jr LqZQS(t). (6) dence ofL and 7, for largeq lead to the temperature inde-

. . . endence of the fast time scale dynamics.
Qq can be expressed in terms of a microscopic order param- . . .
. ) . : For gé<1, orientational relaxation depends only on the
eterS, which describes the molecular orientational order on

: : critical length ¢, and the relaxation time obtained from Eq.
various distance scales, (12) is
S4=(S)q. (7
1= (g 7(T)

where the averaging is performed over a distance scale of T:FSl“m- (13
lg/ L. The relaxation of a fluctuation is determined by the _ _ _ _ o
slope of the free energy surface on the relevant distancg(T) is the long distance scale, bulk viscosity, which is

scale. Then highly temperature dependent. Thus the LdG result of critical
divergence for the slow time scale relaxation is recovered.

@o( a_Qq - _ i ‘9_fq --T,Q (8) This slow relaxation can be visualized as orientational diffu-

ot dt 274 9Qq 4= sive randomization of the pseudonematic domains. In the

J. Chem. Phys., Vol. 102, No. 10, 8 March 1995



A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals 4197

LdG model of liquid crystalsy calculated from Eq(13) has  This is the hydrodynamic regime described by LdG theory
been found to be-1,¢ indicating the validity of the appli- which givesT'o(T) [Eq. (13)].

cation of mean field theory fahe slow orientational dynam- Fort<tg,

ics of the domains.[In the general theory of critical phe- a 3

nomena, the correlation length exponent and the “critical ~ G_(t)e | dqo?G(q)exp(—Igt), (18
slowing down” exponent are referred to asand vz, respec- e

tively; z is the dynamic critical exponent. The general scal-whereq,, is the inverse of the molecular length scale apd
ing relations do not necessarily follow the LdG relations corresponds to the inverse of an average correlation length
among the exponentsee Sec. IY] It has been found ex- over the entire time scale of intradomain relaxation. From
perimentally that & is the minimum correlation length do- the equipartition theorem and the expressionffpat largeq
main size for which the LdG theory appli€3At higher tem-  [Eq. (6)], one findsG(q)=(kgT/Lg?). For largeg, L and 74
peratures, the correlation length drops below this value, angdre q independent:3? Fq=|_q2/ 7. [EQ. (12)], where 7., is
the isotropic phase approaches the behavior of a normal licthe largeq and high frequency viscosity which, in addition to
uid. beingq independent, is also temperature independfe@Gon-

While the slow time scale isotropic phase orientationalsidering the relative values af, andq,,, an analytical ex-
relaxation is a single exponential with the temperature depression can be obtained by making the reas-
pendent decay constant given in HG3), as discussed in onable approximation of extending the limits of integration
Sec. Il, the short time scale orientational relaxation is a temto q.=0 andq,,=<°,
perature independent power law decay with exponent, 0.63.
The fast orientational relaxation is dominated by laggeon- o kB_T Jm _ 2

G(1) dq exd —(L/7.)q], (19

tributions (intradomain dynamigs Mean field theory does L Jo
not apply and as will be shown below, the slow time scale
scaling of exponents also fails in this regime.

The TG-OKE response functioB(t) is related to the
spatial Fourier components of the time correlation of theThis analysis yields a universal power law time decay with a

keT(mn.)""?
G<(t)m%/2—t 1/2. (20)

order parameter fluctuation, temperature independent exponent of 0.5. The prefactor in
Eq. (20) is only temperature dependent throdgdT since

G(t)ocE G(q,t)ZE (Q(a,1)Q*(q,0)) andL are temperature independent on a short distance scale.

q q The prefactor shows that the amplitude of the decay is tem-

perature dependent. However, in an actual TG-OKE experi-
ment, this temperature dependence would not be expected to
be observed. The details of the temperature dependence of
the coupling of the radiation field to the sample and the

=2 (Q(M)Q* (a))yexp(—Tq). (14)

q

Since damping of librations to produce the residual anisotr@hg
. = observablg have not been considered. The result given in
(QaQ*(®))=G(a) Eq. (20) is universal because the derivation does not depend
_ on the details of the intermolecular interactions. However,
= f dPry(Q(rp)Q* (ry))e 19 (27, the difference between the calculated and the measured value
of the exponent is real since the error bars on the data are
therefore, very small. The more detailed analysis given in the next
section resolves this difference.
G(t)“E G(q)exp—Lqt). (15 B. Theory including critical correlations of
q fluctuations
For t<ty, the sum in Eq.(15) depends on they's In the calculation above we have ignored the correlations

sampled. Fot>t,, the system is ergodic. Consider the slow of fluctuations that occur in a critical system. Since the ex-
dynamics first. Fot>t,, only one distance scalé,becomes perimental system shows critical behavior, the critical corre-
important as suggested by criticality and the relaxation octations of fluctuations are important. In the neighborhood of
curs at distance scales corresponding dsq,; where  T=T_, the Fourier transform of the two point spatial corre-
lao|=(27/¢), the wave vector for the correlation length At |ation function in a critical system is of the foffh

distances larger thag the spatial correlation varies slowly f(qf)

with distance and therefore, G(q)=(Q(q)Q*(q)) = 1as) (21)

Q7

G(g=do)~G(qo) =const. 16 _ . o
(G=do) (Go) =cons (16 where 7 is the spatial correlation critical exponent whose

This yields a single exponential slow orientational relaxationvalue depends on the dimensionality of the systéns, the
of the pseudonematic domains correlation lengthf(z) is some function of a single variable,
and it tends to a finite limit ag—o. At T=T,., £&—« and
G.(h)= 3 G(alexp—Tgt)xexf ~To(Tt]. (17  therefore
a=do G(q)~q 2", (22)
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At T>T,, for qé>1 (inside the domains
G(a)~q "7 (23 a

as f(qé&)—constant. This implies that on the short distance

Uh
<
=il
&

scale ¢ <¢) the spatial correlation function behaves as if the
correlation length is infinite. Therefore aboVe, on a dis-
tance scale smaller than the correlation length, behavior
characteristic of critical phenomena will be observed. This is Cc n d n
responsible for the existence of domains with nematic order
in the isotropic phase of liquid crystals. On a distance scale ? ég
short compared t§ and on a time scale fast compared to the
LdG relaxation of the local domain structure, the system ex-
hibits properties characteristic of the nematic phase, and the
correlation functioné(q)ocq’H 7. Exact calculations ofp FIG. 2. Order parameters and thdluctuations of the axis of the molecules
h b d v f d . | d di are symmetric about the directoy but thee fluctuations are not symmetric.
_ave e?” one qumor one I-menSIO.na ar.] two .'me”rn configuration(a) both the molecular alignment and the order parameter
sional Ising m0de|§, and for higher dimensions various are symmetric abouf. In configurations(b), (c), and (d) the molecular
approximate models and computational techni&‘%—égha\/e alignments are not axially symmetric, but the order parameters are. Configu-
been developed with limited success ration (d) illustrates that the order parameter does not change if the molecu-
- —2+7 o lar axis points up or down. The small arrow on the cone represents the
Using G(q)ocq and SUbSt'tUtmg n E({.lS) and Eq. molecular axis. The cones represent the probable rangela€tuations for
(18) we obtain a fixed value of9 corresponding to a particular value of the order parameter.

Go()=>, q 277 exp(—Tgt), (24)

q erage over three dimensions, we need a critical expongnt,

for a two dimensional critical system to use in E(&) and
(25).

Application of the two dimensional Ising model.Since
the Hamiltonian is invariant t@, the orientational interac-

Direct x-ray evidence for antiparallel local ordering in . ;
. : tion energy between molecules 1 andl?,, can be written
the isotropic phase of 5 CB has been reported by Leadbett%rslo,ss 9 2

G(t) | "dac(a 2 mexp -, @9

et al!! This is consistent with pseudonematic domains ex-

hibiting local nematic order. Thus, there exists uniax@l) U= —\S5S,, (26)

symmetry about the local director. Because of the uniaxia)yhere is a positive constant with the dimension of energy:

symmetry, the order parameter variation inside the domai =43 co2 6, — 1), whered, is the angle between the local
| 1 |

also will be symmetric about the director; the spatial varia-gjrector and the molecular axis of thth molecule. Further,
tion of the order parameter is the same in any axial plang,e can make the problem discrete by restricting the possible
containing the symmetry axis of the domain. If the axis of, 51 es ofS. to its limiting values—1/2 and 1, corresponding
the polar coordinates is chosen along the director, orientdy p=90° and g=0° respectively. An average of these two

tional fluctuations will involve the fluctuation of both the \,o1ues with suitable weights is mathematically equivalent to
angles 6 and ¢ of the molecular axis. However, the order

parameter depends on ordyand thed fluctuations conserve
the axial symmetry of the order parameter about the local -
director.[While the ¢ fluctuations do not conserve the sym-
metry, they also do not affect the order paramésere Fig.
2).] This means that, inside the domain at any instant of time,
the two point orientational correlatiodS(r;)S(r»,)), will be
the same as the correlati¢s(r,)S(r;)) which is in the axial )
plane containing ; and the directorr is the mapping of , ) 2
onto ther, axial plane.[r{=(rq1,01,¢1); r,=(r,,0,,¢5);
ry = (r,0,,¢1) (see Fig. 3] Thus, the correlation of the n
order parameter between any two points is the same as the
correlation between two points in the same axial plane.
Since thed variation in each axial plane is primarily
determined by the interactions in that plasach axial plane
can be considered as a critical subsystem of reduced dimen-
sionality of two. The correlation function in each axial plane FiG. 3. Consider two distinct axial planes of a pseudonematic domain con-
will therefore behave like that of a two dimensional critical tainingry (r1,6;,¢1) andr, (r,,6,,¢,). nis the director of the domain and
system also the chosen axis of the polar coordinatgs(r,, 6,,¢,) is the mapping

. . . f r, onto ther, axial plane. Since the order parameter is symmetric about
Because of the axial symmetry, the three dimensionaf the correlation of the order paramet€®(r,)S(ry)) = (S(ry)S(r1)).

critical system is reduced to a set of many two dimenSionaﬁhus the correlation of the order parameter between any two points is the
subsystems. Although we have to perform the ensemble awame as the correlation between two points in the same axial plane.
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any of the possible continuous values®f The problem is In addition to obtaining agreement with experiment, the
now analogous to that of a two dimensional Ising spin sys+esults potentially have another importance. It is consistent
tem. The two dimensional Ising model has been solvedvith the fact thatthe fast time scale, short distance scale
exactly* The calculated critical exponent for the spatial cor-dynamical properties of a critical system, like long time
relations of the two dimensional Ising spin system will bescalé***and stati¢>® critical properties, may depend only
employed. Ising models for square and triangular latticeon general featureike the dimensionalityD, of the space,
have been found to produce the same critical exporfémts. the dimensionalityn, of the order parameter, and the sym-
those exact calculations, only short range interactions armetry of the interactions, but do not depend on the details of
considered. The lack of dependence on the lattice structurthe interactions. To our knowledge, this theoretical approach
suggests that the exponent is not very sensitive to the exaekplains for the first time the fundamentally new experimen-
details of the spatial arrangement in two dimensions. Theal results briefly described in Sec. Il and establishes the
fact that pseudonematic domains exist down to very shompossibility of universal aspects of the dynamics of a critical
correlation length$é=3¢;) suggests that the important inter- system on an ultrafast time scale.

actions are short range. Therefore, it is not unreasonable to

use the critical expoqent fqr the _two dimen_sional Isinglv_ OTHER THEORETICAL METHODS

model. 7 for the two dimensional Ising model is 0.26%°

The correlation function behaves like a two dimensional In the treatment given above, we used well known theo-
Ising model because the orientational distribution in eachretical concepts combined with knowledge of the symmetry
axial plane is determined solely by in-plane interactions. Theproperties and distance scales associated with the system to
symmetry in the hydrodynamic and critical regime being dif- obtain a detailed description of the fast time scale dynamics.
ferent, the value ofy deviates from the three dimensional The approach also yields the LdG results for slow time scale

mean field value. Therefore, dynamics. It is important to consider application of other
- . 91025 methods to this problem. In the literature, one finds that dy-
G(q)=(Q(@)Q*(q))=q "™ (27)  namic scaling theory** the kinetic Ising modet®=**quan-

tum field theory® and stochastic models like that of Karder—
Parisi—-ZzhangKPZ) (Refs. 46,47 have been applied to the
understanding of critical dynamics. The idea of universality
class in dynamic critical phenomena is based on dynamic
scaling concept¥" 3 Theoretically a large number of dy-

the limiting case ofj.=0 andg,,=« as the integrand is still . ) ; .
; L~ namic universality classes could be observed for one static
bound. Although the correlation functigb(q) is same as the . . 5 .
universality clasé® There has been considerable recent

two dimensional Ising system, it must be emphasized that the in theori fd i< critical oh b K
sum in Eq.(24) must be performed over all the modes of the progress In theories of dynamic critical phenomena, but wor

system which is three dimensional. A sum over all the two's still continuing. In this section, the application of these

dimensional axial planes constituting the domain implies tha[nodern theories to the problem of the observed uitrafast dy-

a three dimensional integral must be used. Using the wwamics of isotropic phase of liquid crystals will be consid-

dimensional Ising model correlation function and substitut-ered’ and some of the difficulties will be explicated.

. . o Dynamic scaling theory states that the Fourier trans-
Ic?t?ta:ihne expression for the higilimit I'q from Eq. (12), we formed space—time correlation function in a critical system

follows the scaling law*

For a finite correlation length, the correlation function
diverges afg=0. So the expression for the correlation func-
tion in Eq. (24) is not valid forq=0 at T>T..!® We can
nonetheless perform the integral in E85) by considering

(1) j:dqqz(q—zw.zs)exq_rqt), 28 CR(q,0) =27[ ()] CAQ fod /0], (3D

where f . is the shape of the frequency spectrum for the
gth mode C(q) is the mode density, andP(q) is called the

ocf daq®2® exd — (L/7..)q%t], (290 characteristic frequenc@ denotes the order parameter and
0 the correlation length o. For the case wher@?(q,w) is a
1 0.625 Lorentzian of widthl", for theqth mode, centered about zero
=5 (% t—0.625 (300 frequency, it can be shovththat
wg(a)=Tg. (32

The final result is a temperature independent power law tim

decay with an exponent 0.625his is identical to the mea- with T, in Eq. (15. In dynamic scaling theory, it is as-

sured value 0.63, within the significant figures of the mea- 4 that (@) i h funci d
surement. If our ansafEq. (27)] for the correlation function 59?3335 atwg(q) is a homogeneous function af an

is valid for all nematic liquid crystals, then the calculatedf '

temperature independent power law decay is universal. For wg(q):QCqZQi(qg), (33
static critical properties, Ising models give more accurate

values for critical exponents than the Landau—de Genne\é”th different functions above and beloW, (indicated by

model’>16 The Landau—deGennes model givgs0. Using ¥). It is assumed that af; the characteristic frequency is

this value in Eq(27) would result in a power law exponent unique;=1.€.,
of 0.5 as obtained in Eq20) using a different approach. QOF(0)=0"()=1. (34

fn the context of dynamic scaling»?(q) can be identified
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For a nematic liquid crystal, the characteristic frequencydynamics, and in order to obtain the experimentally observed
is found to be independent gfin the hydrodynamic regime power law exponent, one has to treat bgtandz as adjust-
(qé<1), able parameters. As adjustable parameters, no physical basis

-1 can be found for a legitimate choice gfandz.

w?(q~0)= 7o (T=T5)/n(T). (35 Next some specific models will be considered where
In the critical regime ¢é>1), the fast dynamics in isotropic has been actually computed. Exact calculations dfave
nematic liquid crystals are temperature independent, therdseen possible only in the one dimensional mot&and in
fore wg(q) must be independent of temperature and musthe context of mean field theor§.Computation ofz for a
not depend orF. For a continuous transition from the hydro- model without conserved densities often employs the kinetic
dynamic to the critical regime, the appropriate homogeneoutsing model(or Glauber model*®#! The field theoretical es-
scaling function is timate givesz=2 in three dimension3->2If we have to use

n _ _ the three dimensiona, the value oz required to obtain the

Q7 (ad)=[1+(ad) 7. (363 experimentally observed power law exponent is far from this
To introduce the observed viscosity dependence we assumestimate. In two dimensions different calculations yield val-

Q= O/ (36b) ues ofz in the range 1.7%the exact lower bound<z<2.3

c™ 20! g and values ofy between 0.2 and 0%:° Therefore the
7q s the g-dependent viscosity anf), is independent of choice ofz and » is not unique, and to obtain the experimen-
temperatureq and & Thus forqé<1 andq~0, the critical tally observed power law, one has to treat them as adjustable
slowing down can be obtained from Eq86a and(36b), parameters. Renormalization group theory approaches to the
1 _ Y kinetic Ising model have been attempted on fractal lattices
7o :Fozwg(q~0):ﬂc§ e Qo(T—T%) Z/n(T)’S with no success in obtaining a general relation between dy-
(87 namic and static exponents. For some specific fractal geom-
wherev is the correlation length critical exponent andiT)  etries, different values of the dynamic exponenare ob-
is the bulk viscosity. Similarly, in the critical regime tained; 2, d;+ 1/v, and 1+d; (d; and v are, respectively,
(9é>1), the fracg:lll55 dimension and the correlation length
— Qr) = z_ z. exponenk>*>°Therefore, it is not surprising that in the case

F=0g(@)=0:0"=(Qo/7.)0% S systems with nonconserved order parameter, the dynamic
in the highq limit 7, is independent of temperature agd  exponent bears no simple relation to static exponents and
Substituting Eq(38) in Eq. (28), an expression for the power dynamic scaling applied to slow dynamics may breakdown

law exponent can be obtained, for ultrafast dynamics in the critical regime.
14 Slow time scale stretched exponential and power law
a= 77_ (39 behavior have been derived with the dynamic Ising
z

model#?~**In these cases, the stretched exponential and the
The observed temperature dependence of the slow orientower law exponents are dependent on temperature and not
tional dynamics of the domains suggests thet 1 orz=1/  universal as they are dependent on the critical poing (
v. The well known mean field values of the critical expo- The fastest power law calculated in three dimensions is with
nents in three dimensions ase=0, »=0.5 and thus from an exponent 0.065 for-J interaction distributiod? Until
Eq.(39), =0.5. It shows that the mean field theory does nothow, whenever dynamic scaling theory, the kinetic Ising
apply to intradomain dynamics. model, and the stochastic model of KPZ are applied to cal-
It is tempting to use the computational results fromculations of explicit time dependence, they are limited to
Monte Carlo simulatiorf§ of the three dimensional Ising much slower dynamics that are really macroscopic, e.g., ki-
model, =0.037 andv=0.63, in Eq.(39) in order to obtain  netics of interface roughening during crystal grofftand
a better value of=1.587 andx=0.65. In this way a power dynamics of domain growth during spinodal decomposition
law exponent within error of the experimental value of 0.63in block copolymer melt§’
is recovered without violating the dynamic scaling theory.  These methods, briefly discussed above, cannot yet de-
However, experimental results do not support the dynamiscribe the fast dynamics in the isotropic phase of liquid crys-
scaling argument since the experimentab quite different.  tals. The approach in Sec. lll B considers the symmetry of
Stinton and Listét performed an independent measurementhe order parameter fluctuation and the Hamiltonian for ori-
of the correlation length critical exponenfor MBBA in the  entational interaction. These give rise to a spatial correlation
isotropic phase and observed the mean field value=08.5.  which is the same as that of an exactly solved mdie two
Susceptibility measurements also confirmed the three dimerdimensional Ising modgl The results reproduce the experi-
sional mean field value oj=1 for nematic liquid crystals in mentally observed temperature independent power law with
their isotropic phas@.In order to be compatible with the no adjustable parameter. While the theoretical approach pre-
conventional theory of critical slowing down, the scaling sented in this paper is not as general as other theoretical
z=2—7 is appropriate for a nonconserved ordermethods, it is useful for the specific problem of intradomain
paramete?> In the mean field limit, this relation holds true dynamics of the isotropic phase of nematic liquid crystals.
for the slow orientational dynamics of the domains but it isOur approach is equivalent to haviag 2 (field theoretical
not compatible with the fast intradomain dynamics. The dy-result in three dimensionsand »=0.25. (7 is allowed to
namic scaling argument clearly fails for the fast intradomaindeviate from the three dimensional mean field value in the
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critical regime where the dynamic scaling falils. tals. It would be interesting and important to show that the
The question remains; why does the universal behaviorigorous application of more general theoretical methods can

on a fast time scale relate to critical exponents other thameproduce the experimental results without unwarranted ad-

those observed for the slow time scale, long distance scajestable parameters.

behavior. The slow time scale universal behavior is associ-

ated with the IR fixed point in renormalization groiRG) ACKNOWLEDGMENTS

flow of the Hamiltoniarf®>°®We speculate that it is possible

on a fast time scaléin the nonergodic limijt different fixed We would like to thank the referee for comments that

points exist and therefore create the possibility of observiniquga&]gﬁ;ﬁ;trggﬁi? ;@jr:,é(;:ﬁr-\rhgi\\/,\i/;:)knw(;snj:?gr?;

different universal behavior not predicted by conventional
: s P o by c . _ResearciDMR-9322504.
theories of critical phenomena or dynamic scaling theories.
The results of the femtosecond TG-OKE experiments indi-1 o
cate that on a fast time scale, the interactions confined to thgP- G- d& Gennes, Mol. Cryst. Liquid Crydt2, 193 (1971.
ial planes of a domain mav lead the RG flow to a fixed G. Vertogen and W. H. de Jelthermotropic Liquid Crystals, Fundamen-
aXI_a P . . y - . ) tals (Springer, Berlin, 1988
point which is the same as in the two dimensional Ising 3p. Martinoty, S. Candau, and F. Debeauvais, Phys. Rev. P@{t1123
model. Now if there is very weak interactions present be—4(l971)-
tween the axial planes, they are insignificant on a fast time,E- Courtens and G. Koren, Phys. Rev. L&, 1711(1975.
le, but they will grow slowly with renormalization. At E. Courtens, J. Chem. Phas, 3995(1979.
scale, bu y will g y normalization. At - eg_chy, . s. Bak, and F. L. Lin, Phys. Rev. Le28, 1111(1972.
sufficiently long time, crossover to an equilibrium fixed point 7E. Gulari and B. Chu, J. Chem. Phyg2, 798 (1975.
occurs, and the slow, long distance scale dynamics obe)Z(T-)W- Stinson and J. lr?- Lithsten Ph]yS- Rec\’/- Lao, 6(58?(1923. o
. ; ; ; ; ; _ ~(a) P. G. De Genneslhe Physics of Liquid Crystal€larendon, Oxford,
mea” fle.ld Sca“nQGWhICh IS dlﬁere.nt ffom the tWO_ dimen 1974; (b) S. Chandrasekhat,iquid Crystals 2nd ed.(Cambridge, New
sional Ising modet? If this speculation is correct, different York, 1992.
classes of critical behavior associated with the “other” fixed°C. Flytzanis and Y. R. Shen, Phys. Rev. L&8, 14 (1974.

points m|ght be exp|ored by u|trafast measurements. llA. J. Leadbetter, R. M. Richardson, and C. N. CoIIing, J. Pﬂ?aris) 36,
C1-37(1975.
12F, W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer,
V. CONCLUDING REMARKS J. Chem. Phys93, 3503(1990.

. 133, J. Stankus, R. Torre, C. D. Marshall, S. R. Greenfield, A. Sengupta, A.
We have presented a theoretical treatment of the fastTokmakoff’ and M. D. Fayer, Chem. Phys. Letg4 213 (1992,

time Scale, Short distance Scale Orientational dynamiCS in thEB M. McCoy and T. T. WU‘The Two Dimensional |sing Modéﬂarvard

isotropic phase of liquid crystals. Because the nematic isol-SUniverS_ity, Cambridge, 1973 _

tropic transition is a critical transition, in the isotropic phase, J: J- Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newmahe
distance scale short compared to the correlation len tlﬂs'Theory of Critical PhenomengDxford University, New York, 1998

onad o p g g Michel Le Bellac,Quantum and Statistical Field TheotZlarendon, Ox-

the local structure is like that of the nematic phase. This ford, 1992.

permits the theoretical concepts of critical phenomena to b&Giorgio Parisi, Statistical Field Theory(Addison-Wesley, New York,

) . o _1988.
app!led to the analysis. LrJ1n|a;‘<|aI symmetr_y oflthe pseudonemG_ Eyring and M. D. Fayer, J. Chem. Phy4, 4314 (1984.
matic dqmamg reduces the three dlmen.smna System t0 & SEE . peeg and M. D. Fayer, J. Chem. Phgs, 2269 (1989.
of two dimensional subsystems. The Ising model of two di-2°J. J. Stankus, R. Torre, and M. D. Fayer, J. Phys. Clg5r9478(1993.
mensional critical systems is used. The results yield a tem? (@ B. C. Xu and R. M. Stratt, J. Chem. Phy&2, 1923(1990; (b) G.
perature independent power law time decay with exponent i?g'gaggsg('igggm'd'gl 5581(1989; () T. M. Wu and R. F. Loring,
O..625, in exact agreement with experimental observatioreg Fleuh’man, L. R. Williams, A. G. Joly, B. Kohler, and K. A. Nelson, J.
without recourse to adjustable parameters. These resultsPhys. Chem91, 2237(1987.
should also have implications for dynamics in the nematiciB- *;Oh'efdaTndS';-_ A. EG'SSOW Jt- PthS- ige?géxigzgmog(l%o-

. . 1to an . Igeoka, spectrochim. y .
phase on faSt_ time scales. The development depends on tﬂ%.‘ Z. Gochiyaev, V. K. Malinovsky, V. N. Novikov, and A. P. Sokolov,
wave vector independence of the elastic constant and thephios, Mag. B63, 777 (1991.
viscosity on short distance scales and the uniaxial symmetr3fP. A. Madden, ilfMolecular Liquids-Dynamics and Interactioredited by
of the system. These are also features of the nematic phas%\é é]4; Barzgsl- W. J. Orville-Thomas, and J. Yarwd@eidel, Dordrecht,

. . , p- .
a_nd_, particularly on a fagt time scale, the problem would be7, ™~ Geiger and B. M. Landanyi, Chem. Phys. L9, 413 (1989.
similar. In actual experiments, the problem may becomesw, Brenig, Statistical Theory of HeaSpringer, New York, 1989
more complicated since the nematic phase is very susceptibféG. Careri,Order and Disorder in Matter(Benjamin/Cummings, Menlo
to surface effects that are not important in the isotropic, Par. 1984 . y y
h Wave vector dependent variation of the director andH' E. Stanley/ntroduction to Phase Transitions and Critical Phenomena

phase. e P (Oxford, New York, 1971
second order variation of the order parameter may need to %r. C. Frank, inLiquid Crystals edited by S. Chandrasekhéeyden,
considered. 32London, 1980. _ .

This work displays a universal character for the fast dy- J: P- Boon and S. YipMolecular HydrodynamicgDover, New York,
namics in the isotropic phase of |IQU!d crystals. It may be ofs 4 w Maier and A. Saupe, 7. Naturforsct@a 564(1958; (b) 14 882
more general significance because it demonstrates that con¢1959; (c) 15a 287 (1960.
cepts of critical behavior can be applied to ultrafast time®'B. I. Halperin and P. C. Hohenberg, Phys. Rev7, 952 (1969.

dependent phenomena. The theoretical approach presentedajﬁ' Z'Ogelgﬁgé? in?vliihHiJE;inégFiﬁ\ig'\ggd' P48, 435 (1977.

this paper may seem deceptively simple, yet it is successfut; rogiers and J. O. Indekeu, Phys. RewB 6998 (1990.
and fully consistent with the molecular picture of liquid crys- %vYaakov Achiam, Phys. Rev. B3, 7762(1986.

J. Chem. Phys., Vol. 102, No. 10, 8 March 1995



4202 A. Sengupta and M. D. Fayer: Orientational dynamics in liquid crystals

393, Zhou and Z. R. Yang, Phys. Rev.3, 9423(1989. 50M. Suzuki and R. Kubo, J. Phys. Soc. Jgd, 51 (1968.
40y, Qin and Z. R. Yang, Phys. Rev. &6, 11 284(1992. 51B. I. Halperin, P. C. Hohenberg, and S. K. Ma, Phys. Rev. 126t.1548
413, 0. Indekeu, A. L. Stella, and J. Rogiers, Phys. Re82B7333(1985. (1972; Phys. Rev. B10, 139 (1974.
“2A. T. Ogielski, Phys. Rev. B2, 7384(1985. 52C. De Dominicis, E. Brezin, and J. Zinn-Justin, Phys. RevlB 4945
431 Bernardi and I. A. Campbell, Phys. Rev.4®, 728 (1994. (1975.
“M. Ghosh and B. K. Chakrabarti, Phys. Rev4B, 2578(1990. 53R. N. Bhatt and A. P. Young, Phys. Rev.3, 5606(1988.
48], Zinn-JustinQuantum Field Theory and Critical Phenomer2nd ed.  5*Y. Achiam, Phys. Rev. B1, 4732(1985.

(Oxford, New York, 1993 55Y. Achiam, Phys. Rev. B2, 1796(1985.
46B. Grossmann, H. Guo, and M. Grant, Phys. Re¥i3A1727(1997). 56(a) A. Aharony, inPhase Transitions and Critical Phenomerelited by
4TF, Liu and N. Goldenfeld, Phys. Rev. 29, 4805(1989. C. Domb and M. S. GreefAcademic, New York, 1976 Vol. 6. (b) N.
48N, M. Ferrenberg and D. P. Landau, Phys. Revi4 5081(1991). Goldenfeld, Lectures on Phase Transitions and the Renormalization
“R. Cordery, S. Sarker, and J. Tobochnik, Phys. Re24B5402(1981). Group (Addison—Wesley, New York, 1992

J. Chem. Phys., Vol. 102, No. 10, 8 March 1995



