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Analytical theory and Monte Carlo (MC) simulations are used to examine the problem of photoinduced electron 
transfer and geminate recombination in both infinite three-dimensional systems and in restricted geometry 
systems. As an example of a restricted geometry system, donor and acceptor molecules on the surface of a 
spherical micelle are considered. The analytical theory is an exact treatment for fixed donors and acceptors 
when the distance dependence of the transfer rate falls off exponentially and donor-acceptor excluded volume 
(DA EV) is included. Comparisons to the MC simulations, which include DA EV, show perfect agreement 
for both the 3D system and the micelle system. However, comparisons of the analytical theory to the 
simulations show that for sufficiently high acceptor concentration, acceptor-acceptor excluded volume (AA 
EV) becomes important. With AA EV, the analytical theory is no longer exact. A new approximate method 
for the inclusion of AA EV in the analytical theory is described. Comparisons with the simulations show 
that it is accurate up to substantial concentrations, but at sufficiently high acceptor concentrations, significant 
deviation from the MC simulation results are seen. 

I. Introduction 
A great deal of effort has been directed toward the study of 

photoinduced electron transfer and geminate recombination 
among donor and acceptor molecules in condensed matter 
systems. The problem can be roughly divided into two aspects, 
quantum mechanics and statistical mechanics. The quantum 
mechanical studies focus on understanding the pairwise interac- 
tion and driving force that determine the transfer rate between 
a donor and an acceptor at a fixed distance.'-5 Statistical 
mechanics studies address the time-dependent phenomena in 
systems in which a donor is surrounded by a set of acceptors 
spatially arrayed in some configuration. The problem is to 
determine how the spatial distribution of acceptors determines 
the dynamics of forward electron transfer (donor to acceptor) 
and geminate recombination (the electron returns from the 
acceptor to the donor to recreate the initial species). It has been 
found experimentally and theoretically in many systems that 
the transfer rate can be modeled as having an exponentially 
decaying distance dependen~e .~ -~  The most straightforward 
spatial distribution is a donor surrounded by acceptors ran- 
domly distributed in an infinite three-dimensional system. 
However, the spatial distribution of donors and acceptors can 
have a profound effect on electron-transfer dynamics, and 
other geometries, such as donors and acceptors on the sur- 
face of a micelle, attached to polymer chains or in zeolites, are 
important.I0-l3 These types of systems are referred to as 
restricted geometries. They are systems that are not in- 
finite in extent and do not involve an infinite number of 
molecules. 

Almost 30 years ago, the forward-transfer problem for a 
system of fixed-point particles randomly distributed in an infinite 
three-dimensional system was solved exactly when the transfer 
rate falls off exponentially with distance.I4 The result describes 
the time-dependent probability of finding the initially excited 
donor still excited at a later time (Pex(t)). The decay of the 
probability is due to electron transfer into a randomly distributed 
ensemble of acceptors. The calculation is exact for the specified 
model. 
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Several years ago, the more complex problem including both 
forward transfer and geminate recombination (back transfer) was 
also solved exactly for the same m ~ d e l ; ' ~ - ' ~  Le., fixed point 
particles randomly distributed in an infinite three-dimensional 
system. This theory calculates the time dependent build up and 
decay of the ion pair population (Pct(t)) as well as the decay of 
the initially excited neutral donor populations. (In (Pc,(t)), ct 
stands for charge transfer.) The initial donor and acceptor 
molecules are considered neutral, and electron transfer forms a 
cation and an anion. Back transfer regenerates the ground-state 
neutrals. However, the theory is general, and the initial donor 
and acceptor molecules can have any charge. For simplicity 
but without loss of generality, we will use ions to refer to the 
state of the system after electron transfer and neutrals to refer 
to the system before transfer or following geminate recombina- 
tion. Recently, the exact treatment of photoinduced forward 
electron transfer with geminate recombination has been extended 
to treat restricted geometries.'* The method is general, and as 
an example, the dynamics of electron transfer and geminate 
recombination on the surface of a spherical micelle were 
calculated. In this system the volume and the number of 
particles are finite. For the model of point particles with 
exponential distance dependencies for the forward- and back- 
transfer rates, the ensemble averages can be performed exactly 
in a manner analogous to the exact treatment in infinite three- 
dimensional systems. 

The exact methods mentioned above, like those in many other 
electron-transfer  calculation^,'^^'^^'^ begin by assuming that the 
donor and acceptors are point particles. Real molecules, 
however, have finite sizes, and therefore it is important to assess 
the role of excluded volume (EV) on the dynamics of electron 
transfer in infinite three-dimensional systems and in restricted 
geometries. Excluded volume limits the distance of closest 
approach of an acceptor to the donor (DA EV), and it eliminates 
from the spatial distribution configurations in which acceptors 
physically overlap (AA EV). 

DA EV is important at all concentrations of acceptors, and it 
is exactly included in the analytical theories (as in references 
14- 17,19) by performing the ensemble average over acceptor 
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configurations with a short distance cutoff. However, AA EV 
cannot be included exactly. The exact analytical method 
depends on the separability of the many-body problem into the 
superposition of two-body problems. This is possible for 
forward transfer and geminate recombination for point particles 
with DA EV.'4-17.'9,20 Including AA EV requires a many 
particle correlation function, and therefore the problem is no 
longer separable. To overcome this difficulty, we have devel- 
oped an approximate method that takes AA EV into account 
through a pair correlation function. 

has 
previously been used to include AA EV.'6,24,25 In the limit of 
low concentration, when particle interaction represents only a 
small perturbation on the point particle system, this method 
should work well. Fundamental questions arise about AA EV. 
How important is it? Up to what concentrations can it be 
ignored and the exact point particle results with inclusion of 
DA EV be employed? How well does the lattice model taken 
in the continuum limit work, and up to what concentration? 
Can AA EV be modeled with our new approximation based on 
the pair correlation function appropriate for the specific system, 
and if so, up to what concentration? To understand the 
concentration dependence of forward electron transfer and 
geminate recombination, these questions need to be answered. 

To address these questions, the results of calculations with 
the analytical theories are compared to Monte Carlo (MC) 
simulations. It is possible to include both DA EV and AA EV 
in the MC simulations. Significant care was given to ensure 
convergence and accuracy of the simulations. DA EV is 
included in all of the analytical calculations, since it can be 
handled exactly. Comparison of the simulations and the 
analytical theory for three dimensions with only DA EV 
confirms that the analytical theory ensemble averages are 
performed correctly. When AA EV is included in the simula- 
tions but not in the analytical theory, it is possible to determine 
the range of concentrations over which AA EV can be neglected. 
At higher concentrations, AA EV is important and significant 
deviations are seen between the simulations that include it and 
the analytical theory which does not. It is also found that the 
lattice method for taking AA EV into account in the analytical 
theory does not do a satisfactory job. 

A second approach is presented as a means of accounting 
for AA excluded volume in the analytical theory. The spatial 
distribution of finite-volume particles is taken to be a separable 
probability function, and thus an a priori description of particle 
positions can be utilized. This method is referred to as the 
separable probability distribution (SPD). In infinite three 
dimensions, a radial pair-separation distribution function, ob- 
tained from numerical solutions to the Percus-Yevick (PY) 
approximation for hard spheres, is employed. This weighted 
distribution is utilized to account for the effects of AA excluded 
volume on the state probability functions, (Pex(t))  and (Pct(t)) .  
Comparison of this approach is made to MC simulations for 
several acceptor concentrations and several sets of electron- 
transfer parameters. 

The AA EV problem in restricted geometries is also examined 
by performing the same types of studies for the micelle problem. 
Simulations with DA EV are compared to the exact analytical 
theory with DA EV to demonstrate the accuracy of the ensemble 
average. Simulations with DA EV and AA EV are compared 
to the analytical results obtained with only DA EV to determine 
the range of concentrations (fractional surface occupancy) in 
which AA EV is not important. Then the SPD method for the 
micelle problem is employed to determine its utility for restricted 
geometry systems. Also, comparisons between the solutions 

The continuum limit of the Blumen lattice 

Figure 1. Three-level system composed of the ground-state neutrals 
(DA), electronically excited-state neutrals (D*A), and ionic pair (D+A-). 
kf and kb are the rate constants for forward and backward (geminate) 
electron transfer, respectively, and 5 is the excited-state lifetime. 

of the three-dimensional (3D) problem and the micelle problem 
is used to illustrate the effects of restricted geometry on electron- 
transfer dynamics. 

The results for both the 3D and the micelle dynamics 
demonstrate that there is a significant range of concentrations 
in which AA EV can be neglected. However, at moderate 
concentration, the errors are significant. For both forward- and 
backward-transfer probability calculations, the SPD method does 
a better job of improving the accuracy in the moderate 
concentration range than does the continuum limit of the lattice 
method (hereafter referred to as CL). The SPD works better 
for the calculation of (Pct(t))  than of (Pex(t)) .  In limiting cases 
when the rates of electron transfer become quite rapid, such as 
high acceptor concentration, or the use of very long range- 
transfer parameters, even the SPD method fails. In these cases, 
only the simulation can provide accurate results. At intermediate 
concentrations, the analytical theories are important because the 
vast amount of computational time required to perform the 
simulations may make them unusable for data analysis. 

11. Methods for MC Simulations and Analytical Theory 

The model under consideration is a three-level system, 
composed of a neutral ground state (DA), an electronically 
excited state (D*A), and an ion pair formed by forward electron 
transfer (D+A-). This is illustrated in Figure 1. The forward- 
and backward-transfer rate constants are given by kdr) and 
kb(r), respectively, and z is the excited-state lifetime in the 
absence of electron transfer. The donors are considered to be 
present in sufficiently low concentration that each will interact 
only with acceptors and not with other donors. This precludes 
any excitation hopping to other donors by Forster energy 
transfer. Following photoexcitation, the donor molecule can 
either directly relax to the ground state or undergo forward 
electron transfer to one of the acceptors. If the latter occurs, 
the ion pair may exist for a time before geminately recombining. 
The master equations for such a three level system of one donor 
surrounded by N acceptors, each at a given distance Ri from 
the donor. are 

where Pex(E,t) is the time-dependent probability that a donor 
molecule, excited at time t = 0, is still in the excited electronic 
state at a later time t. is used to designate the particular 
configuration of the acceptor particle positions (R1, ..., RN), with 
the donor at the origin. The rate constant kdRi) characterizes 
forward electron transfer from the excited donor to the ith 
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acceptor at separation distance Ri, and 

a ' -  
--P',t(RJ) at = kf(Ri) P,,(Rt)  - kb(RJ P:,(Rt) (2) 

where P',,(R, t )  is the probability that the ith acceptor exists as 
an anion at time t ,  and kb(Ri) is the rate constant for geminate 
recombination. The rate constants for excited-state decay and 
forward and backward transfer are given by 

k =  llz 

Swallen et al. 

(3) 

where z is the excited-state lifetime. The parameters Rf and R b  

define the distance scale of forward and backward transfer, 
respectively, and uf and ab parametrize the falloff of the transfer 
rate with distance between donor and acceptor. The set of 
differential equations has been solved in two manners: integra- 
tion by means of Monte Carlo simulation, and an averaging 
procedure over all possible acceptor positions, which gives an 
explicit analytical form. The latter has been well documented 
in the l i t e r a t ~ r e , ] ~ - ~ ~  but the salient results will be presented 
here. 

A. Analytical Solutions. For the 3D system at low 
concentrations, the ensemble average of the excited-state 
probability was obtained analytically by Inokuti and Hirayama.I4 
For point particles (no excluded volume), the IH result is 

(P,,(t)) = exp(- i) exp(-4nChm[1 - exp(-kJR)t)]R2 dR) 

(4) 

where C is the acceptor concentration. The solution to eq 2 ,  
giving an analytical expression for the time-dependent ion-state 
probability, requires numerical averaging over all (N - 1) 
acceptors which did not receive the electron. By first averaging 
eqs 1 and 2 over these indistinguishable, randomly distributed 
neutral particles, an expression can be found for (Pct(R,t))N-~. 
When this is averaged over the last spatial position R and then 
summed over all N acceptors and taken to the thermodynamic 
limit (as the number of particles N and the system volume V 
each go to infinity, the ratio of NIV goes to the concentration 
C), the solution for point particles is'6$26 

exp(-kb(R)(t - t'))dt' R2 dR (5) 

Equations 4 and 5 give exact solutions to the probability- 
state functions. The initial photoexcitation is taken to occur at 
time t = 0, thus (Pex(t=O)) = 1, and (Pct(t=O)) = 0. These 
formulas are straightforward to calculate numerically. In 
practice, a maximum value is set for the upper radial limit of 
integration such that all relevant transfer events are included in 
the calculations. This limit is made large enough that further 
increase in radial integration yields no change in the observed 

Similarly, the master equations can be solved exactly for any 
restricted geometry. However, for many restricted geometry 
problems, such as the micelle problem discussed here as an 

curves. 

example, there are a finite number of acceptors. Therefore, the 
averages do not pass to the thermodynamic limit. Unlike the 
Inokuti and Hirayama result for the infinite 3D problem, there 
is an explicit dependence on the number of acceptors. The 
solutions for the point particle state probability functions for 
molecules on the surface of a spherical micelle are 

(P,,(t>> = 

NJ2R""hfkJR) exp exp(-kdR)t') exp(-kb(R)(t - 

Here Rmic is the micelle radius, which gives an absolute upper 
limit on the system size and separation distance between donor 
and acceptor. The results presented in eqs 6 and 7 are discussed 
in detail elsewhere.I8 

B. Simulations. To examine the importance of excluded 
volume (discussed below) and to verify the exact analytical 
theory used to obtain the solutions given in eqs 4-7, the 
differential equations (1) and (2) were directly solved and then 
averaged by means of Monte Carlo (MC) simulation. The 
expressions for the state probability functions are identical for 
both the infinite 3D system and the micelle surface system. The 
differences between the two problems is the spatial distribution 
of acceptor positions. Because of the strong distance depen- 
dence of electron transfer, the geometrical restrictions imposed 
by a spherical surface strongly affect the results of the 
calculations. 

The most critical and time-consuming requirement when 
performing the MC simulations is to obtain an appropriate initial 
placement of acceptors. For the case of noninteracting point 
particles this is straightforward; the donor and each acceptor 
can be placed independently according to the geometrical 
restrictions of the system. The spatial distributions are random. 
For one random spatial arrangement E of all N acceptors at time 
t ,  the solution to eq 1 for both the infinite 3D and the micelle 
system is 

/ .\ N 

It is readily shown that the solution to eq 2 for an arbitrary 
configuration of N acceptors is given by 

1 

To obtain the ensemble-averaged values of these functions, 
the average over many different acceptor configurations is 
performed. Enough trials must be included to sufficiently span 
the configuration space, giving a complete and random selection 
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By restricting particles to lie on a spherical surface, the 
micelle system was limited to a particular size and thus was 
not averaged in the thermodynamic limit. Therefore, the state 
probability functions were calculated for specific numbers of 
acceptor particles N .  Particles were placed by choosing angular 
variables q5i and 8i, each with a given radial component Rmicr 
defined as the micelle radius. A total of N -t 1 particles were 
placed, and one of them randomly chosen to be the donor 
molecule. Chord separation distances between the donor and 
all other N particles were found, and the physical observables 
calculated. As in three dimensions, the ensemble average was 
obtained by creating and averaging over many such configura- 
tions. 

of acceptor placements. In practice these simulations are 
straightforward to perform, although they are time consuming. 

All the Monte Carlo simulations employed a random number 
generator (mg) to uniformly select values in the range 0- 1. 
These values were then used to sample the ranges of the 
functions of interest. The algorithm to select random numbers 
was developed by Marsaglia and Zaman2’ and was chosen 
because of its extremely large period (-IO*) and its ability to 
satisfy recognized statistical tests. This algorithm required 24 
input seed numbers, which were obtained from a simpler mg 
with a shorter period.28 

For the 3D isotropic point particle model, the donor was 
placed at the origin of a spherical volume. Each acceptor was 
placed by randomly choosing a value for all three of the 
spherical coordinate quantities r, 4, and 8. For each coordinate, 
a random number F was chosen in the set (0-1). The radial 
coordinate is independent of C#J and 8 and thus can be freely 
chosen on a randomly sampled weighted distribution. The 
probability of an acceptor being placed at the distance r is given 
by 

where R, is the maximum radial distance of the system being 
considered. Thus the mapping of the uniform distribution F 
into the weighted distribution for R is obtained from the 
incomplete integral of P(r)  determined by the upper limit R‘: 

(1 1) 
R‘ R’ 4nr2 dr F = s, P(r)  d r  = s, - 

4/3nRV3 

The inversion of eq 11 then gives the choice of R’: 

R’ = R , f i  

The azimuthal angle 4 is chosen independently from [0-2n]. 
It is uniformly distributed in this range, and thus 4’ = 2nF. 
The third degree of freedom, the polar angle 8, can have values 
in the closed set [0-n]. Statistically, however, the choice of 8 
must be weighted by the relative point density on a spherical 
surface as a function of polar angle. A uniform distribution in 
the range of 8 would result in an incorrectly high point density 
near the spherical poles. Instead, the normalized distribution 
is given by P(8) = 112 sin 8. Again performing an incomplete 
integral, this time for the polar angle from 0 to e’, gives a value 

For each configuration of acceptors about one donor, all 
particles were placed according to the randomly chosen vector 
components [ T I ,  qh, e,]. The number of particles N was 
detennined by the choice of acceptor concentration and the 
system volume. The calculated observables were then deter- 
mined by summing over all acceptors. This process was 
repeated many times, until a convergence in the physical 
observables had been obtained. As with the analytical routines, 
the spherical radius was increased past the point at which any 
change was observed. The number of configurations required 
to reach convergence was, in large part, dependent upon the 
concentration of particles in the system. As the molarity was 
increased, the rate at which the configuration space was sampled 
increased concomitantly. For point particle concentrations of 
up to 0.3 M, typically 105-106 configurations were averaged. 
This was repeated for varying concentrations and different 
electron-transfer parameters. 

8’ = arccos(i - 219.29 

III. Excluded Volume 

To account for the physical size of real molecules, excluded 
volume must be included in the models. For the isotropic 3D 
case, all particles were assumed to be spherical in shape, and a 
hard-sphere model was used to approximate particle interaction 
and excluded volume. For the micelle, particles were taken to 
be curved hard disks (hard disks with the same radius of 
curvature as the micelle),30 resting on the micelle surface. 

A. Donor-Acceptor Excluded Volume. The most sig- 
nificant form of volume exclusion is between donor and 
acceptor. This is because the area in which electron transfer 
happens most readily, the region closest to the donor, is 
inaccessible. As a result, the average rates of both forward and 
back transfer are dramatically lessened. For the analytical 
theory, only two changes need to be made to eqs 4-7. First, 
the lower limit of integration over space must be changed from 
zero to the value of the donor-acceptor contact distance: the 
sum of the donor and acceptor radii. Second, the volume term, 
which is present in the concentration C, must be decreased 
appropriately to account for the decreased volume over which 
the final R integral is being performed. For the isotropic case, 
the volume term changes from V = 4/3nRv3, where R, is the 
maximum limit of integration and now becomes 4/3n(R,3 - Rm3), 
where R, is the contact distance for donor and acceptor. 
Similarly, the area term for the micelle problem is normalized 
over the resulting restricted surface volume.I8 

Inclusion of DA excluded volume in the MC simulations 
introduces a more complex issue concerning the randomness 
of initial particle placement. It is important to include in the 
statistical analysis only those configurations which have no 
overlap between any particles. This can be accomplished by 
one of two methods. The first is to place all N particles 
randomly in space, regardless of where any other particles may 
be, and subsequently reject all configurations which result in 
any DA overlap. New configurations then need to be created 
until an acceptable one has been found. A second means is to 
force all the acceptors to be placed only in allowed positions 
(Le., outside the donor volume) and then equilibrating all 
positions to achieve a random configuration. The latter method 
of position equilibration is in general much more efficient for 
creating an initial set of particle placements. Experimentally, 
this is accomplished by randomly placing each acceptor 
anywhere in the system volume. If any particle is found to 
overlap the donor, it is replaced in a new position. After creating 
an entire configuration of N particles, all acceptors are then 
moved randomly, with the limitation that no movements 
resulting in overlap are accepted. This is continued until the 
particle correlation due to the initial placement requirements is 
destroyed. In this manner, diffusive motion is simulated, and 
an effectively random initial condition is established. The 
methods used to equilibrate particles will be more fully described 
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Figure 2. Ion pair survival probability (Pct(t)), calculated by both 
analytical theory (solid lines) and MC simulations (circles) for 3D 
isotropic system. Donor-acceptor contact distance of 10.0 A. Acceptor 
concentration for curves A and C is 0.166 M, and for B and D is 0.332 
M. Fluorescence lifetime t = 15.0 ns. Electron-transfer parameters for 
curves A and B: af = 1.0, Rf = 10.0, a b  = 1.0, Rb = 10.0; for curves 
c and D: = 0.5, Rf = 12.0, a b  = 1.0, Rb = 10.0. 

below. For point particle acceptors, the number of equilibration 
steps required to destroy any initial correlation is small. 
Typically the number of steps was 4 or 5 times N.  

The numerical calculations were done on an IBM RS6000 
Model 375 workstation. All programs were written in the C 
language. Several standard subroutines were obtained from 
algorithms written by Press et. aL3' The analytical calculations 
for both the 3D and micelle systems required less than 20 s of 
CPU time. The Monte Carlo simulations required upward of 
12 h to complete. 

While the analytical solutions for the 3D system with donor- 
acceptor excluded volume (DA EV) but no acceptor-acceptor 
excluded volume (AA EV) have been shown to be mathemati- 
cally exact, the validity of the numerical averaging techniques 
can be further demonstrated by comparison with the Monte 
Carlo simulations. In Figure 2, (Pct(t)) curves for the infinite 
three dimensions DA EV problem are given for two different 
acceptor concentrations, each calculated for two sets of electron- 
transfer parameters. (The parameters are given in the figure 
caption.) Each curve is actually a superposition of two methods 
of computation: analytical theory from eq 5 (solid lines) and 
the Monte Carlo simulation from an ensemble average of eq 9 
(circles). It is clear that the agreement between the analytical 
theory and the simulations is perfect for all concentrations and 
electron-transfer parameters at all times. A wide range of 
concentrations, particle sizes, and transfer parameters were 
examined for both forward and backward electron transfer, with 
every case showing exact agreement between the simulations 
with DA EV and the analytical theory with DA EV. Thus, it 
can be emphasized that the analytical theory is an exact 
expression for the state probability functions. 

DA excluded volume has a significant impact on the dynamics 
of electron transfer with geminate recombination. The ensemble 
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Figure 3. Ion pair survival probability (Pct(r)) for micelle surface, 
calculated by both analytical theory (solid lines) anda MC simulations 
(circles). Donor-acceptor contact distance of 10.0 A. Micelle radius 
R,ic = 24.6 A. Curves A and C have five acceptor particles, and curves 
B and D have 10 particles. Fluorescence lifetime t = 15.0 ns. Electron- 
transfer parameters for curves A and B: af = 1 .O, Rf = 10.0, a b  = 1 .O, 
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R b  = 10.0; for CUrveS c and D: Uf = 0.5, Rf = 12.0, ab = 1.0, R b  = 

averaged time dependence of both forward and back transfer 
are slowed by the spatial limitation. For all sets of transfer 
parameters, the probability maxima is shifted to later times when 
DA EV is included. Also, the magnitude of the maximum ion 
probability is increased. Although the forward transfer happens 
more slowly in this case, thus creating fewer total ions in a 
given time span, the slowed back transfer allows each ion pair 
to survive for a longer time. This effect varies with particle 
size and excited-state lifetime but is seen as a general trend. 

Similar agreement between simulations with DA EV and 
analytical theory with DA EV is shown for the micelle 
calculations. Figure 3 shows the DA EV results for this 
restricted geometry. (See figure caption for parameters). Both 
methods of computation are shown, and the agreement is perfect 
at all times. 

The comparisons of the analytical and simulation calculations 
presented above (which include DA EV but do not include AA 
EV) confirm that the analytical theory is exact, the numerical 
procedures are correct, and that the simulation procedures are 
correct. This is true for both infinite 3D systems and restricted 
geometry systems. The method is general and will work for 
systems of any dimensionality and for any restricted geometry. 
However, the sphere surface problem is a special case of the 
general problem because the ensemble average is translationally 
invariant; i.e., the ensemble average about a donor located at 
any position on a sphere is the same. Therefore, it is not 
necessary to perform an additional average over starting points. 
For systems such as polymers, this will not be the case. This 
has been treated extensively for the problem of electronic 
excitation transfer in restricted g e o m e t r i e ~ . ~ ~ ~ ~ ~ ~ ~ ~  For a system 
in which the ensemble average is not translationally invariant, 
first the ensemble average is performed over all configurations 
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p(R,) is independent of all other particles, Le., there is a separable 
probability distribution. Conversely, when acceptors have a 
nonzero volume, their positions be_come correlated, and the 
radial probability must be written P(R) = P ( R I , R ~ ,  ... RN). Since 
the solvent is treated as a continuum (see discussion in section 
JY), as the acceptor concentration is increased, this probability 
is seen to have radial variations in local density caused by the 
excluded volume. An approximation can be made, however, 
that P(R) is separable into N two-particle probability distribu- 
tions, P(R).  As a result, the correlated radial pair probability 
function P(R) can be written as the product of the uncorrelated 
function P(R) and a pair-distribution function g(R)  which 
accounts for variations in local density: 

P(R) = g(R) P(R) (15) 

This is the separable probability distribution (SPD) approxima- 
tion. The new function P(R) must be correctly normalized by 
forcing it to integrate to 1 over the available system volume. 
The function g(R) describes the probability of finding two 
particles with the separation R, relative to the probability of 
finding this separation in a system of uniform particle distribu- 
tion at the same density. Thus, when all particles have zero 
volume, the positions are uncorrelated and g(R) is uniformly 
equal to 1 at all values of R.  In this limit, P(R) is identical to 
the random 3D distribution P(R). When excluded volume is 
considered, positions become correlated, and g(R) describes the 
resulting radial density variations. 

Examples of the pair distribution function g(R) have been 
obtained for various models of molecular interaction, such as a 
Lennard-Jones potential, sticky spheres, and hard 
An exact solution to the Percus-Yevick (PY) equation has been 
developed for a system of hard Several algorithms 
have been p ~ b l i s h e d ~ ~ , ~ ~ , ~ ~  that allow for fast numerical com- 
putation of g(R)  values using the PY hard-sphere formalism. 

If the SPD assumption is made, the function P(R) can be 
used to describe the particle distribution in the analytical 
expressions for the physical observables. In the case of nonzero 
volume this distribution is not rigorous because the probabilities 
are not mathematically separable. However, it presents only a 
minor functional change to the theory and is easily implemented. 
The validity and usefulness of this approximation can be 
determined by comparison with the MC simulations. The 
expression for the infinite 3D isotropic excited-state probability 
becomes 

about a starting point, and then an additional average is 
performed over starting points. It is not sufficient to perform 
the average for some average starting point. The additional 
average over starting points will make the calculation more time 
consuming, but it does not fundamentally change the nature of 
the method presented 

B. Acceptor-Acceptor Excluded Volume. In addition to 
donor-acceptor overlap, particle placement is also significantly 
affected by acceptor-acceptor excluded volume. This further 
complicates the problem of the spatial distribution of particles 
and influences the dynamics of electron transfer at sufficiently 
high concentrations. Unlike DA EV, which is important at all 
acceptor concentrations, AA EV becomes increasingly important 
as the concentration is raised. By comparing MC simulations 
that include both DA EV and AA EV with the analytical theory 
that only contains DA EV, it is possible to determine the range 
of concentrations in which AA EV becomes important. 

i. Blumen Lattice Method. Previous work has incorporated 
the continuum limit of the Blumen lattice mode12’s22 (CL) into 
the 3D isotropic electron transfer analytical  calculation^.'^^^^*^^ 
The Blumen model allows particles to be placed only at lattice 
sites, which are separated by the two-particle contact distance. 
The probability of site occupancy is determined by the acceptor 
concentration (number density). In this way, the statistical 
requirements of particle placement and volume exclusion are 
taken into account. Comparison to simulations can test the 
accuracy of this method. Equation 4, the excited state prob- 
ability function including DA EV and the Blumen model for 
AA EV for the 3D system, can be expressed in the continuum 
limit of the lattice model as16924925 

(Pe,(t)> = exp - - exp - ln[l - p + ( :) (“d:: 
p exp( -k@)r)]R2 dR ( 13) 1 

where d is the acceptor diameter, p = Cd3, and R m  = RD + RA, 
the sum of donor and acceptor radii. Similarly modifying eq 5 
for the 3D system gives 

t’)) dt’ R2 dR (14) 

These expressions are written in the limit that the discrete lattice 
model is extended to infinite size at constant concentration, thus 
describing a continuum approximation to the lattice model. This 
approximation is useful when dealing with solvents such as 
liquids and disordered glasses which do not have a static, 
organized molecular structure. Similar expressions for the 
micelle problem do not exist. 

ii. Separable Probability Distribution (SPD) Method. As 
will be shown below, the continuum lattice method (CL) does 
not work very well. We have developed a new approach, called 
the separable probability distribution (SPD) method. This 
method is superior to the CL method, but it also fails at 
sufficiently high concentrations and sufficiently rapid transfer 
parameters. 

Equations 4-7 can be recast to implement the new method 
that accounts for the effects of AA EV. When all particles are 
taken to have zero volume, their positions are uncorrelated, and 
the total radial probability can be separated into a product of 
individual probabilities P ( 3 )  = p(R1) p(R2) ...p (RN), where p(Ri) 
is the probability that a particle will be found at distance Ri. 

where this equation is the same as eq 4, except for the inclusion 
of DA EV by limiting the volume integral with R,, and by 
accounting for AA EV with g(R).  

Modifying eqs 5-7 to implement the SPD approximation for 
the new particle distribution P(R) for the other physical 
observables in both the 3D and micelle systems can be done 
simply by replacing the point particle P(R) with the new function 
P‘(R). This approximation can be used for systems of any 
geometry. Appropriate values for g(R) must be used which 
correspond to the packing fraction 7, defined by the concentra- 
tion C and particle diameter d. For the 3D system with spherical 
particles, the packing fraction is defined as q = z~d3/6, where 
e is the average local density and d is the particle diameter. e 
is calculated using a “reduced” volume: using only the volume 
of the system which is not excluded from acceptor placement 
by donor volume. For the micelle case,I8 it is defined as 
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11 = “(1 - cos-”)/( Rmic 1 - COS%) Rmic 
(17) 

where N is the number of acceptors, r, and rd are one-half the 
arc length of the acceptor and donor disks, respectively, and 
Rmic is the radius of the micelle. Values for the 3D iso- 
tropic g(R) can be obtained either from numerical computa- 
tion,38,42 tabulated values in the l i terat~re?~ or from the pair 
distribution determined in MC simulations, as described below. 
Analytic solutions for g(R) in the restricted geometry of the 
micelle do not exist. In this case, pair distribution functions 
must be obtained directly from the many-particle sim- 
ulations. 

iii. Monte Carlo Simulations with AA Excluded Volume. 
Inclusion of acceptor volume in the Monte Carlo simulation 
requires a vast increase in computational effort. When placing 
each acceptor, it is necessary to check overlap between it and 
all other particles, including the donor. For all but the lowest 
concentrations, overlap was found to be extremely common, 
and the use of equilibration to eliminate particle placement 
correlation and obtain the correct hard-sphere g(R) was required. 
Details concerning equilibration are given in the l i t e r a t ~ r e , ~ ~ ~ ~ ~ ~ ~  
but a description of our methods will be presented. For the 3D 
system with equilibration it was necessary to use a Cartesian 
system with the origin at the center of a cube. Given a cube 
with sides of length L, each of three axis coordinates for each 
particle was chosen independently on [-W2 - +U2], giving a 
unique position in the cube. After placing all N particles in 
the system (replacing any which encountered overlap), each 
molecule was moved independently. This was accomplished 
by again choosing Cartesian coordinate values for x,,, yes, and 
zeq and then adding vectorally to the initial particle placement. 
If this new position was found to not overlap any other particle, 
the step was accepted. If overlap was encountered, the motion 
was rejected, and the particle remained in its initial position. 
This was repeated many times for all N particles, until a 
condition of equilibration was obtained. The magnitude of the 
step distance re, was adjusted for each concentration, such that 
approximately half of all equilibration motions resulted in 
overlap and were rejected.37 

For the micelle surface, equilibration was done similarly, 
except the vectors of motion were chosen given the correspond- 
ing geometrical requirements.I8 A coordinate transform shifted 
the particle in question to a temporary coordinate origin at the 
north pole, and an azimuthal angle &q chosen randomly on 
[0-27c]. Given a chord length of motion re,, the particle was 
moved to the new location. This position was then transformed 
back into a coordinate system in which the origin resides at the 
spherical north pole. 

To limit the size of the 3D isotropic model being considered 
and thus limit the computational time required, the minimum 
image convention with periodic boundary conditions was 
e m p l ~ y e d . ~ ~ . ~ ~  A primary cube was created using the initial 
conditions described above. An identical image of this cube 
was then mathematically repeated in every direction, creating 
an infinite system. Any motion of a given particle was assumed 
to be occurring simultaneously to all of that particle’s images 
in every cube. Thus, if a particle moved outside the primary 
cube along one axis, that particle’s image in the adjoining cube 
would move into the primary cube across the opposite face. 
Mathematically, if any of the three Cartesian coordinates, labeled 
a, for particle i became greater than W 2  or less than (-U2) 
after any equilibration move (Le., if it moved outside the primary 
cube along the a axis), it was reflected back into the cube across 
the opposite face by the coordinate transformation: 

if rai > W2,  rai - rai - L 

if rai < -Ll2, rai - rai + L (18) 

Due to the short range of electron transfer, particle interactions 
were considered only between the donor and the acceptors 
within the primary cube. The system was made large enough 
that transfer events to particles with D-A separations larger 
than L12 were insignificant. This size was dependent upon the 
chosen electron-transfer parameters and the concentration of 
acceptors but was always significantly less than the value of 
40 8, used in the simulations. 

The micelle calculations did not require similar periodic 
approximations because the system was constrained by the 
absolute size of the micelle. Electron transfer was considered 
only between particles on a single micelle surface. Further 
considerations, such as intermicellar transfer between particles 
on several different micelles in solution, were not evaluated. 

The method of equilibration has the advantage of requiring 
only one initial particle configuration to be laid down. This 
set of placements is then equilibrated, typically with more than 
10 000 total particle motions. Following this, particle sites are 
taken to be uncorrelated with their initial positions, and 
calculation of the physical observables is done for the configu- 
ration. All particles are then equilibrated again, and calculation 
of the observables is performed for this new configuration. This 
is repeated many times, and the resulting calculations averaged 
together. Particular configurations were seen to be weakly 
correlated with those before and after it, but sufficient equilibra- 
tion was done to ensure a full sampling of configuration 

The number of configurations required to reach 
convergence in the calculated functions was inversely related 
to concentration and was found to be on the order of lo4 or 

iv. Pair Distribution Functions, g(R). In addition to the 
physical observables calculated by the MC simulations, ensemble- 
averaged values for the pair distribution function were obtained. 
Again using a minimum image convention with periodic 
boundary conditions for the infinite 3D system, the separation 
between particles i and j was determined by the closest image 
of j to particle i. For the separation distance between particles 
i and j for each Cartesian coordinate a: 

105. 

if raij > Li2, 

if raij < -Ll2, 

raij- rag - L 

raij - raij + L 

Calculation of g(R) was done by determining the distance 
between each pair of particles in each configuration and building 
a histogram of separations. The array of values was normalized 
by dividing by the total number of possible pairs in a 
configuration of N particles, N(N - l), and by the number of 
configurations in the average. It was then divided by e, the 
average density for a uniform distribution of uncorrelated point 
particles. 

As mentioned above, for the infinite 3D system, the PY 
formalism provides an analytical method for obtaining g(R). In 
the 3D calculations presented below, the PY g(R) was used. 
Comparison between the PY g(R) and those obtained from the 
simulations showed perfect agreement. However, no analytical 
method exists for determining the g(R) for hard curved disks 
on the surface of a sphere. An approximate method has been 
developed.I8 In the calculations presented below, the g(R) for 
the micelle problem was obtained from the simulations and then 
used in the analytical theory. By using the g(R) obtained from 
the simulations, any difference between the analytical results 
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Figure 4. Ion survival probability (Pct(t)) for infinite 3D system with 
acceptor-acceptor excluded volume, as calculated by several different 
methods: MC simulations (sim), separable probability distribution (spd), 
continuum limit of the lattice model (CL), and exact theory with no 
inclusion of AA EV (naa). Each method of calculation is given for 
acceptor concentrations of 0.166 M (lower curves) and 0.332 M (upper 
curves). All molecules have a radius of 5.0 A. Fluorescence lifetime r 
= 15.0 ns. Electron-transfer parameters for all curves are af = ab = 

and the simulations when AA EV is included is real and not 
due to the use of different pair distribution functions in the two 
types of calculations. 

v. Results of Calculations Including AA EV: Simulations 
and Analytical Theories. For the 3D infinite system, compari- 
sons can be made between the four different methods of 
calculation (all with DA EV): analytic theories with no AA 
EV, using the CL method for AA EV, using the SPD method 
for AA EV, and MC simulations with AA EV. Figure 4 
displays results for two concentrations and one set of transfer 
parameters (see figure caption for parameters). The ion survival 
probability, (Pct(t)), is shown. All of the analytical methods 
disagree with the simulations to some extent. The disagreement 
becomes larger when the electron-transfer parameters give more 
rapid transfer rates and lead to the creation of more ions. For 
a wide variety of parameters and concentrations, it is always 
seen that the CL method is a better approximation than ignoring 
AA EV completely, but it can still result in substantial error. 
The SPD is more accurate still. For many choices of transfer 
parameters the latter does a good job of reproducing the 
simulations even when the CL method results in significant 
errors. However, for some choices of parameters and at high 
enough concentrations, all the analytical methods generate 
curves with significant error. 

In Figure 4, the absolute results of the various calculations 
were presented. However, the most important aspect of the 
calculated (Pcl(t)) curves is not the absolute magnitude but rather 
the functional form. In an experiment, generally only the time- 
dependent shape of the curve can be measured; the absolute 
magnitude is subject to too many experimental uncertainties. 
As a result, the signal amplitude is obtained in arbitrary units 
and is scaled for comparison with theoretical calculations. In 
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0.14 

0.12 
A 
h U v + 2 0.1 

.I b 

e 

G 

V - 
3 0.08 

& 
0 0.06 
(d 

c 

U 

0.04 

0.02 

n 

J. Phys. Chem., Vol. 99, No. 7, 1995 

I,,,,,,,,, 

1863 

" 
0 10 20 30 40 50 

time (ns) 
Figure 5. Ion survival probability (Pct(t)) for infinite 3D system with 
acceptor-acceptor excluded volume calculated by several methods, all 
scaled in magnitude to match the MC simulations at i = 20 ns. All 
labels and parameters are the same as in Figure 4. The simulations are 
presented as open circles for comparison. 

Figure 5 simulations are shown as calculated, but the analytical 
results have been scaled to match the simulations at the peak. 
The parameters are the same as in the previous figure. The 
agreement between the SPD method and simulation is seen to 
be quite good. For this concentration and selection of transfer 
parameters, the CL method is also close, while the calculation 
without AA EV is less accurate. For a wide range of 
concentrations and transfer parameters, the SPD approximation 
reproduces the simulated curves quite well. At lower concen- 
trations the CL method is also quite good, but the error using 
it becomes substantial at concentrations or for ranges of transfer 
parameters for which the SPD method still works well. It is 
not possible to specify the exact concentration range over which 
the SPD method works well. The accuracy depends on the 
electron-transfer parameters and the concentration and on 
particle size. The number of acceptors is more important than 
the fractional occupancy of the space. For example, the SPD 
method works well for a 5% fractional occupancy if the acceptor 
radius is 5 8, even for electron-transfer parameters which give 
fast transfer, but it works poorly for the same fractional 
occupancy and electron-transfer parameters if the acceptor radius 
is 2.5 8,. 

The SPD method works better for calculation of (Pcl(t)) than 
it does for (Pex(t)). This is presumably due to a cancellation of 
errors, since (Pex(t)) is an input into the calculation of (Pcl(t)). 
In addition, the (Pex(t)) curves cannot be arbitrarily scaled, since 
the initial condition requires that they all begin at 1. Like the 
(Pct(t)), the (Pex(t)) curves match the simulations well for low- 
to-moderate concentrations, moderate-to-large size acceptors, 
and slow-to-moderate transfer parameters. Under the conditions 
of small particles (less than 3.5 8, radius), high concentrations 
([C] > 0.4 M), and transfer parameters which give very fast 
transfer, the analytical methods, including the SPD method, can 
result in significant error. An example of this is seen in Figure 
6 where the parameters were chosen (see figure caption) to 
generate a particularly unfavorable situation. As the figure 
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Figure 6. Excited state survival probability (Pex(t))  for infinite 3D 
system with AA EV, calculated by several methods: MC simulations 
(sim), separable probability distribution (spd), continuum limit of the 
lattice model (CL), and exact theory with no inclusion of AA EV (naa). 
All molecules have a radius of 3.6 A, calculated for an acceptor 
concentration of 0.445 M. Fluorescence lifetime t = 15.0 ns. The upper 
curves have forward electron transfer parameters af = 0.9, Rf = 12.3; 
the lower curves are af = 0.22, Rf = 13.1. 

shows, the SPD and CL methods are an improvement over 
calculations that include only DA EV, but they still do not 
reproduce the simulations. 

Similar comparisons were made for the micelle problem. 
There is no equivalent of the CL model, but calculations with 
DA EV only, the SPD method, and simulations with DA EV 
and AA EV were compared. Qualitatively the results are very 
similar. At concentrations for which AA EV is important, the 
SPD method always works better than ignoring AA EV. 
(Pct(t))  curves are reproduced more accurately than (PeX(t))  
curves. At sufficiently high concentrations, deviations between 
the simulations and the SPD method become comparable to 
those shown in Figure 6. Examples of calculations for the 
micelle problem are presented elsewhere.'* 

vi. Comparison of Geometrical Effects on Electron-Transfer 
Rates. A comparison between the isotropic 3D and the micelle 
surface calculations can also be used to show the effects of 
restricted geometry on the dynamics of electron transfer. Figure 
7 gives the excited-state probabilities, (Pex(t)) ,  for two sets of 
transfer parameters for both micelle and 3D geometries with 
both DA and AA EV, and Figure 8 gives the corresponding 
ion probabilities, (Pct(t)) .  The calculations were obtained from 
the simulations with DA EV and AA EV. All the system 
variables were held constant between the two cases (see figure 
caption for parameters). For both systems, all particles had a 
radius of 5 A. The number of particles in each system were 
chosen such that the fractional occupancy for each was equal 
to 10%. For these equal conditions, electron transfer in infinite 
3D was found to be more rapid than for transfer on the surface 
of a micelle. This is true for any value of the transfer parameters 
or particle size, when equivalent values are used for the two 
systems. The reason for this difference in rates of transfer is 
the result of a competition of two factors: a change in the 

0 
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time (ns) 
Figure 7. Comparison of excited state probability (Pex( t ) )  simulation 
calculations for infinite 3D and micelle surface 2D systems for a 
fractional occupancy of 10%. All particles have a radius of 5.0 A. 
Micelle radius Rmic = 25.0 A. Excited-state lifetime t = 15.0. Solid 
curves A and C are simulations for the infinite 3D system, while the 
dashed curves B and D are the equivalent curves for the micelle. Curves 
A and B have electron transfer parameters of af = 0.5, Rf = 12.0. Curves 
C and D have parameters of af = 1.0, Rf = 10.0. 

probability distribution of acceptors due to system topology, 
and a difference in absolute number of acceptors in each system, 
due in large part to the respective dimensionalities. The product 
of these two terms, N.P(R), gives the total number of particles 
at each distance r from the donor. For systems of low fractional 
occupancy (less than 5%), the probability distribution is known 
(AA EV is relatively unimportant in determining particle 
placement, and the probability distribution is equal to the P(R) 
for the point particle acceptor case). This allows an a priori 
determination that, for equal fractional occupancies of particles, 
the number of acceptors at any distance from the donor is larger 
for the 3D case, and thus the rates of electron transfer will be 
greater. For larger fractional occupancies (> 5%), computational 
comparisons find that this still is true. 

IV. Concluding Remarks 
It is possible to make some rough statevents concerning the 

applicability of the various methods. Below a few percent 
occupancy in either an infinite 3D system or in a micelle system, 
AA EV does not make a significant difference in the calculation 
of observables. Below -10% occupancy, the SPD method does 
a very reasonable job of reproducing the simulations. This is 
particularly true for (P&) and therefore should provide a good 
approach to the interpretation of experimental results. However, 
given the discussions presented above, it is clear that no hard 
rules can be put down on ranges of applicability since the 
accuracy of a calculation, in regard to the influence of AA EV, 
depends on the interplay of a variety of parameters that define 
a particular electron-transfer system. Only a full simulation can 
test the accuracy of an analytical calculation when the param- 
eters are of the type that can lead to error. However, given the 
vast reduction in computational time afforded by the analytical 
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Figure 8. Comparison of ion state probability (Pc,(r)) simulation 
calculations for infinite 3D and micelle surface 2D systems. All particles 
have a radius of 5.0 A. For 3D (solid curves B and D), acceptor 
concentration = 0.332 M. For micelle (dashed curves A and C), N = 
10 particles and radius Rmic = 25.0 A. Fluorescence lifetime t = 15.0 
ns. Electron-transfer parameters for curves A (micelle) and B (3D): af 
= a b  = 1.0, Rf = Rb = 10.0. Parameters for curves C (micelle) and D 
(3D): af = 0.5, Rr = 12.0, ab = 1.0, Rb = 10.0. 

theory, it is a useful approach to understanding photoinduced 
electron transfer with geminate recombination. 

Future work will be focused on the effects of diffusion on 
photoinduced electron transfer and geminate recombination. The 
analytical method discussed above has been extended to include 
the influence of d i f f u ~ i o n . ' ~ , ~ ~  Once diffusion is included, it is 
possible for ions to separate and avoid geminate recombination. 
At high acceptor concentration, the CL model was previously 
employed to account for AA EV.16sM The analytical theory with 
diffusion is being extended to use the SPD method. In addition, 
MC simulations of the problem with diffusion are in progress. 
As in the study presented here, comparison between the 
analytical theory and the simulations will determine the accuracy 
of the analytical theory. The development of the theory for 
restricted geometries, exemplified by the micelle calculations, 
will permit experimental systems of this type to be studied 
quantitatively. Donor and acceptor molecules bound to the 
surface of a micelle is an experimentally realizable system. 
However, recent studies have shown that chromophores on 
micelle surfaces have significant surface diffusion  constant^.^' 
Therefore the micelle theory will also be extended to include 
the influence of diffusion on forward transfer and geminate 
recombination. Micelles are only one example of a class of 
interesting restricted geometry electron-transfer systems. Con- 
siderable progress has been made on understanding the dynamics 
of excitation transfer for chromophores bound t o  polymer 
~ h a i n s . 4 ~ 3 ~ ~  These studies have also been used as detailed probes 
of polymer structure and interactions. The restricted geometry 
theory of photoinduced electron transfer and geminate recom- 
bination will aid in understanding and designing such interesting 
electron-transfer systems. 

The calculations presented in this paper provide a mathemati- 
cal treatment of electron transfer described physically by a three- 
level system, and extensions of the model can be made to 

systems of any geometry. The ultimate purpose is to obtain 
expressions for the time-dependent physical observables and 
to make direct comparisons with experimental observations. 
However, an important extension of the above theory needs to 
be included before such comparisons can be made accurately. 
In addition to the solution structure introduced by donor and 
acceptor volumes, the effects of finite solvent volume and 
structure need to be in~ luded .~O-~~  Rather than assuming the 
solvent to be a continuum, a more accurate description of the 
multiparticle structure must be used. This extension is important 
even when the acceptor density is low enough that they do not 
interact with each other, because interactions with solvent 
molecules can cause fluctuations in the donor-acceptor radial 
separation probability. Since electron transfer is typically a 
short-range process, these variations in local acceptor density 
can be a significant factor in particle distribution and overall 
transfer rates. As a result, it is not correct to assume a perfectly 
uniform distribution of particles. When the concentration of 
acceptors is low enough that AA EV is not important, the 
analytical theory can include this appropriate radial distribution 
function, and the ensemble average can still be performed 
exactly. When AA EV is important, approximate solutions, such 
as the SPD approach, can be readily modified to include the 
solvent perturbation. In the probability distribution P(R) used 
in the above calculations (eq 15), the pair correlation function 
g(R) must include the solvent effects. By replacement of the 
two-particle g(R) with a multiparticle correlation function 
obtained for a system containing donor, acceptor, and solvent 
molecules, the correct distribution can be obtained. Examples 
of multiparticle g(R) can be obtained from the literature or 
directly from MC simulation (for example, see refs 36 and 38). 
Investigation of the effects of solvent molecules on the 
calculation of electron transfer probabilities by methods of 
simulation and analytical theories will be discussed in future 
work. 

Acknowledgment. We would like to thank Professor H. C. 
Andersen for helpful suggestions about the MC simulations. 
Thanks also go the Stanford Center for Materials Research for 
providing partial support for the computer used in this work. 
This work was supported by the Department of Energy, Office 
of Basic Energy Sciences (Grant DE-FG03-84ER13251). 
K.W. was supported by a National Science Foundation predoc- 
toral fellowship. 

References and Notes 
(1) Kestner, N. R.; Logan, J.; Jortner, J. J. Phys. Chem. 1974, 78,2148. 
(2) Jortner, J .  J. Chem. Phys. 1976, 64, 4860. 
(3) VanDuyne, R. P.; Fischer, S. F. Chem. Phys. 1974, 5, 183. 
(4) Siders, P.; Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 748. 
(5) Warshel, A. J. Phys. Chem. 1982, 86, 2218. 
(6) Huddleston, R. K.; Miller, J. R. J. Phys. Chem. 1982, 86, 200. 
(7) Domingue, R. P.; Fayer, M. D. J. Chem. Phys 1985, 83, 2242. 
(8) Siders, P.; Cave, R. J.; Marcus, R. A. J. Chem. Phys. 1984, 81, 

(9) Strauch, S.; McLendon, G.; McGuire, M.; Gum,  T. J. Phys. Chem. 

(10) Rochester Symposium on Charge Transfer in Restricted Geometries. 

(11) Klafter, J.; Drake, J .  M.; Levitz, P. J.  Lumin. 1990, 45, 34. 
(12) Molecular Dynamics in Restricted Geometries; Klafter, J., Drake, 

J. M., Eds.; John Wiley & Sons: New York, 1989. 
(13) Dynamical Processes in Condensed Molecular Systems; Klafter, 

J.,  Jortner, J., Blumen, A,, Eds.; World Scientific: Singapore, 1989. 
(14) Inokuti, M.; Hirayama, F. J. Chem. Phys. 1965, 43, 1978. 
(15) Lin, Y.; Dorfman, R. C.;  Fayer, M. D. J.  Chem. Phys. 1989, 90, 

159. 
(16) Fayer, M. D.; Song, L.; Swallen, S .  F.; Dorfman, R. C.; Weidemaier, 

K. In Ulrrafast Dynamics of Chemical Systems; Simon, J .  D., Ed.; Kluwer 
Academic Publishers: Amsterdam, 1994; p 37. 

(17) Dorfman, R. C. Thesis, Stanford University, 1992. 

5613. 

1983, 87, 3579. 

J. Phys. Chem. 1991, 96. 



1866 J. Phys. Chem., Vol. 99, No. 7, 1995 

(18) Weidemaier, K.; Fayer, M.D. J. Chem. Phys., in press. 
(19) Tachiya, M. J. Chem. SOC., Faraday Trans, 2 1979, 75, 271. 
(20) Tachiya, M.; Mozumder, A. Chem. Phys. Lett. 1974, 28, 87. 
(21) Blumen, A,; Manz, J. J. Chem. Phys. 1979, 71, 4694. 
(22) Blumen, A. J .  Chem. Phys. 1980, 72, 2632. 
(23) Baumann, J.; Fayer, M. D. J. Chem. Phys. 1986, 85, 4087. 
(24) Dorfman, R. C.; Lin, Y.; Fayer, M. D. J. Phys. Chem. 1990, 94, 

(25) Dorfman, R. C.; Tachiya, M.; Fayer, M. D. Chem. Phys. Lett. 1991, 

(26) Lin, Y.; Dorfman, R. C.; Fayer, M. D. J. Chem. Phys. 1990, 93, 

(27) Marsaglia, G.; Zaman, A. J. Appl. Prob. 1991, I ,  1. 
(28) James, F. Comput. Phys. Comm. 1990, 60, 329. 
(29) Finger, K. U.; Marcus, A. H.; Fayer, M. D. J. Chem. Phys. 1994, 

(30) Tobochnik, J.; Chapin, P. M. J. Chem. Phys. 1988, 88, 5824. 
(31) Press, W. H.; Flannery, B. P.; Teukolsky, S. A,; Vetterling, W. T. 

Numerical Recipes in C; Cambridge University Press: Cambridge, 1988. 
(32) Peterson, K. A.; Fayer, M. D. J. Chem. Phys. 1986, 85, 4702. 
(33) Ediger, M. D.; Domingue, R. P.; Fayer, M. D. J.  Chem. Phys. 1984, 

(34) Marcus, A. H.; Fayer, M. D.; Curro, J. G. J. Chem. Phys. 1994, 

(35) Kranendonk, W. G. T.; Frenkel, D. Mol. Phys. 1988, 64, 403. 
(36) Hansen, J. P.; McDonald, I. R. Theory of Simple Liquids; Academic 

8007. 

179, 152. 

3550. 

100, 271. 

80, 1246. 

100, 9156. 

Press, Inc.: London, 1976. 

Swallen et al. 

(37) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 

(38) Perram, J. W. Mol. Phys. 1975, 30, 1505. 
(39) Wertheim, M. S. J. Math. Phys. 1964, 5, 643. 
(40) Thiele, E. J .  Chem. Phys. 1963, 39, 474. 
(41) Glandt, E. D.; Kofie, D. A. Mol. Phys. 1988, 64, 125. 
(42) Smith, W. R.; Henderson, D. Mol. Phys. 1970, 19, 411. 
(43) Throop, G. J.; Bearman, R. J. J. Chem. Phys. 1964, 42, 2408. 
(44) Haile, J. M. Molecular Dynamics Simulation; John Wiley & Sons: 

New York, 1992. 
(45) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics; Beme, 

B. J., Ed.; Plenum Press: New York, 1977; Vol. 5. 
(46) Song, L.; Swallen, S. F.; Dorfman, R. C.; Weidemaier, K.; Fayer, 

M. D. J. Phys. Chem. 1993, 97, 1374. 
(47) Quitevis, E. L.; Marcus, A. H.; Fayer, M. D. J.  Phys. Chem. 1993, 

97, 5762. 
(48) Peterson, K. A.; Stein, A. D.; Fayer, M. D. Macromolecules 1990, 

23, 111. 
(49) Marcus, A. H.; Diachun, N. A,; Fayer, M. D. Macromolecules 1993, 

26, 3041. 
(50) Rice, S. A. Difision-Limited Reactions; Elsevier: Amsterdam, 

1985. 
(51) Northrup, S. H.; Hynes, J. T. Chem. Phys. Lett 1977, 54, 244. 
(52) Northrup, S. H.; Hynes, J. T. J. Chem. Phys. 1979, 71, 871. 
(53) Emeis, C. A.; Fehder, P. L. J.  Am. Chem. SOC. 1970, 92, 2246. 

Clarendon Press: Oxford, 1987. 

JP942301Z 


