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Photoinduced electron transfer and geminate recombination in liquid solution are addressed with
analytical theory and Monte Carlo simulations. The time-dependent probabilities of the donor being
excited and of an ion pair existing are obtained for a system of a donor and many acceptors
undergoing diffusive motion. Multiparticle simulations are modeled as a Markov chain and are
shown to agree with the analytical formalism presented previously. The calculations are performed
using both a simple exponential form of the distance dependence of the transfer rate and using the
more general Marcus distance-dependent transfer rate. For a static donor, in the absence of
acceptor—acceptor excluded volume, theory and simulations provide identical results, confirming
the accuracy of the analytical method. For the calculation of properties of real systems in which both
the donor and acceptors diffuse, to make the mathematics tractable, the donor is held static and each
acceptor is given a Fick diffusion constant equal to the sum of the diffusion constants of the donor
and acceptorD=Dy+D,. The validity of this approximation is examined in the absence of
acceptor—acceptor excluded volume and found to work extremely well under all conditions. It is
also examined with acceptor—acceptor excluded volume. In this case, the static donor approximation
is found to work generally well up to moderately high acceptor concentratiab& packing
fraction. However, the results suggest that at even higher packing fractions, the static donor
approximation loses its validity. €995 American Institute of Physics.

I. INTRODUCTION decays by geminate recombination. If a donor has acceptors
nearby, forward transfer will be fast and geminate recombi-
Photoinduced electron transfer and geminate recombinaration can occur prior to forward transfer by another donor
tion (back electron transfein liquid solutions is a complex that only has access to more distant acceptors. Thus, the
problem that is receiving a great deal of experimental andime-dependent cation absorption involves overlapping pro-
theoretical attention. The dynamics of electron transfer folcesses of forward transfer and geminate recombination. De-
lowed by possible geminate recombination involve a com-spite this increased complexity, the geminate recombination
plex interplay of distance-dependent processes and timeéynamics can be extracted from the ion transient absorption
scales. A donor surrounded by many acceptors can transfély employing the known forward dynamics, which are inde-
an electron to any of the neighboring molecules, with a probpendently determined by the time resolved fluorescence mea-
ability determined by the distance-dependent transfer ratesurement.
Once the electron is transferred, back transfer to the original The overall time-dependent dynamics will be controlled
donor may occur. In liquid solution, the donors and acceptordy the distance-dependent forward transfer and back transfer
are constantly moving, changing the spatial arrangements ohtes and the diffusion constants of the donor and acceptor.
acceptors about a donor. Electron transfer is a throughspa&nce forward transfer occurs between neutral species and
phenomenon that does not occur only upon contact betwedrack transfer occurs between ions, the distance-dependent
a donor and an acceptor. Therefore, to describe the dynamidarward and back transfer rates will not be the same. Once
it is necessary to keep track of the time-dependent positionthe ions are formed, the ions will be attracted to each other,
of molecules, and to follow the flow of probability as the enhancing the probability of geminate recombination. It is
local configuration evolves in time. An ensemble averagegossible for the ions to escape and go on to do useful chem-
must then be performed to calculate experimental obsenistry. A proper theoretical analysis will be able to describe
ables. the dynamics and potentially extract the distance dependence
If a donor undergoes electron transfer, it will not fluo- of the forward and back transfer rates from analysis of the
resce, so forward electron transfer can be examined by meaxperimental data.
suring time-resolved donor fluorescence. This gives the prob- Many approaches for modeling photoinduced electron
ability that the initially excited donor is still excited at some transfer between spatially separated reactants have been pro-
later time. (Without loss of generality, we will take the do- posed in recent yeats!® These methods have varying de-
nors and acceptors to be initially neutral. Forward electrorgrees of complexity. For solid isotropic solutiot®o diffu-
transfer creates a donor cation and an acceptor anion. Gension), many important issues have been addressed in detail.
nate recombination recreates neutral ground state donors ahdsolid solution, the problem of distance-dependent forward
acceptors. Geminate recombination can be studied by meatransfer has been treated theoretichlly??and experimental
suring the transient absorption of, e.g., the donor cation. Thdata can be modeled wéfl=%" In addition, an exact statisti-
cation absorption grows in with forward electron transfer andcal mechanical treatment of back transfgeminate recom-
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bination has been developed and used to fit #&&How-  cited donor remaining excited at tirte (P,,(t)), and the
ever, the problem becomes much more complex in liquidorobability of a donor—acceptor ion pair existing at tine
solutions since diffusion of the donors and acceptors must béP(t)).2%34These quantities are related to the experimen-
included. A treatment of photoinduced electron transfer withtal observables of time-resolved fluorescence of the donor
geminate recombination including diffusion and Coulomb in-and ion transient absorption as discussed above. Previous
teraction between the ions has been presefit&tinitially comparison of the analytical formalism to Monte Carlo
inspired by the Smoluchowski and Collins and Kimball ap-simulation for solid solutionsgno diffusion has demon-
proaches, this latter method includes a full treatment obtrated the mathematical accuracy of this analytical
throughspace distance-dependent electron transfer probabifermalism?® In this paper, the simulations are extended to
ties. liquid solutions in which molecular diffusion is occurring.

It is notable, however, that a significant approximationThere are two purposes for performing these calculations.
has been made concerning the diffusion constants of donoikhe first is to conclusively verify the validity of the analyti-
and acceptors. When solving for the time-dependent forwardal formalism with diffusion as well as to ensure that the
and back transfer probabilities, an accurate description of theimulations have been accurately implemented. This is done
rates of approach of the donor and acceptor species is impdier an infinitely massive donor, i.e., no donor diffusion. This
tant. The diffusion constants for each molecular species ipermits the accuracy of the analytical theory to be tested in
solution can be measured, and individual particle motionghe absence of thB =D 4+ D, approximation. The second
can be modeled. However, the correlated motions for mempurpose is to examine the effects of the static donor approxi-
bers of a systems of particles, such as a donor and a sumation, i.e., a system in which both the donor and acceptors
rounding distribution of acceptors, is more difficult to in- are diffusing can be approximated by a fixed donor and ac-
clude fully. As a mathematical simplification, it has beenceptors with diffusion constanD=D4+D,. The accuracy
suggested that isotropic diffusion be modeled with a stationef this assumption, in the context of the electron transfer
ary donor and independently diffusing acceptots:>3The  problem, is very important. Mathematically describing diffu-
acceptors move at a rate equal to the sum of the donor arglve motion in this way makes possible the analytic solution
acceptor individual rates. In this approximation, the accepeof the problem, yielding explicit expressions for electron
tors undergo diffusive motion characterized by a Fick diffu-transfer probabilities in liquid solution. Agreement between
sion constant equal tb=D4+D,, i.e., a diffusion constant the simulations and the theory with the approximation vali-
that is the sum of the donor and acceptor diffusion constantglates the analytical method and emphasizes the latter’s ap-
In essence, this assumes that the donor molecule is infinitelglicability to understanding the dynamics of electron transfer
massive and does not move, while the rate of diffusion ofin solution and analyzing experimental results.
each acceptor is increased correspondingly. The model that is examined theoretically is a three level

In the low concentration limit, in which only one accep- system that is applicable in many, but not all, experimental
tor interacts with the photoexcited donor, this is exact. Itsituations. The lowest levéground statgis a neutral ground
amounts to a coordinate transformation. However, wherstate donor and neutral acceptors. The highest level is an
there is more than one acceptor, the motions are correlatedlectronically excited donofexcited at timet=0) and neu-

In a reference frame centered on the donor, a motion by th&ral acceptors. The third level is an unexcited donor cation
donor in one direction is rigorously represented by a conand one acceptor anion with the rest of the acceptors remain-
certed motion of all the other particles in the opposite direcing neutral. Forward electron transfer can take place from the
tion. Conversely, in a model in which the donor is fixed, andexcited donor to any acceptor. However, back electron trans-
the acceptors move witibb=Dy+D,, the acceptors no fer is taken to be geminate. Back transfer can occur only
longer display correlated motion. Noyes has discussed thisom the anion that initially receives the electron. Transfer of
issue at some lengtli,though he is inconclusive in his as- the electron to another donor cation is not possible because
sessment of the problem. He postulates that for point parmf the low concentration of donors. Electron transfer from
ticles, this approximation is probably valid, given the “rela- the acceptor anion to another neutral acceptor is not included
tively” uncorrelated nature of each particles’ movement. Thisin the treatment, although this is physically possible. The
is not an obvious conclusion. In the reference frame of axclusion of electron hopping from one acceptor to another
static donor, the vector of motion for each acceptor has twdnas a physical basis. The geminate recombination path of
sources. The first is the standard random motion of particleback transfer to the donor cation is energetically downhill,
in solution. This motion is unique and independent for each.e., there is a driving force. This is not the case for acceptor-
acceptor. The second contribution to the acceptor diffusion iso-acceptor transfer. In the language of the Marcus mbtfel,
due to the donor. This value is equal in direction and magif the back transfer is in the normal region or the mildly
nitude for every acceptor. In this way, the motions of allinverted region, the barrier for geminate recombination will
particles are fundamentally correlated. This is true even fogenerally be small compared to the barrier for acceptor—
point particles. acceptor electron hopping. In the highly inverted regime,

In this paper we compare theoretical calculations withsemiclassical theory/, which replaces Marcus theory, shows
Monte Carlo simulations of photoinduced electron transfetthat the transfer rate does not become increasingly slow, as
and geminate recombination in liquid solution in which the predicted by Marcus theory. Furthermore, forward electron
donors and acceptors are diffusing. A formal solution hadransfer is relatively short range, occurring over only a few
been developed that describes the probability of a photoexangstroms of donor—acceptor separation. Even for solutions
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with a very high concentration of acceptoi® few tenths 9 . _ N o
molan), the separation between the cation and anion is small 5 Pu(R,t|Rg) = 2 LRjP'Ct(R,t|RO)
compared to the average acceptor—acceptor separation. This =1

also adds to the high probability that recombination will be _kb(Ri)Pict(ﬁvﬂﬁo)

geminate. Therefore, the three level model treated here, o

which does not include acceptor—acceptor electron hopping, +ki(R)P(R,tIRy), i=(1,...N),
will be applicable to many real experimental systems, and ©6)

proper treatment of this model is a precursor to the inclusion o
of other effects like electron hopping between acceptors. WhereP(R,t|Ry) is the probability that the system exists as
a charge transfer ion pair and thiln acceptor has the elec-
1. ANALYTICAL SOLUTIONS tron, given that the acceptors startedRyt and are in the
_ o configurationR at timet. The solutions to these equations
The model under consideration is the three level systemyaye been derived previously with donor—acceptor excluded
composed of a photoexcited donor with neutral ground statgojume but without acceptor—acceptor excluded voldfne.
acceptors(D*A), an ion pair formed by forward transfer (Acceptor—acceptor excluded volume has also been
(D*A7), and a ground state neutral pdDA) created by reatecf®3 but is only necessary at very high acceptor con-

geminate recombination. The distance-dependent rate cogentrations. The result for the excited state probability is
stants for forward and back electron transfer are given by

k:(R) andk,(R), respectively, and the fluorescence lifetime  {(Pex(t))=exp(—t/7)

of the excited donor in the absence of electron transfer is %

As discussed above, back transfer is geminate. It is possible ><exp( —477Cf [1-S,(R,1)JR? dR]|,

for the ion pair to separate to form long-lived radical ions. R

This will be discussed following the presentation of the re- (7

Su“ﬁ:he artial differential equations describin eIectronWhere expp—t/7) accounts for the finite fluorescence lifetime
P q 9 of the excited state and,, is the donor—acceptor radial con-

trgnsf_er in a system of one donor_ gnd one acceptor W'ﬂfact distance. The ensemble-averaged ion state probability is
diffusion are, for the survival probability of the excited state,

© t
%SQX(R,HRO):D V25, (R,t|Ro) — ki (R) SRt Ro), <P“(t»:4”CijfoS°‘(R’t_t (RIS RE)

) X(Pet"))dt’ R2 dR. (®)

The one-acceptor survival probabiliti€s, and S are given
J by numerical solutions to Eq$l) and(2), respectively. The
= Sel(R,t|Ro) = LrSc(R,t|Ro) —kn(R)Se(Rit|Ro), (2)  state probability functions, Eq€7) and (8), are exact solu-
tions in the absence of acceptor—acceptor excluded volume
whereR, is the initial position of the acceptor at time=0  gnd with the donor diffusion constafit;=0. Comparisons
and R is the position at a time later. For a spherically ith Monte Carlo simulations, presented in the next section,
symmetric system, the diffusional opera®ft is defined as il test the validity of these equations and examine the ac-

and for the ion paifcharge transferstate:

2 9 curacy of the diffusion constant approximatioB,=D4
Vé:ﬁﬁ—i_ﬁ' (3) +Da.
The form of the distance-dependent electron transfer rate
and the Smoluchowski operatbg, is constants are given by Marcus®as
D ¢ 1% 2
Lr=gz 55 R eXp(~V(R) = expV(R), @ KR)= — 2T 3 exp(ﬂ
hJAmakgT © 47kgT
where V(R) is the Coulomb potential between the donor
cation and acceptor anion. Both Eq$) and (2) are solved X exp(— B(R—Rp)). ©

with reflecting boundary conditions at the van der Walls con-J, is the magnitude of the transfer matrix element at the
tact distance between donor and acceptor. The initial Condkionor—acceptor contact distanBg,. AG is the free energy
tions for both the excited donor probability and ion survival change associated with the electron transfer reacfidsmithe
probability are 1. attenuation constant of the donor and acceptor wave func-
For the general case of one donor surroundedNbgc-  tions. The solvent reorganization energys expressed as
ceptors in an initial spatial arrangement given by )
Ro=(Ro1,Rp2,-.-.Ron), and in a position R=(Ry, _&(1 i)( t .t E) (10)
R,,...,Ry) at a timet later, the excited state probability is 2 \€p €/ \Ryon Racc T/’

J - _ N ) _ wheree,, and ¢; are the optical and static solvent dielectric
5t Ped R,t|Ro) = Zl [DV;—ki(R)IPe(RtIRy), (5)  constantsRy,, and R, are the van der Walls radii of the
= donor and acceptor. This form applies to both forward and
and the ion state probability is back transfer, but, in general, the values of the various pa-
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rameters will be different for forward and back transfer. Thewhere the variables ex, fl, andb are defined as
Marcus expression accounts for the significant molecular
characteristics that influence electron transfer. Under certain — At N

conditions, the functional form of the Marcus expression ex- ~ €Xx= exp( T) exp — ;1 kf(Ri)At) ,
hibits an exponential dependence with distance. In this case,
one can simplify these expressions by approximating the rate

N
constants for forward and back transfer to be f— 1—exp( —> Kk«(R)At
: ! !
Lo RoRY o1 (RR - 13
(R)=exg ——|. k(R)=_exg — —|. L (13
(1) fl=1- exp( T) :

a; and a, parametrize the spatial fall-off of the donor and
acceptor wave function overlap in forward and back transfer,

. ) : =1- —kp(R)A
respectively, whil&R; andR,, reflect the distance dependence b exXp(—kp(R)AD),
of each process. Both the Marcus form and the exponentia‘,j{nd the summations are over All acceptors =(1,...N)
form of the rate constants will be used below in the calcula- L

’ d th : bet h d simulati The value ofN is given by the concentration of acceptor
lons and Ihe comparisons between theory and simulation. 51ecules and an empirically determined system volume.

The latter value is chosen such that all relevant electron
transfer events are included. In addition, it was important
that the system be large enough that typical diffusive particle
motions were unaffected by edge effects of a noninfinite vol-
Time-dependent electron transfer is a stochastic processme.
that can be modeled as a finite, absorbing Markov chain. By expressing the electron transfer process as a finite
This is a process in which the probability of an outcomeMarkov chain, it is straightforward to solve for the state
(transfer or fluorescengat each time step is dependent only probabilities by means of Monte Carlo techniques. This is
on the outcome of the immediately preceding step, and alhchieved by randomly choosing a microstate of the syggem
states are mutually exclusiV&° The physical constraints particular configuration oN acceptors about a donor at the
of the electron transfer process give rise to a reducible, aperigin), and determining the lifetime of the excited and ion
riodic Markov chain, i.e., a period of unity. By discretizing states. The time-dependent probabilities are then determined
the forward and back transfer events into a series of finitehy ensemble averaging over a sufficient number of mi-
but small time steps, it is possible to derive the homogeneousrostates. By properly allowing the particles to spatially dif-
transition probability function for each state of the three levelfuse at each time step, the Monte Carlo simulations should
system(neutral pair, excited state pair, and ion state)p&ir ~ exactly reproduce the correct analytical solutions given in
conjunction with the initial(t=0) probability function, this Egs.(7) and(8).
can be used to find the probability of being in each state at The general techniques used in the Monte Carlo simula-
subsequent time steps. The transition probabilities for altions have been well covered in the literatd?é!—** By
possible events of this system in a unit time stepare  choosing sufficiently “random” numbers over appropriate

IIl. MARKOV CHAIN REPRESENTATION AND MONTE
CARLO SIMULATIONS

defined by the matrix ranges, uniform probability distributions were used both for
Final transfer probability determination, as well as diffusive par-
Initial Excited lon Ground ticle motion. Over a large number of time steps, it was im-
portant that typical paths of motion for each particle re-
Excited Pex P Py sembled uncorrelated@Brownian motion. For this reason in
lon 0 Pt Py particular, it was important to calculate sufficiently smtl
Ground 0 0 1 time steps. Values akt were chosen such that the maximum

) ) scalar of motion was small on the distance scale of electron
where the labels identify the three states of the system, andlansfer. This varied depending on the electron transfer pa-
each element is the probability of transfer from one state tQgmeters. Typical values ranged from 0.03 to 0.3 A. In all
another in a single time step. The value of each transitioRases, the step size was reduced until further reduction did
element is given by not produce significant changes in the results. The system

(remaining excitell  Pg=ex, size was chosen. to be .Iarger than the radius of signific_apt
electron transfer interaction, as well as large enough to mini-

_ mize edge effects in a noninfinite system. The appropriate
(forward transfey Pr= f+fl (1-ex, volume was determined by expanding the size of the system
until no significant changes in the results were caused by a
(fluorescence Py= L)(l—ex), (12) further increase in volume. For the distance-dependent trans-
f+Al fer rates and the diffusion constants employed in the calcu-
(remaining as ions Py=1-b, lations presented below, a volume having a radius of 50 A
was sufficiently large. Edge effects were further minimized
(back transfer Py=b, by using the minimum image convention with periodic
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boundary condition!*® Conditions necessary to create an For a given initial configuration, the time bins during
initial random configuration in such a system have been diswhich each state was occupied were recorded in separate
cussed in detail elsewhete?! 44 histograms. By averaging over a sufficient number of unique

The initial conditions for the excited and ion states arestarting configurations, a time-dependent ensemble average
(P, (t=0))=1 and(P.(t=0))=0. At the first time step, all of state probabilities was found. These solutions are directly
particles were randomly moved a radial distance determinedomparable to the analytical solutions of E¢8) and (8).
by the chosen Fick diffusion constabt This scalar of mo- When the donor is held fixed in both the simulation and
tion was calculated froRy = 6D At. Each final particle ~analytical models, with no acceptor excluded volume, the
placement was found by randomly choosing the polar coortwo methods are identical formulations of the same physical
dinates¢ and 6 from the respective weighted distribution for model. When the donor is allowed to diffuse freely in the
each degree of freedoft*®* Once the new configuration was Simulations, the comparison between methods can examine
obtained, the probability of forward transfe®,, fluores- the validity of fixing the donor and assigning the acceptor a
cence,Py, or of remaining in the excited stat®,,, was diffusion constanD=Dy+D,.
calculated via Eq(12). A random number was chosen onthe  All the Monte Carlo simulations employed a random
set[0--1], determining which event occurred. When it was humber generator to uniformly select values in the range
found that fluorescence took place, a neutral pair was crd0--1]. These values were then used to sample the ranges of
ated, thus entering the absorbing state at the terminus of tHB€ functions of interest. The algorithm to select random
Markov chain. Conversely, if forward transfer occurred, it "umbers was developed by Marsaglia and Zaffiarhis al-
was necessary to determine which acceptor received the ele@orithm required 24 input seed numbers, which were ob-
tron. The chance of thith particle becoming an anion was tained from a simpler random number generator with a
P,=k(R))/=k{(R,), and again a random number was usedshorter period’ The numerical calculations were done on an
to make the selection. If the latter event happeftethaining  |BM RS6000 model 3BT workstation. All programs were
in the excited staje the processes of diffusion and possibIeW”tte“ in theC language. Several standard subroutines were
transfer were again examined. This was repeated until a traPtained from algorithms written by Pressal*®
sitional event took place.

If at any time forward transfer did occur, then the ion IV. RESULTS
state had to be examined. As this latter state is only a two  The agreement between the analytical theory and the
particle process, the computational effort could, under cermonte Carlo simulations when the donor is held fixed can be
tain conditions, be substantially reduced to include only theysed as a multipurpose check on both methods of analysis.
ion pair. This is possible when acceptor—acceptor excludegigure 1 showgP,(t)) obtained both ways for a variety of
volume is not included. In this case, the acceptor positionglectron transfer parameteigiven in the figure captionus-
become uncorrelated, and the ion pair is unaffected by thing both the exponential form and the Marcus form of the
presence of the other N-1 neutral acceptors. This scenario fate constank;(R). The analytical solutions were obtained
particularly significant in that it makes the question of directly from Eqg.(7), and the simulations were performed
donor—acceptor correlated diffusion during back transfer &eeping the donor fixed and only allowing the acceptors to
moot point. On the other hand, if acceptor volume is in-move. For both methods, donor—acceptor excluded volume,
cluded, then all particle positions and motions must be rewith a radius equal to the van der Walls contact distance of
tained, even during the ion state calculations. This meanthe two molecules, was included, but acceptor—acceptor ex-
that the system is still dependent on Hit+1 particles, and cluded volume was not. Fluorescence decay was not in-
the validity of the static donor approximation must be exam-cluded so that the role of electron transfer is emphasized. It is
ined. In the results presented below, simulations with andlear that in every case the two methods agree. The small
without acceptor—acceptor excluded volume are comparediifferences that appear in the figure arise from convergence
In all cases, donor—acceptor excluded volume is included irriteria in both the analytical calculations and the simula-
the simulations and in the analytical calculations. tions. The figure shows a small sampling of the large number

In the study of back transfer between an ion pair, diffu-of calculations that were performed. Agreement is seen for
sive motion may be modified by Coulombic attraction be-any value of all the system variables, including any set of
tween the newly created oppositely charged ions. To accourectron transfer parameters, all particle concentrations, and
for this, the likelihood of the ions moving in any given di- any form of the forward transfer rate distance dependence.
rection is made to be dependent upon the change in potentidhe results emphasize that not only have all the spatial av-
energy before and after the step. If the new position resultedrages been done correctly in the analytical method, but that
in a decrease of the potential of the ion pair, the move washe Markov chain approach accurately describes the system
accepted. If the potential energy increased, it was accepteghd has been implemented correctly.
with an inverse exponential probability, with respect to the  Figure 2 displays the functional form of the rate con-
magnitude of chang¥. After each step, the probability of stants versus radial distance for the calculations in Fig. 1.
back transfer was determined from H42). Again, a ran- The magnitudes of eacK;(R) plot in Fig. 2 have been
dom number was chosen to determine which event occurredcaled to have a maximum of one for the purposes of com-
This either resulted in the creation of the neutral state angharison. In practice, the absolute magnitudes of the transfer
termination of the chain, or the ion remained. If the ion still rate constants varied over seven orders of magnitude, de-
existed, the simulation was continued. pending on the parameters chosen. The transfer parameters
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FIG. 2. This figure displays the distance-dependent functional shape for the
FIG. 1. Comparison ofP(t)) calculations obtained from analytic solution transfer rate constants used in the calculations of Fig. 1. All curves have

(solid lineg, and from Monte Carlo simulatioidashed lines Donor— been normalized such that the maximum intensity is set to 1, in order to
acceptor contact distand,, is the sum ofRy,=5.4 A andR,.=3.6 A. more clearly exhibit the various distance dependences. The absolute magni-
Acceptor concentration was OM, and diffusion constamtl0 A%/ns. tudes of these curves actually vary over seven orders of magnitude.

Curves A—C were calculated with an exponential form of the electron trans-
fer rate constanfEq. (12)], with 7=15.0 ns. A, a;=1.0, R;=10.0; B,

a;=0.5R;=12.0; C,a;=0.2,R;=12.0. Curves D—F employed the Marcus . . . .
form of the rate confstar{Eq.f(lo)]. D, J,=400, f=3.0, AG=—10: E, analytical solutiofEqg. (8)] and by simulatiorfEq. (12)] are

J,=100, 8=1, AG=—0.5; F,J,=1000,8=1, AG=—1.2. The value ok is  Shown in Fig. 3. The donor was held stationary in both the
obtained withe,;=2.2, =8.5. analytic and simulated curves, and fluorescence decay was

not included. Donor—acceptor excluded volume was ac-

counted for, but acceptor—acceptor excluded volume was
for curves F in Figs. 1 and 2 were chosen to show thahot. A wide variety of transfer parameters, as well as both the
analytical theory and the simulations agree even when th#larcus and exponential forms of the distance-dependent
distance-dependent transfer rate is not exponentially decayransfer rate, were examined. In every case, the two methods
ing, or even monotonically decreasing. For all cases, regardf calculating(P(t)) resulted in essentially perfect agree-
less of transfer rate magnitude or functional form, the anament. The agreement of the results emphasizes the math-
lytical solution for (P (t)) agrees exactly with the Monte ematical accuracy of the analytical statistical mechanical ap-
Carlo simulations. The very slight mismatches on the curvegroach presented hei@vhich is described in more detail
shown in Fig. 1 are the result of computational time con-elsewher&). Figure 3 shows that it is possible to accurately
straints limiting the convergence criteria during the calcula-calculate the time-dependent ion concentration, generated by
tions. It is important to recognize that both the analyticalforward transfer and decaying through geminate recombina-
theory and the simulations involve numerical difficulties in tion, in systems with a diffusing donor and acceptors, and
calculating the curves. This is particularly true @, (t))  diffusing ions that are attracted to each other by a Coulombic
shown below, calculated with the analytical theory. It is pos-interaction. The agreement is perfect within the error caused
sible to obtain numerical solutions of the differential equa-by convergence criteria for any choice of the forward and
tions that are qualitatively reasonable and that seem to haveack transfer parameters and for either the exponential or
converged, when in fact, the calculations are far from conMarcus form of the distance dependence of the transfer rate.
vergence. There is no firm criteria that can be stated for step The significant advantage of using the analytical theory
sizes in the calculations that will work under all circum- is the speed with which the time-dependent properties of a
stances because the necessary conditions for converges dgstem and experimental observables can be calculated.
pend on the electron transfer parameters. However, it is imComputer CPU time required to fif@.,(t)) and(P(t)) via
portant to note that a significant reduction in step sizes i€gs. (7) and (8) is several minutes. In contrast, the Monte
required to test for convergence. Therefore, great care mu§larlo simulations, depending on concentration and param-
be exercised if meaningful results are to be obtained. eter values, require a few hours to a few tens of hours. Simu-

Comparisons of calculations @P(t)) that include for- lations that include finite acceptor volumes can require many

ward transfer and geminate recombination obtained from thdays to reach convergence.
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FIG. 3. Comparison of ion state probabilitP(t)) calculations obtained ~FIG. 4. Comparison of simulations using the static donor approximation
from analytic solution(solid lineg and simulation(dashed lings Particle V_V'th the acceptor diffusion constabt=D 4+ D, (solid Ilrjes),.wnh smula—
sizes and solvent dielectric values are given in Fig. 1. Acceptor concentraions in which the donor and the acceptors undergo diffutiashed liness

tion was 0.M, and diffusion constart10 A%ns. Curves B, D, and F uti- Contact distamz:eRng.O A. Acceptor concentration was (ML and

lized the exponential transfer rate constg. (12)] with 7=15.0 ns, while ~ Pa=Da=5.0 A%ns. The value ofr=15 ns. Curves A and B are excited
curves A, C, and E used the Marcus fofq. (10)]. The values for the  State probabilitiegP,(t)), with parameters Aa;=0.5,R;=12; B, a,=0.2,
parameters used in each curve are J=1000, =1, AG;=—1.2, R,=12.0. Curves C and D are ion state probabiliiPg(t)), with param-
Jop=400, B,=3, AG,=-1.0; B, a;=0.2, Ry=12, a,=1.0, R,=12; C, eters C,a;=0.5, R{=12, a,=0.5, R,=12; D, a;=0.2, R;=12.0, a,=1.0,
Jor=100, B;=1, AG;=—0.5, J;,=400, B,=3, AG,=—1.0; D, a;,=0.5, R,=10.0. Curves B and D were calculated by both methods, but agree too

Ri=12,a,=0.5,R,=12; E,J;=400, B;=3, AG{=—1.0,J5,=400,3,=3,  Well to be distinguishable.
AG,=-10; F,a;=1.0,R;=10, a,=0.2, Ry=12.

former case, the acceptors were moved with a diffusion con-

In the calculations presented above, acceptor—acceptatant equal to the sum of the donor and acceptor diffusion
excluded volume is not included. Detailed examination ofconstants. The figure shows that the static donor approxima-
acceptor—acceptor excluded volume in solid solufions tion is nearly flawless. Curves B and D are actually pairs of
shows that it is not important at moderate and low conceneurves that are indistinguishable in the figure. The displayed
trations. It only becomes significant for concentrations abovealculations are for the exponential form of the distance de-
a few tenths molar. An approximate method of handlingpendent transfer rate. A large number of calculations were
acceptor—acceptor excluded volume up to higher concentraerformed using both the exponenfigl. (11)] and the Mar-
tions has been developétput this approach fails at very cus[Eq. (9)] forms of the transfer rate. For any choice of
high concentrations. These very high concentrationsM)  transfer parameters, both methodsatic or mobile dongr
are not generally encountered in real experimental systemgave results that are, within numerical accuracy, identical.
More important than acceptor—acceptor excluded volume iThe agreement was unaffected by acceptor concentration,
the static donor approximation. In the calculations presentettansfer parameters, or diffusion constant. Identical agree-
above, the donor is fixed in both the theory and simulationsment is found regardless of the functional form of the trans-
In real systems the donor and acceptors undergo diffusivéer rate. These results confirm the validity of the static donor
motion. In the simulations, it is straightforward to have theapproximation in which the true acceptor diffusion constant
donor diffuse. In the analytical theory, the donor is alwaysis replaced withD=D_+ D in the calculation.
held fixed, and its diffusion is approximated by giving the For low and moderate acceptor concentratiguecking
acceptors a diffusion constant Bf=D_+Dy. Making the fractions of less than a few percgninclusion of acceptor—
static donor approximation enables the analytical theory t@cceptor excluded volume does not affect the accuracy of the
be applied to real experimental systems, but the analyticadtatic donor approximation because acceptor—acceptor ex-
theory is useful only if this approximation is accurate. cluded volume is insignificant. However, as the acceptor

Figure 4 examines this approximation in the absence oflensity increases, acceptor interactions become significant
acceptor—acceptor excluded volume. Simulationdf(t))  and positions become more correlated. This leads to a notice-
and(P.(t)) with a static donor are compared to those thatable source of error when utilizing the static donor approxi-
allow both the donor and acceptors to move freely. In thanation. For finite volume particles, a hard sphere potential
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scription for an ideal three level system including acceptor
diffusion up to moderate acceptor concentrati¢asceptor—
acceptor excluded volume is relatively unimporjant

Since in real systems the donor undergoes diffusion, the
validity of the static donor approximation was tested. Up to
moderate acceptor concentration, it is found that fixing the
donor and giving the acceptors a diffusion constant of
D=D,+Dy introduces no measurable error into the calcu-
lation. This is an important result because it makes the ana-
Iytical theory applicable to real systems. For high concentra-
tions, at which acceptor—acceptor excluded volume becomes
important, the static donor approximation introduces some
error. In most systems of experimental interest, the static
donor approximation is accurate.

In the theory that is discussed here and presented in
more detail in Refs. 29 and 30, the ion population decays
strictly by geminate recombination. This is because there is
no other mode of ion decay built into the model. Within the
context of the theory, an ion pair that becomes well separated
will eventually recombine as—o. Therefore, there is no
0 0o 2 "1 ' é T8 10 formal “ion escape.” In a real system, impurities or other
chemical species mixed into the solution can act as scaven-
gers and quench ions prior to geminate recombination. The

theory described here can be used to gain insight into ion
FIG. 5. Comparisor_] of simulations _that _inclu‘de‘acceptor—acceptor exgludegscape by recognizing that there is a separation of time scales
volume for the static donor approximatigsolid lineg and for the case in . . . .
which both donor and acceptors are allowed to diff(&shed lines The for true geminate recombination versus fornake gemi-
donors and acceptors were given a finite volume and interact with a hartlate recombination that is contained in the theory. In the
sphere potential. Donor radiua$.4 A, acceptor radius3.6 A. Acceptor  exponential form of the transfer rat, defines the distance

concentration is 0.8 (packing fractior=6.7%), diffusion constant ; ;
D4=D,=5.0 A?%ns. The exponential form of the distance-dependent trans—scaIe on which back electron transfer will occur. lons that

fer rate was used. Curves A are the excited state probabilRigt)), with SP"Vi\{e on a time scale long _compared to the time for the
parametersa;=0.5, R;=12.0. Curves B are the ion state probabilities diffusive root-mean-squared displacement to be greater than
(Pc(t)), with parameters,=0.5, R;=12.0,a,=1.0, R,=12.0. afewR,, say &y, should be considered to have undergone
escape. While this is not a perfectly well-defined criterion,
d for the int . tential. A in Fi 5on the long time scale associated with large ion pair separa-
was use Ot: ) € interac IIO?' po en,t'ha' tsfseen(jm 'g'b,ltion, the decay of the ion population is very slow. Therefore,
comparison between simufations with a stalic and a mobligy, ayact definition of the time or distance for escape is not
donor are in some disagreement for the ion state CalCU|at'°nﬁECessary

For eitherPe, or P, the disparity varied with choice of The theory presented here uses the simplest picture of
transfer parameters, diffusion constant, and packing fraction, ;i jes moving in a liquid. The liquid is a continuum
The example shown in Fig. 5 exhibits the error inherent wit ' :

an acceptor concentration of QV3(6.7% packing fraction

0.8

o o
EN o

<Pex(t)> and <Pct(t)>
o
[\

time (ns)

h\Nith the donor and acceptors initially randomly distributed.
. ; . 5 The molecular motions are simple diffusion. However, the
n a reasonably viscous medu(rtbzl_o.o Ans). At concen- theory has been set up to be able to readily encompass more
tr_at|ons Ies_s th_an 013, I|tt_Ie error 1S seen. However, the_ detailed and physically realistic models of liquid structure
d|scre_panf:|es increase significantly with acceptor densnyind dynamics. Two physical features of liquids are particu-
and diffusion constant. larly important to the electron transfer problem. The first is
the structure of the liquid around the donor. The local struc-
V. CONCLUDING REMARKS ture is not a continuum, but has solvent shells. This results in

In liquid systems, diffusion can play a significant role in & significant change in the local acceptor concentration and,

electron transfer and geminate recombination. While signifi—;he;efore' on ;rhetrat\?vﬁf eIechon tranc'jsfer. The stecond IS hyr;
cantly increasing the rates of forward and back transfer, difo'ocynamic efiects. ¥when a donor and an acceptor approach,

fusion can also lead to a finite population of ion pairs thatth.ey do noF undergo the type O.f diffusive motion assoqate_d
with a continuum. Hydrodynamic effects also have a signifi-

can survive for a greatly extended length of time. It is pos- . h £ ol tor. Th hvsical
sible for the pair to separate, resulting in solvated specie?am Impact on the rate of electron transfer. These physica

that may be useful as sources of chemical energy. It is im_eaturgs of liquids are currently being inclu_ded in the theory
portant for an understanding of these processes to be able "f'Qd will be the subject of a future publication.

adequately model the energetics and dynamics that occu
The results presented here, comparing Monte Carlo simula-
tions with the previously developed analytical theory, show  This work was supported by the Department of Energy,
that for a fixed donor the theory provides an accurate de©Office of Basic Energy Science€Grant No. DE-FGO03-
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