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Photoinduced electron transfer and geminate recombination in liquid solution are addressed with
analytical theory and Monte Carlo simulations. The time-dependent probabilities of the donor being
excited and of an ion pair existing are obtained for a system of a donor and many acceptors
undergoing diffusive motion. Multiparticle simulations are modeled as a Markov chain and are
shown to agree with the analytical formalism presented previously. The calculations are performed
using both a simple exponential form of the distance dependence of the transfer rate and using the
more general Marcus distance-dependent transfer rate. For a static donor, in the absence of
acceptor–acceptor excluded volume, theory and simulations provide identical results, confirming
the accuracy of the analytical method. For the calculation of properties of real systems in which both
the donor and acceptors diffuse, to make the mathematics tractable, the donor is held static and each
acceptor is given a Fick diffusion constant equal to the sum of the diffusion constants of the donor
and acceptor,D5Dd1Da . The validity of this approximation is examined in the absence of
acceptor–acceptor excluded volume and found to work extremely well under all conditions. It is
also examined with acceptor–acceptor excluded volume. In this case, the static donor approximation
is found to work generally well up to moderately high acceptor concentrations,,5% packing
fraction. However, the results suggest that at even higher packing fractions, the static donor
approximation loses its validity. ©1995 American Institute of Physics.
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I. INTRODUCTION

Photoinduced electron transfer and geminate recomb
tion ~back electron transfer! in liquid solutions is a complex
problem that is receiving a great deal of experimental a
theoretical attention. The dynamics of electron transfer f
lowed by possible geminate recombination involve a co
plex interplay of distance-dependent processes and t
scales. A donor surrounded by many acceptors can tran
an electron to any of the neighboring molecules, with a pro
ability determined by the distance-dependent transfer r
Once the electron is transferred, back transfer to the orig
donor may occur. In liquid solution, the donors and accept
are constantly moving, changing the spatial arrangement
acceptors about a donor. Electron transfer is a throughsp
phenomenon that does not occur only upon contact betw
a donor and an acceptor. Therefore, to describe the dynam
it is necessary to keep track of the time-dependent positi
of molecules, and to follow the flow of probability as th
local configuration evolves in time. An ensemble avera
must then be performed to calculate experimental obse
ables.

If a donor undergoes electron transfer, it will not fluo
resce, so forward electron transfer can be examined by m
suring time-resolved donor fluorescence. This gives the pr
ability that the initially excited donor is still excited at som
later time.~Without loss of generality, we will take the do
nors and acceptors to be initially neutral. Forward electr
transfer creates a donor cation and an acceptor anion. G
nate recombination recreates neutral ground state donors
acceptors.! Geminate recombination can be studied by me
suring the transient absorption of, e.g., the donor cation. T
cation absorption grows in with forward electron transfer a
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decays by geminate recombination. If a donor has accepto
nearby, forward transfer will be fast and geminate recomb
nation can occur prior to forward transfer by another dono
that only has access to more distant acceptors. Thus, t
time-dependent cation absorption involves overlapping pro
cesses of forward transfer and geminate recombination. D
spite this increased complexity, the geminate recombinatio
dynamics can be extracted from the ion transient absorptio
by employing the known forward dynamics, which are inde
pendently determined by the time resolved fluorescence me
surement.

The overall time-dependent dynamics will be controlled
by the distance-dependent forward transfer and back trans
rates and the diffusion constants of the donor and accept
Since forward transfer occurs between neutral species a
back transfer occurs between ions, the distance-depend
forward and back transfer rates will not be the same. Onc
the ions are formed, the ions will be attracted to each othe
enhancing the probability of geminate recombination. It i
possible for the ions to escape and go on to do useful che
istry. A proper theoretical analysis will be able to describ
the dynamics and potentially extract the distance dependen
of the forward and back transfer rates from analysis of th
experimental data.

Many approaches for modeling photoinduced electro
transfer between spatially separated reactants have been p
posed in recent years.1–16 These methods have varying de-
grees of complexity. For solid isotropic solutions~no diffu-
sion!, many important issues have been addressed in deta
In solid solution, the problem of distance-dependent forwar
transfer has been treated theoretically,17–22and experimental
data can be modeled well.23–27 In addition, an exact statisti-
cal mechanical treatment of back transfer~geminate recom-
6/95/103(20)/8864/9/$6.00 © 1995 American Institute of Physics
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8865S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
bination! has been developed and used to fit data.23,28How-
ever, the problem becomes much more complex in liq
solutions since diffusion of the donors and acceptors mus
included. A treatment of photoinduced electron transfer w
geminate recombination including diffusion and Coulomb
teraction between the ions has been presented.29,30 Initially
inspired by the Smoluchowski and Collins and Kimball a
proaches, this latter method includes a full treatment
throughspace distance-dependent electron transfer prob
ties.

It is notable, however, that a significant approximati
has been made concerning the diffusion constants of do
and acceptors. When solving for the time-dependent forw
and back transfer probabilities, an accurate description of
rates of approach of the donor and acceptor species is im
tant. The diffusion constants for each molecular specie
solution can be measured, and individual particle motio
can be modeled. However, the correlated motions for m
bers of a systems of particles, such as a donor and a
rounding distribution of acceptors, is more difficult to in
clude fully. As a mathematical simplification, it has be
suggested that isotropic diffusion be modeled with a stati
ary donor and independently diffusing acceptors.7,31–33The
acceptors move at a rate equal to the sum of the donor
acceptor individual rates. In this approximation, the acc
tors undergo diffusive motion characterized by a Fick dif
sion constant equal toD5Dd1Da , i.e., a diffusion constan
that is the sum of the donor and acceptor diffusion consta
In essence, this assumes that the donor molecule is infin
massive and does not move, while the rate of diffusion
each acceptor is increased correspondingly.

In the low concentration limit, in which only one acce
tor interacts with the photoexcited donor, this is exact.
amounts to a coordinate transformation. However, wh
there is more than one acceptor, the motions are correla
In a reference frame centered on the donor, a motion by
donor in one direction is rigorously represented by a c
certed motion of all the other particles in the opposite dir
tion. Conversely, in a model in which the donor is fixed, a
the acceptors move withD5Dd1Da , the acceptors no
longer display correlated motion. Noyes has discussed
issue at some length,33 though he is inconclusive in his as
sessment of the problem. He postulates that for point
ticles, this approximation is probably valid, given the ‘‘rel
tively’’ uncorrelated nature of each particles’ movement. T
is not an obvious conclusion. In the reference frame o
static donor, the vector of motion for each acceptor has
sources. The first is the standard random motion of parti
in solution. This motion is unique and independent for ea
acceptor. The second contribution to the acceptor diffusio
due to the donor. This value is equal in direction and m
nitude for every acceptor. In this way, the motions of
particles are fundamentally correlated. This is true even
point particles.

In this paper we compare theoretical calculations w
Monte Carlo simulations of photoinduced electron trans
and geminate recombination in liquid solution in which t
donors and acceptors are diffusing. A formal solution h
been developed that describes the probability of a photo
J. Chem. Phys., Vol. 103,
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cited donor remaining excited at timet, ^Pex(t)&, and the
probability of a donor–acceptor ion pair existing at timet,
^Pct(t)&.

29,30,34These quantities are related to the experime
tal observables of time-resolved fluorescence of the don
and ion transient absorption as discussed above. Previ
comparison of the analytical formalism to Monte Carlo
simulation for solid solutions~no diffusion! has demon-
strated the mathematical accuracy of this analytic
formalism.35 In this paper, the simulations are extended t
liquid solutions in which molecular diffusion is occurring.
There are two purposes for performing these calculation
The first is to conclusively verify the validity of the analyti-
cal formalism with diffusion as well as to ensure that th
simulations have been accurately implemented. This is do
for an infinitely massive donor, i.e., no donor diffusion. Thi
permits the accuracy of the analytical theory to be tested
the absence of theD5Dd1Da approximation. The second
purpose is to examine the effects of the static donor appro
mation, i.e., a system in which both the donor and accepto
are diffusing can be approximated by a fixed donor and a
ceptors with diffusion constant,D5Dd1Da . The accuracy
of this assumption, in the context of the electron transf
problem, is very important. Mathematically describing diffu
sive motion in this way makes possible the analytic solutio
of the problem, yielding explicit expressions for electro
transfer probabilities in liquid solution. Agreement betwee
the simulations and the theory with the approximation val
dates the analytical method and emphasizes the latter’s
plicability to understanding the dynamics of electron transf
in solution and analyzing experimental results.

The model that is examined theoretically is a three lev
system that is applicable in many, but not all, experiment
situations. The lowest level~ground state! is a neutral ground
state donor and neutral acceptors. The highest level is
electronically excited donor~excited at timet50! and neu-
tral acceptors. The third level is an unexcited donor catio
and one acceptor anion with the rest of the acceptors rema
ing neutral. Forward electron transfer can take place from t
excited donor to any acceptor. However, back electron tran
fer is taken to be geminate. Back transfer can occur on
from the anion that initially receives the electron. Transfer o
the electron to another donor cation is not possible becau
of the low concentration of donors. Electron transfer from
the acceptor anion to another neutral acceptor is not includ
in the treatment, although this is physically possible. Th
exclusion of electron hopping from one acceptor to anoth
has a physical basis. The geminate recombination path
back transfer to the donor cation is energetically downhi
i.e., there is a driving force. This is not the case for accepto
to-acceptor transfer. In the language of the Marcus model,9,36

if the back transfer is in the normal region or the mildly
inverted region, the barrier for geminate recombination wi
generally be small compared to the barrier for accepto
acceptor electron hopping. In the highly inverted regim
semiclassical theory,37 which replaces Marcus theory, shows
that the transfer rate does not become increasingly slow,
predicted by Marcus theory. Furthermore, forward electro
transfer is relatively short range, occurring over only a fe
angstroms of donor–acceptor separation. Even for solutio
No. 20, 22 November 1995
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8866 S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
with a very high concentration of acceptors~a few tenths
molar!, the separation between the cation and anion is sm
compared to the average acceptor–acceptor separation. T
also adds to the high probability that recombination will b
geminate. Therefore, the three level model treated he
which does not include acceptor–acceptor electron hoppin
will be applicable to many real experimental systems, an
proper treatment of this model is a precursor to the inclusio
of other effects like electron hopping between acceptors.

II. ANALYTICAL SOLUTIONS

The model under consideration is the three level syste
composed of a photoexcited donor with neutral ground sta
acceptors~D*A!, an ion pair formed by forward transfer
~D1A2!, and a ground state neutral pair~DA! created by
geminate recombination. The distance-dependent rate c
stants for forward and back electron transfer are given b
kf(R) andkb(R), respectively, and the fluorescence lifetime
of the excited donor in the absence of electron transfer ist.
As discussed above, back transfer is geminate. It is possi
for the ion pair to separate to form long-lived radical ions
This will be discussed following the presentation of the re
sults.

The partial differential equations describing electro
transfer in a system of one donor and one acceptor w
diffusion are, for the survival probability of the excited state

]

]t
Sex~R,tuR0!5D ¹2Sex~R,tuR0!2kf~R!Sex~R,tuR0!,

~1!

and for the ion pair~charge transfer! state:

]

]t
Sct~R,tuR0!5LRSct~R,tuR0!2kb~R!Sct~R,tuR0!, ~2!

whereR0 is the initial position of the acceptor at timet50
and R is the position at a timet later. For a spherically
symmetric system, the diffusional operator¹2 is defined as

¹R
25

2

R

]

]R
1

]2

]R2 , ~3!

and the Smoluchowski operatorLR is

LR5
D

R2

]

]R
R2 exp„2V~R!…

]

]R
exp„V~R!…, ~4!

where V(R) is the Coulomb potential between the dono
cation and acceptor anion. Both Eqs.~1! and ~2! are solved
with reflecting boundary conditions at the van der Walls con
tact distance between donor and acceptor. The initial con
tions for both the excited donor probability and ion surviva
probability are 1.

For the general case of one donor surrounded byN ac-
ceptors in an initial spatial arrangement given b
R̄05(R01,R02,...,R0N), and in a position R̄5(R1 ,
R2 ,...,RN) at a timet later, the excited state probability is

]

]t
Pex~R̄,tuR̄0!5(

j51

N

@D¹ j
22kf~Rj !#Pex~R̄,tuR̄0!, ~5!

and the ion state probability is
J. Chem. Phys., Vol. 103, N
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]

]t
Pct
i ~R̄,tuR̄0!5(

j51

N

LRjPct
i ~R̄,tuR̄0!

2kb~Ri !Pct
i ~R̄,tuR̄0!

1kf~Ri !Pex~R̄,tuR̄0!, i5~1,...,N!,

~6!

wherePct
i (R̄,tuR̄0) is the probability that the system exists as

a charge transfer ion pair and thei th acceptor has the elec-
tron, given that the acceptors started atR̄0 and are in the
configurationR̄ at time t. The solutions to these equations
have been derived previously with donor–acceptor exclude
volume but without acceptor–acceptor excluded volume.34

~Acceptor–acceptor excluded volume has also bee
treated,30,35 but is only necessary at very high acceptor con
centrations.! The result for the excited state probability is

^Pex~ t !&5exp~2t/t!

3expS 24pCE
Rm

`

@12Sex~R,t !#R
2 dRD ,

~7!

where exp~2t/t! accounts for the finite fluorescence lifetime
of the excited state andRm is the donor–acceptor radial con-
tact distance. The ensemble-averaged ion state probability

^Pct~ t !&54pCE
Rm

` E
0

t

Sct~R,t2t8!kf~R!Sex~R,t8!

3^Pex~ t8!&dt8 R2 dR. ~8!

The one-acceptor survival probabilitiesSex andSct are given
by numerical solutions to Eqs.~1! and~2!, respectively. The
state probability functions, Eqs.~7! and ~8!, are exact solu-
tions in the absence of acceptor–acceptor excluded volum
and with the donor diffusion constantDd50. Comparisons
with Monte Carlo simulations, presented in the next section
will test the validity of these equations and examine the ac
curacy of the diffusion constant approximation,D5Dd

1Da .
The form of the distance-dependent electron transfer ra

constants are given by Marcus as36

k~R!5
2p

\A4plkBT
J0
2 expS 2~DG1l!2

4pkBT
D

3exp„2b~R2Rm!…. ~9!

J0 is the magnitude of the transfer matrix element at the
donor–acceptor contact distanceRm . DG is the free energy
change associated with the electron transfer reaction.b is the
attenuation constant of the donor and acceptor wave fun
tions. The solvent reorganization energyl is expressed as

l5
e2

2 S 1

eop
2

1

es
D S 1

Rdon
1

1

Racc
2
2

r D , ~10!

whereeop andes are the optical and static solvent dielectric
constants.Rdon andRacc are the van der Walls radii of the
donor and acceptor. This form applies to both forward an
back transfer, but, in general, the values of the various pa
o. 20, 22 November 1995
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8867S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
rameters will be different for forward and back transfer. Th
Marcus expression accounts for the significant molecul
characteristics that influence electron transfer. Under certa
conditions, the functional form of the Marcus expression e
hibits an exponential dependence with distance. In this ca
one can simplify these expressions by approximating the ra
constants for forward and back transfer to be

kf~R!5
1

t
expSRf2R

af
D , kb~R!5

1

t
expSRb2R

ab
D .

~11!

af and ab parametrize the spatial fall-off of the donor and
acceptor wave function overlap in forward and back transfe
respectively, whileRf andRb reflect the distance dependence
of each process. Both the Marcus form and the exponent
form of the rate constants will be used below in the calcula
tions and the comparisons between theory and simulation

III. MARKOV CHAIN REPRESENTATION AND MONTE
CARLO SIMULATIONS

Time-dependent electron transfer is a stochastic proce
that can be modeled as a finite, absorbing Markov cha
This is a process in which the probability of an outcom
~transfer or fluorescence! at each time step is dependent only
on the outcome of the immediately preceding step, and
states are mutually exclusive.38–40 The physical constraints
of the electron transfer process give rise to a reducible, ap
riodic Markov chain, i.e., a period of unity. By discretizing
the forward and back transfer events into a series of finit
but small time steps, it is possible to derive the homogeneo
transition probability function for each state of the three leve
system~neutral pair, excited state pair, and ion state pair!. In
conjunction with the initial~t50! probability function, this
can be used to find the probability of being in each state
subsequent time steps. The transition probabilities for a
possible events of this system in a unit time stepDt are
defined by the matrix

Final
Initial Excited Ion Ground

Excited Pex Pf Pfl
Ion 0 Pct Pb

Ground 0 0 1

where the labels identify the three states of the system, a
each element is the probability of transfer from one state
another in a single time step. The value of each transitio
element is given by

~remaining excited! Pex5ex,

~ forward transfer! Pf5S f

f1flD ~12ex!,

~fluorescence! Pfl5S fl

f1flD ~12ex!, ~12!

~remaining as ions! Pct512b,

~back transfer! Pb5b,
J. Chem. Phys., Vol. 103, N
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where the variables ex,f , fl, andb are defined as

ex5expS 2Dt

t D expS 2(
i51

N

kf~Ri !Dt D ,
f512expS 2(

i51

N

kf~Ri !Dt D ,
~13!

fl512expS 2Dt

t D ,
b512exp„2kb~R!Dt…,

and the summations are over allN acceptorsi5(1,...,N).
The value ofN is given by the concentration of acceptor
molecules and an empirically determined system volum
The latter value is chosen such that all relevant electro
transfer events are included. In addition, it was importan
that the system be large enough that typical diffusive partic
motions were unaffected by edge effects of a noninfinite vo
ume.

By expressing the electron transfer process as a fini
Markov chain, it is straightforward to solve for the state
probabilities by means of Monte Carlo techniques. This i
achieved by randomly choosing a microstate of the system~a
particular configuration ofN acceptors about a donor at the
origin!, and determining the lifetime of the excited and ion
states. The time-dependent probabilities are then determin
by ensemble averaging over a sufficient number of m
crostates. By properly allowing the particles to spatially dif
fuse at each time step, the Monte Carlo simulations shou
exactly reproduce the correct analytical solutions given i
Eqs.~7! and ~8!.

The general techniques used in the Monte Carlo simul
tions have been well covered in the literature.35,41–44 By
choosing sufficiently ‘‘random’’ numbers over appropriate
ranges, uniform probability distributions were used both fo
transfer probability determination, as well as diffusive par
ticle motion. Over a large number of time steps, it was im
portant that typical paths of motion for each particle re
sembled uncorrelated~Brownian! motion. For this reason in
particular, it was important to calculate sufficiently smallDt
time steps. Values ofDt were chosen such that the maximum
scalar of motion was small on the distance scale of electro
transfer. This varied depending on the electron transfer p
rameters. Typical values ranged from 0.03 to 0.3 Å. In a
cases, the step size was reduced until further reduction d
not produce significant changes in the results. The syste
size was chosen to be larger than the radius of significa
electron transfer interaction, as well as large enough to min
mize edge effects in a noninfinite system. The appropria
volume was determined by expanding the size of the syste
until no significant changes in the results were caused by
further increase in volume. For the distance-dependent tran
fer rates and the diffusion constants employed in the calc
lations presented below, a volume having a radius of 50
was sufficiently large. Edge effects were further minimize
by using the minimum image convention with periodic
o. 20, 22 November 1995
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8868 S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
boundary conditions.41,43 Conditions necessary to create a
initial random configuration in such a system have been d
cussed in detail elsewhere.35,41,44

The initial conditions for the excited and ion states a
^Pex~t50!&51 and ^Pct~t50!&50. At the first time step, all
particles were randomly moved a radial distance determin
by the chosen Fick diffusion constantD. This scalar of mo-
tion was calculated fromRdiff 5 A6D Dt. Each final particle
placement was found by randomly choosing the polar co
dinatesf andu from the respective weighted distribution fo
each degree of freedom.35,45Once the new configuration wa
obtained, the probability of forward transfer,Pf , fluores-
cence,Pfl, or of remaining in the excited state,Pex, was
calculated via Eq.~12!. A random number was chosen on th
set @0..1#, determining which event occurred. When it wa
found that fluorescence took place, a neutral pair was c
ated, thus entering the absorbing state at the terminus of
Markov chain. Conversely, if forward transfer occurred,
was necessary to determine which acceptor received the e
tron. The chance of thei th particle becoming an anion wa
Pi5kf(Ri)/( ikf(Ri), and again a random number was us
to make the selection. If the latter event happened~remaining
in the excited state!, the processes of diffusion and possib
transfer were again examined. This was repeated until a t
sitional event took place.

If at any time forward transfer did occur, then the io
state had to be examined. As this latter state is only a t
particle process, the computational effort could, under c
tain conditions, be substantially reduced to include only t
ion pair. This is possible when acceptor–acceptor exclud
volume is not included. In this case, the acceptor positio
become uncorrelated, and the ion pair is unaffected by
presence of the other N-1 neutral acceptors. This scenar
particularly significant in that it makes the question
donor–acceptor correlated diffusion during back transfe
moot point. On the other hand, if acceptor volume is i
cluded, then all particle positions and motions must be
tained, even during the ion state calculations. This me
that the system is still dependent on allN11 particles, and
the validity of the static donor approximation must be exa
ined. In the results presented below, simulations with a
without acceptor–acceptor excluded volume are compa
In all cases, donor–acceptor excluded volume is included
the simulations and in the analytical calculations.

In the study of back transfer between an ion pair, diff
sive motion may be modified by Coulombic attraction b
tween the newly created oppositely charged ions. To acco
for this, the likelihood of the ions moving in any given d
rection is made to be dependent upon the change in pote
energy before and after the step. If the new position resu
in a decrease of the potential of the ion pair, the move w
accepted. If the potential energy increased, it was accep
with an inverse exponential probability, with respect to t
magnitude of change.41 After each step, the probability o
back transfer was determined from Eq.~12!. Again, a ran-
dom number was chosen to determine which event occur
This either resulted in the creation of the neutral state a
termination of the chain, or the ion remained. If the ion st
existed, the simulation was continued.
J. Chem. Phys., Vol. 103, N
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For a given initial configuration, the time bins during
which each state was occupied were recorded in separa
histograms. By averaging over a sufficient number of uniqu
starting configurations, a time-dependent ensemble avera
of state probabilities was found. These solutions are directl
comparable to the analytical solutions of Eqs.~7! and ~8!.
When the donor is held fixed in both the simulation and
analytical models, with no acceptor excluded volume, the
two methods are identical formulations of the same physica
model. When the donor is allowed to diffuse freely in the
simulations, the comparison between methods can exami
the validity of fixing the donor and assigning the acceptor a
diffusion constantD5Dd1Da .

All the Monte Carlo simulations employed a random
number generator to uniformly select values in the rang
@0..1#. These values were then used to sample the ranges
the functions of interest. The algorithm to select random
numbers was developed by Marsaglia and Zaman.46 This al-
gorithm required 24 input seed numbers, which were ob
tained from a simpler random number generator with a
shorter period.47 The numerical calculations were done on an
IBM RS6000 model 3BT workstation. All programs were
written in theC language. Several standard subroutines wer
obtained from algorithms written by Presset al.48

IV. RESULTS

The agreement between the analytical theory and th
Monte Carlo simulations when the donor is held fixed can b
used as a multipurpose check on both methods of analys
Figure 1 showŝPex(t)& obtained both ways for a variety of
electron transfer parameters~given in the figure caption!, us-
ing both the exponential form and the Marcus form of the
rate constantkf(R). The analytical solutions were obtained
directly from Eq. ~7!, and the simulations were performed
keeping the donor fixed and only allowing the acceptors t
move. For both methods, donor–acceptor excluded volum
with a radius equal to the van der Walls contact distance o
the two molecules, was included, but acceptor–acceptor e
cluded volume was not. Fluorescence decay was not in
cluded so that the role of electron transfer is emphasized. It
clear that in every case the two methods agree. The sma
differences that appear in the figure arise from convergenc
criteria in both the analytical calculations and the simula
tions. The figure shows a small sampling of the large numbe
of calculations that were performed. Agreement is seen fo
any value of all the system variables, including any set o
electron transfer parameters, all particle concentrations, an
any form of the forward transfer rate distance dependenc
The results emphasize that not only have all the spatial a
erages been done correctly in the analytical method, but th
the Markov chain approach accurately describes the syste
and has been implemented correctly.

Figure 2 displays the functional form of the rate con-
stants versus radial distance for the calculations in Fig. 1
The magnitudes of eachKf(R) plot in Fig. 2 have been
scaled to have a maximum of one for the purposes of com
parison. In practice, the absolute magnitudes of the transf
rate constants varied over seven orders of magnitude, d
pending on the parameters chosen. The transfer paramet
o. 20, 22 November 1995
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for curves F in Figs. 1 and 2 were chosen to show th
analytical theory and the simulations agree even when
distance-dependent transfer rate is not exponentially dec
ing, or even monotonically decreasing. For all cases, rega
less of transfer rate magnitude or functional form, the an
lytical solution for ^Pex(t)& agrees exactly with the Monte
Carlo simulations. The very slight mismatches on the curv
shown in Fig. 1 are the result of computational time co
straints limiting the convergence criteria during the calcu
tions. It is important to recognize that both the analytic
theory and the simulations involve numerical difficulties
calculating the curves. This is particularly true of^Pct(t)&
shown below, calculated with the analytical theory. It is po
sible to obtain numerical solutions of the differential equ
tions that are qualitatively reasonable and that seem to h
converged, when in fact, the calculations are far from co
vergence. There is no firm criteria that can be stated for s
sizes in the calculations that will work under all circum
stances because the necessary conditions for converge
pend on the electron transfer parameters. However, it is
portant to note that a significant reduction in step sizes
required to test for convergence. Therefore, great care m
be exercised if meaningful results are to be obtained.

Comparisons of calculations of^Pct(t)& that include for-
ward transfer and geminate recombination obtained from

FIG. 1. Comparison of̂Pex(t)& calculations obtained from analytic solution
~solid lines!, and from Monte Carlo simulation~dashed lines!. Donor–
acceptor contact distanceRm is the sum ofRdon55.4 Å andRacc53.6 Å.
Acceptor concentration was 0.1M , and diffusion constant510 Å2/ns.
Curves A–C were calculated with an exponential form of the electron tra
fer rate constant@Eq. ~12!#, with t515.0 ns. A, af51.0, Rf510.0; B,
af50.5Rf512.0; C,af50.2,Rf512.0. Curves D–F employed the Marcu
form of the rate constant@Eq. ~10!#. D, J05400, b53.0, DG521.0; E,
J05100,b51,DG520.5; F,J051000,b51,DG521.2. The value ofl is
obtained witheop52.2, es58.5.
J. Chem. Phys., Vol. 103,
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analytical solution@Eq. ~8!# and by simulation@Eq. ~12!# are
shown in Fig. 3. The donor was held stationary in both th
analytic and simulated curves, and fluorescence decay w
not included. Donor–acceptor excluded volume was a
counted for, but acceptor–acceptor excluded volume w
not. A wide variety of transfer parameters, as well as both th
Marcus and exponential forms of the distance-depende
transfer rate, were examined. In every case, the two metho
of calculating^Pct(t)& resulted in essentially perfect agree-
ment. The agreement of the results emphasizes the ma
ematical accuracy of the analytical statistical mechanical a
proach presented here~which is described in more detail
elsewhere34!. Figure 3 shows that it is possible to accurately
calculate the time-dependent ion concentration, generated
forward transfer and decaying through geminate recombin
tion, in systems with a diffusing donor and acceptors, an
diffusing ions that are attracted to each other by a Coulomb
interaction. The agreement is perfect within the error cause
by convergence criteria for any choice of the forward an
back transfer parameters and for either the exponential
Marcus form of the distance dependence of the transfer ra

The significant advantage of using the analytical theor
is the speed with which the time-dependent properties of
system and experimental observables can be calculat
Computer CPU time required to find^Pex(t)& and^Pct(t)& via
Eqs. ~7! and ~8! is several minutes. In contrast, the Monte
Carlo simulations, depending on concentration and param
eter values, require a few hours to a few tens of hours. Sim
lations that include finite acceptor volumes can require man
days to reach convergence.

ns-

s

FIG. 2. This figure displays the distance-dependent functional shape for t
transfer rate constants used in the calculations of Fig. 1. All curves ha
been normalized such that the maximum intensity is set to 1, in order
more clearly exhibit the various distance dependences. The absolute mag
tudes of these curves actually vary over seven orders of magnitude.
No. 20, 22 November 1995
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8870 S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
In the calculations presented above, acceptor–acce
excluded volume is not included. Detailed examination
acceptor–acceptor excluded volume in solid solution35

shows that it is not important at moderate and low conc
trations. It only becomes significant for concentrations ab
a few tenths molar. An approximate method of handli
acceptor–acceptor excluded volume up to higher concen
tions has been developed,35 but this approach fails at ver
high concentrations. These very high concentrations~;1M !
are not generally encountered in real experimental syste
More important than acceptor–acceptor excluded volum
the static donor approximation. In the calculations presen
above, the donor is fixed in both the theory and simulatio
In real systems the donor and acceptors undergo diffu
motion. In the simulations, it is straightforward to have t
donor diffuse. In the analytical theory, the donor is alwa
held fixed, and its diffusion is approximated by giving th
acceptors a diffusion constant ofD5Da1Dd . Making the
static donor approximation enables the analytical theory
be applied to real experimental systems, but the analyt
theory is useful only if this approximation is accurate.

Figure 4 examines this approximation in the absence
acceptor–acceptor excluded volume. Simulations of^Pex(t)&
and ^Pct(t)& with a static donor are compared to those th
allow both the donor and acceptors to move freely. In

FIG. 3. Comparison of ion state probability^Pct(t)& calculations obtained
from analytic solution~solid lines! and simulation~dashed lines!. Particle
sizes and solvent dielectric values are given in Fig. 1. Acceptor conce
tion was 0.1M , and diffusion constant510 Å2/ns. Curves B, D, and F uti-
lized the exponential transfer rate constant@Eq. ~12!# with t515.0 ns, while
curves A, C, and E used the Marcus form@Eq. ~10!#. The values for the
parameters used in each curve are A,J0 f51000, bf51, DGf521.2,
J0b5400, bb53, DGb521.0; B, af50.2, Rf512, ab51.0, Rb512; C,
J0 f5100, bf51, DGf520.5, J0b5400, bb53, DGb521.0; D, af50.5,
Rf512,ab50.5,Rb512; E,J0 f5400,bf53, DGf521.0,J0b5400,bb53,
DGb521.0; F,af51.0,Rf510, ab50.2,Rb512.
J. Chem. Phys., Vol. 103,
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former case, the acceptors were moved with a diffusion con
stant equal to the sum of the donor and acceptor diffusion
constants. The figure shows that the static donor approxima
tion is nearly flawless. Curves B and D are actually pairs of
curves that are indistinguishable in the figure. The displaye
calculations are for the exponential form of the distance de
pendent transfer rate. A large number of calculations wer
performed using both the exponential@Eq. ~11!# and the Mar-
cus @Eq. ~9!# forms of the transfer rate. For any choice of
transfer parameters, both methods~static or mobile donor!
gave results that are, within numerical accuracy, identical
The agreement was unaffected by acceptor concentratio
transfer parameters, or diffusion constant. Identical agree
ment is found regardless of the functional form of the trans-
fer rate. These results confirm the validity of the static donor
approximation in which the true acceptor diffusion constant
is replaced withD5Da1Dd in the calculation.

For low and moderate acceptor concentrations~packing
fractions of less than a few percent!, inclusion of acceptor–
acceptor excluded volume does not affect the accuracy of th
static donor approximation because acceptor–acceptor e
cluded volume is insignificant. However, as the accepto
density increases, acceptor interactions become significa
and positions become more correlated. This leads to a notic
able source of error when utilizing the static donor approxi-
mation. For finite volume particles, a hard sphere potentia

tra-

FIG. 4. Comparison of simulations using the static donor approximation
with the acceptor diffusion constantD5Dd1Da ~solid lines!, with simula-
tions in which the donor and the acceptors undergo diffusion~dashed lines!.
Contact distanceRm59.0 Å. Acceptor concentration was 0.1M and
Dd5Da55.0 Å2/ns. The value oft515 ns. Curves A and B are excited
state probabilitieŝPex(t)&, with parameters A,af50.5,Rf512; B, ab50.2,
Rb512.0. Curves C and D are ion state probabilities^Pct(t)&, with param-
eters C,af50.5, Rf512, ab50.5, Rb512; D, af50.2, Rf512.0, ab51.0,
Rb510.0. Curves B and D were calculated by both methods, but agree to
well to be distinguishable.
No. 20, 22 November 1995
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8871S. F. Swallen and M. D. Fayer: Photoinduced electron transfer
was used for the interaction potential. As seen in Fig.
comparison between simulations with a static and a mo
donor are in some disagreement for the ion state calculati
For eitherPex or Pct , the disparity varied with choice o
transfer parameters, diffusion constant, and packing fract
The example shown in Fig. 5 exhibits the error inherent w
an acceptor concentration of 0.3M ~6.7% packing fraction!
in a reasonably viscous medium~D510.0 Å2/ns!. At concen-
trations less than 0.3M , little error is seen. However, th
discrepancies increase significantly with acceptor den
and diffusion constant.

V. CONCLUDING REMARKS

In liquid systems, diffusion can play a significant role
electron transfer and geminate recombination. While sign
cantly increasing the rates of forward and back transfer,
fusion can also lead to a finite population of ion pairs th
can survive for a greatly extended length of time. It is po
sible for the pair to separate, resulting in solvated spe
that may be useful as sources of chemical energy. It is
portant for an understanding of these processes to be ab
adequately model the energetics and dynamics that oc
The results presented here, comparing Monte Carlo sim
tions with the previously developed analytical theory, sh
that for a fixed donor the theory provides an accurate

FIG. 5. Comparison of simulations that include acceptor–acceptor exclu
volume for the static donor approximation~solid lines! and for the case in
which both donor and acceptors are allowed to diffuse~dashed lines!. The
donors and acceptors were given a finite volume and interact with a
sphere potential. Donor radius55.4 Å, acceptor radius53.6 Å. Acceptor
concentration is 0.3M ~packing fraction56.7%!, diffusion constant
Dd5Da55.0 Å2/ns. The exponential form of the distance-dependent tra
fer rate was used. Curves A are the excited state probabilities^Pex(t)&, with
parametersaf50.5, Rf512.0. Curves B are the ion state probabiliti
^Pct(t)&, with parametersaf50.5,Rf512.0,ab51.0,Rb512.0.
J. Chem. Phys., Vol. 103,
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scription for an ideal three level system including accept
diffusion up to moderate acceptor concentrations~acceptor–
acceptor excluded volume is relatively unimportant!.

Since in real systems the donor undergoes diffusion,
validity of the static donor approximation was tested. Up
moderate acceptor concentration, it is found that fixing t
donor and giving the acceptors a diffusion constant
D5Da1Dd introduces no measurable error into the calc
lation. This is an important result because it makes the a
lytical theory applicable to real systems. For high concent
tions, at which acceptor–acceptor excluded volume becom
important, the static donor approximation introduces som
error. In most systems of experimental interest, the sta
donor approximation is accurate.

In the theory that is discussed here and presented
more detail in Refs. 29 and 30, the ion population deca
strictly by geminate recombination. This is because there
no other mode of ion decay built into the model. Within th
context of the theory, an ion pair that becomes well separa
will eventually recombine ast→`. Therefore, there is no
formal ‘‘ion escape.’’ In a real system, impurities or othe
chemical species mixed into the solution can act as scav
gers and quench ions prior to geminate recombination. T
theory described here can be used to gain insight into
escape by recognizing that there is a separation of time sc
for true geminate recombination versus formalt→` gemi-
nate recombination that is contained in the theory. In t
exponential form of the transfer rate,Rb defines the distance
scale on which back electron transfer will occur. Ions th
survive on a time scale long compared to the time for t
diffusive root-mean-squared displacement to be greater th
a fewRb , say 3Rb , should be considered to have undergon
escape. While this is not a perfectly well-defined criterio
on the long time scale associated with large ion pair sepa
tion, the decay of the ion population is very slow. Therefor
an exact definition of the time or distance for escape is n
necessary.

The theory presented here uses the simplest picture
molecules moving in a liquid. The liquid is a continuum
with the donor and acceptors initially randomly distribute
The molecular motions are simple diffusion. However, th
theory has been set up to be able to readily encompass m
detailed and physically realistic models of liquid structur
and dynamics. Two physical features of liquids are partic
larly important to the electron transfer problem. The first
the structure of the liquid around the donor. The local stru
ture is not a continuum, but has solvent shells. This results
a significant change in the local acceptor concentration a
therefore, on the rate of electron transfer. The second is
drodynamic effects. When a donor and an acceptor approa
they do not undergo the type of diffusive motion associat
with a continuum. Hydrodynamic effects also have a signi
cant impact on the rate of electron transfer. These physi
features of liquids are currently being included in the theo
and will be the subject of a future publication.
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