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Experimental determinations of the dynamics of photoinduced electron transfer from rubrene to duroquinone
in three solvents, dibutyl phthalate, diethyl sebacate, and cyclohexanone are presented. Measurements of the
donor (rubrene) fluorescence decays were made with time-correlated single-photon counting. The data are
analyzed using recent theoretical developments that include important features of the solvent, i.e., the effects
of finite molecular volume on local solvent structure and on the mutual donor-acceptor diffusion rates.
Inclusion of the liquid radial distribution function (rdf) in the theory accounts for the significant variation of
the acceptor concentration near a donor. Because the concentration of acceptors near a donor is substantially
greater than the average concentration used in a featureless continuum liquid model, incorporating the rdf is
necessary to properly analyze experimental data. Hydrodynamic effects, which slow the rate of donor-
acceptor approach at short distance, are important and are also included in the theoretical analysis of the data.
The data analysis depends on a reasonable model of the rdf. A hard-sphere liquid rdf is shown to be sufficiently
accurate by comparing model electron-transfer calculations using a hard-sphere rdf and an rdf from neutron-
scattering experiments reported in the literature. A method is presented to obtain the hard-sphere parameters
needed to calculate the rdf. The method uses a self-consistent determination of the hard-sphere radius and
diffusion constant and the solvent self-diffusion constant calculated from the Spernol and Wirtz equation.
The Marcus form of the distance-dependent transfer rate is used. For the highest viscosity solvent (dibutyl
phthalate), a unique set of the Marcus transfer parameters is obtained. For lower viscosity solvents, the
transfer parameters are less well defined, but information on the distance and time dependence of charge
separation is still acquired. These experiments, combined with the theoretical analysis, yield the first realistic
description of through-solvent photoinduced electron transfer.

I. Introduction

Because of its ubiquitous role in chemical processes, electron
transfer has been the focus of a great deal of research in recent
years. The goal has been to obtain an understanding of the
spatial and temporal dependences of intramolecular and inter-
molecular electron-transfer. Photoinduced charge separation is
of particular interest due to its importance in photosynthesis,
photochemical reactions, and technical applications. In addition,
the initiation of the electron-transfer process by a fast light pulse
enables dynamical studies to directly examine the kinetics of
electron transfer. To complement a variety of experimental
studies,1-10 a number of theoretical descriptions have been
developed to predict the rates of photoinduced charge sepa-
ration.11-26 Some success has been achieved in describing
intramolecular photoinduced electron transfer for systems in
which a donor and a single acceptor are held at fixed
distance.16,27-29 However, in systems where through-solvent
intermolecular transfer is observed, the situation is more
complex. In liquid solutions, a donor can interact with many
acceptors, and the rates of reaction are influenced by the
distribution and diffusion of the donors and acceptors.
It has been observed that the rate of quenching of a

photoexcited donor molecule by electron transfer to an acceptor
is significantly increased as the viscosity of the solvent is
decreased.4,30 This indicates the importance of diffusion for
the kinetics of electron transfer. For donor-acceptor electron-
transfer reactions under the influence of diffusion, modeled as
a three-level systemsa donor with acceptors in their ground

states (DA), the donor in the photoexcited state (D*A), and the
donor and an acceptor in the charge-transfer state (D+A-)san
exact solution to the time-dependent state probabilities has been
obtained.22-24 Previous attempts to fit experimental data using
this statistical mechanical theory have met with a fair degree
of success.4,31,32 However, until recently the theory made
simplifying assumptions about the physical characteristics of
the solution being studied. As with other less detailed theoretical
methods which have been applied to photoinduced electron
transfer in solution, the influential effects of the solvent structure
were ignored. The donor and acceptor molecules were assumed
to be diffusing in a structureless continuum which interacts with
the particles only through the dielectric properties and the
reorganization energy of the solvent.4,16,33 However, it has been
shown recently34 that this assumption can lead to significant
errors in the analysis of electron-transfer data. By ignoring the
finite size of the solvent molecules, fundamental properties of
liquids, which play a key role in electron-transfer dynamics,
were not included in the theory.
The nonzero volume of the solvent molecules surrounding

the donor and acceptor has been shown to affect the rates of
electron transfer in two distinct manners. The first of these is
the result of short-range repulsion due to the finite volume of
all molecules. This interaction leads to variations in local
solvent density about each particle in solution. Because real
molecules are not able to overlap and thus cannot pack into a
space-filling configuration, the distribution of particles about
any point is radially nonuniform. Instead, the surrounding
solution exhibits a decaying oscillation in particle density,
centered about the bulk average density. A great deal ofX Abstract published inAdVance ACS Abstracts,April 15, 1996.
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research spanning many decades has been done to study and
model this effect, and accurate methods of calculating the two-
particle radial distribution function,g(R), have been known for
many years.35-38 Solvent structure has been shown theoretically
to have a major effect on the rates of electron transfer in liquid
systems.34 On the relatively short-range distance scale of
electron transfer, the major variations in local solvent structure
strongly influence the distribution of acceptor molecules about
each donor. Because the rates of through-solvent transfer are
acutely distance dependent, these density variations can greatly
affect the probability of quenching of an excited donor by
electron transfer.
In addition to variations in local concentrations of acceptor

molecules, the finite volume of the solvent molecules also
strongly influences the rates of diffusion between a donor and
surrounding acceptors. Studies of interparticle diffusion rates
have demonstrated that these correlated motions are strongly
dependent upon the radial separation between the two molecules
at short distances.39-43 As a pair moves toward contact,
intervening solvent molecules can act as a barrier to closer
approach, thus diminishing the rate at which the two converge.
As a result, the value of the Fick diffusion coefficient is no
longer a constant but is instead a distance dependent function
D(R). This phenomenon, known as the hydrodynamic effect,
can play a significant role in the dynamics of electron transfer.34

Diffusion brings acceptors within range of an excited donor,
permitting electron transfer to occur. Since the hydrodynamic
effect reduces the rate of approach of acceptors toward a donor,
the dynamics of electron transfer are slowed considerably. This
is particularly true at longer times. The short time dynamics
are dominated by acceptors that are close to the donor at the
time of excitation and are controlled by the initial local solvent
structure. The high acceptor concentration close to a donor,
created by the short-range solvent organization, greatly increases
the rate of electron transfer at short time. However, for members
of the ensemble of excited donors that do not have acceptors
close by at the time of excitation, interparticle diffusion plays
a significant role in the time-dependent dynamics. Due to a
decrease in the rates of close approach between donors and
acceptors, the hydrodynamic effect lessens the ensemble-
averaged probability of electron transfer when compared to
theoretical calculations that do not include it. Therefore, both
the solvent structure and the hydrodynamic effect, which result
from the molecular nature of the liquid, must be included in a
realistic description of photoinduced electron transfer in liquids.
A recent theoretical study has successfully included both the

solvent structureg(R) and the hydrodynamic effectD(R) in the
statistical mechanical theory of electron transfer.34 This current
work uses the new theoretical results for the first time to analyze
experimental data in a manner that includes the important aspects
of liquid properties. In the experiments, photoinduced electron
transfer is studied by observing the time dependence of donor
fluorescence with time-correlated single-photon counting. The
donor, rubrene (RU), and electron acceptor, duroquinone (DQ),
have been examined in several solvents of varying viscosity
and dielectric properties. Using the Marcus form of the
distance-dependent transfer rate constant and a least-squares
fitting algorithm, successful fits to the fluorescence quenching
observables in three solvents are presented. This is the first
attempt to determine the Marcus electron-transfer parameters,
J0 and â, by including a full description of solvent structure
and diffusional effects. These parameters represent the mag-
nitude of the transfer matrix element at contact and the spatial
extent of the molecular wave function overlap, respectively. The
values of these electron-transfer parameters determined in

previous studies were skewed to account for the solvent effects
g(R) and D(R) which were not included in the theoretical
analysis.
The remainder of this paper is organized as follows: Section

II provides the theoretical framework needed for analysis of
the experimental data. It includes a discussion of the radial
distribution function and the hydrodynamic effect and gives the
key equations that are necessary for calculation of the observable
excited state survival probability. Section III discusses the
specific methods used to obtain system parameters such as the
molecular hard-sphere radius, the mutual diffusion coefficient,
and the solventg(R) function. Section IV presents experimental
electron-transfer data and demonstrates the success and ap-
plicability of the theory.

II. Theory

Considerable work has been done previously to develop a
theory which calculates the time-dependent probabilities of
photoinduced forward electron transfer and back transfer
(geminate recombination).22-26,34 These expressions can be used
to fit the time-resolved experimental observables of an inter-
molecular donor-acceptor charge-transfer system. The theory,
which will be summarized below, produces an exact expression
for 〈Pex(t)〉, the ensemble-averaged probability that an initially
photoexcited donor remains excited at timet after excitation
for a given model of acceptor spatial distribution and diffusion
coefficient. Until recently, all through-solvent models of charge
transfer have assumed that the solvent is an unstructured
continuum. As discussed in the Introduction, this can lead to
significant errors in understanding the distance and time
dependence of electron transfer.
The distance-dependent rate of electron transfer from the

excited donor to any acceptor located a distanceRaway is given
by kf(R). Several forms ofkf(R) have been examined previ-
ously,13,14,32but the most commonly accepted form for mod-
erately exothermic reactions is given by Marcus:16,33

J0 is the magnitude of the transfer matrix element at contact,
andâ is a measure of the through-solvent donor and acceptor
wave function overlap.Rm is the contact distance between the
donor and acceptor. The reorganization energy,λ(R), is
expressed as

where εop and εs are the optical and static solvent dielectric
constants.Rd andRa are the radii of the donor and acceptor.
∆G(R) is the free energy change associated with electron
transfer. It can be obtained as a function of distance by
experimentally measuring the redox potentials of the donor and
acceptor and solving the Rehm-Weller equation:44,45

wherehν is the energy of electronic S0, ν0 f S1, ν0 vertical
excitation, ε0 is the permitivity of free space, and∆ε )
ε0(donor,ox)- ε0(acceptor,red).ε0(donor,ox) andε0(acceptor,-
red) are the oxidation and reduction potentials of the donor and
acceptor.

k(R) ) 2π

hx4πλ(R)kBT
J0
2 exp(-(∆G(R) + λ(R))2

4λ(R)kBT ) ×

exp(-â(R- Rm)) (1)

λ(R) ) e2

2( 1εop - 1
εs)( 1Rd + 1

Ra
- 2
R) (2)

∆G(R) ) -hν - e2

4πε0εsR
+ ∆ε (3)
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The following subsections will present the theoretical material
necessary to analyze the data presented below.
A. Solvent Structure, g(R). It is well-known that solvent

molecules are not distributed randomly in condensed-phase
solutions but instead exhibit a large degree of local struc-
ture.39,46-48 This results in significant distance dependent
fluctuations in the local density about any molecule, with the
largest perturbations occurring at or near contact. These
variations influence the time-dependent probabilities of electron
transfer in two important ways. Foremost is the direct influence
of changing the local density of acceptors about a donor. The
local region near contact about any photoexcited donor is much
more likely to be occupied by an acceptor molecule than would
be expected if the solvent were approximated as a continuum.
As the radial separation is increased, the solvent structure
oscillates about the average value of the density, converging to
the bulk average at long distances. For relatively dilute
acceptors (a few tenths molar or less) the acceptor density
variation follows the solvent density variation.49 Mathemati-
cally, these density fluctuations can be accounted for by
rewriting the particle distribution function asp′(R) ) g(R) ×
p(R), wherep(R) is the isotropic, unstructured particle distribu-
tion, andg(R) is the solvent structure radial distribution function
(rdf). It should be noted that this probability distribution is
strictly accurate only in the absence of acceptor-acceptor
excluded volume. In this limit, the distribution function for
each acceptor is independent of all others in solution. If the
concentration of acceptor molecules is not too high (less than
a few tenths molar), the multiparticle distribution functionp′-
(R) can be used with no loss of accuracy.50

The solvent structure additionally influences the long-term
electron-transfer probabilities in a more subtle manner than
altering the local particle concentration. Even though the
individual particles in a liquid are in constant motion, the local
structure, given by the radial distribution functiong(R), is a
static function. For a particular solvent density,g(R) is
independent of time. Thus, while individual particles are
allowed to diffuse in solution, the liquid structure must be
preserved. In this manner, the solvent structure acts as a
potential when solving eq 5, given below. For forward transfer,
assuming initially neutral molecules, the effective potential due
to the solvent structure can be included with a termV(R) )
-ln[g(R)],39,43whereV(R) is the potential divided bykT. This
“potential of mean force,” as it has been called, was investigated
by Northrup and Hynes.43 They examined its influence on
diffusion-controlled reactions occurring at molecular contact.
This present work integrates the concept of solvent structure in
the theory of electron transfer, and extends it to through-solvent
reactions that are both thermodynamically and diffusion con-
trolled. For the general case of initially charged molecules, the
potential can be written to include a Coulombic attraction or
repulsion: V(R) ) -ln[g(R)] + Rc/R, whereRc is the Onsager
length. In this way, the correct initial and time-dependent
positions of ionic or neutral molecules in diffusive systems can
be taken into account.
B. Hydrodynamic Effect, D(R). Theoretical41-43 and

experimental51,52studies of fluid flow have shown that molecular
interactions cause the rates of interparticle diffusion to be
distance dependent. The mutual diffusion coefficient is found
to depend on the radial separation between the molecules being
studied. When two particles in solution are separated by a large
distance, their diffusive motions do not influence each other,
and the value of the Fick diffusion coefficient describing the
motion between the pair approaches a limiting value,D.
However, when two particles approach each other, their motions

become correlated. In this case, the mutual diffusion coefficient
must be written as a function of the radial separation,D(R).39,41-43

This hydrodynamic effect originates from the short-range
repulsive interactions between particles. As a donor and
acceptor diffuse toward each other, solvent molecules must
vacate the intervening space. When the two approach contact,
the available paths of escape for occluding molecules are
decreased, thus lessening the probability that this action will
occur. Due to this restriction, the interparticle diffusion
coefficient is decreased substantially when two molecules are
within a small separation distance. This is particularly true on
the distance scale of electron transfer.
Previous studies have discussed a number of the theoretical

approaches for this distance-dependent term,39 investigating the
accuracy and utility of each. The most common expression
currently used is an approximate analytical form given by
Northrup and Hynes:43

Rm is the contact distance between the donor and acceptor
molecules, andD is the value of the Fick diffusion coefficient
at infinite separation. The impact of the hydrodynamic effect
on electron-transfer calculations has been examined previously.34

It is clear that a simple, distance-independent value for the
diffusion coefficient is insufficient to realistically model liquid
diffusion in the context of electron transfer.
C. Calculation of Physical Observables.The inclusion of

local solvent structure and a distance-dependent diffusion
coefficient requires modification of the previously presented
statistical mechanical theory.34 The two-particle survival prob-
ability is given by

whereR0 is the initial donor-acceptor separation. The adjoint
of the Smoluchowski diffusion operator,LR0

+ , is required when
the particles are diffusing in a potential. This operator is
expressed as

whereV(R0) is the distance-dependent potential divided bykT
felt by the diffusing acceptors.D(R0) is the diffusion coefficient,
given by eq 4. Physically, the functionSex(t|R0) represents the
probability that a donor molecule, initially excited at timet )
0, is still in the excited state, given that an acceptor was located
at distanceR0 at t ) 0. With the constraints of the proper initial
conditions and a reflecting boundary condition at contact, the
solutions are obtained by integrating over all possible initial
and final positions. These results give an analytical expression
for the physically observable probability of remaining in the
excited state at a timet after photoexcitation:22,53

whereC is the concentration of acceptor molecules. The first
exponential has been included to account for excited state decay
due to fluorescent relaxation. This is the decay that will occur
in the absence of electron transfer. Expressions for the two-
particle survival probability,Sex(t|R0), cannot be obtained

D(R) ) D[1- 1
2
exp(Rm - R

Rm )] (4)

∂

∂t
Sex(t|R0) ) LR0

+Sex(t|R0) - kf(R0)Sex(t|R0) (5)

LR0
+ ) 1

R0
2
exp(V(R0))

∂

∂R0
D(R0)R0

2 exp(-V(R0))
∂

∂R0
(6)

〈Pex(t)〉 )

exp(-t/τ) exp(-4πC∫Rm∞[1 - Sex(t|R0)]R02g(R0) dR0) (7)
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analytically. Instead, numerical solutions of eq 5 are calculated
using the Crank-Nicholson finite differencing method.54-56

Thus, by means of numerical integration, it is possible to obtain
exact solutions to the time-dependent excited-state probability
given a particular model of the spatial distribution of acceptors.
With an appropriate form of the radial distribution function,
g(R), and solving eq 5 using a proper potentialV(R) and
diffusion coefficientD(R), an accurate form of〈Pex(t)〉 can be
found.

III. System Parameters

To correctly model an experimental electron-transfer system
and accurately calculate the excited-state probability, a number
of system parameters must be obtained. The magnitude of the
donor-acceptor mutual diffusion coefficient in each solvent
plays a significant role in particle positions and electron-transfer
dynamics and must be known accurately. The same is true for
the characteristics of individual solvent and solute molecules.
A hard-sphere model of the solvents will be shown to be
sufficiently accurate to employ in the description of electron-
transfer dynamics in liquids. The use of the hard-sphere model
requires a choice of the hard-sphere diameter and thus the liquid
packing fraction. This is an area which has been the focus of
significant debate. A number of theoretical approaches have
been presented which calculate molecular dimensions with
varying degrees of accuracy.57-60 In addition, once the mo-
lecular parameters have been obtained, an accurate form of the
local solvent structure is required. This section presents the
methods used to find sufficiently accurate values and forms of
these parameters, as well as the efficacy and limitations
involved.
A. Diffusion Coefficient. The choice of the large-separation

value for the diffusion coefficient,D, is critical. Typically,
studies of dynamics in liquids have used values forD calculated
with the Stokes-Einstein equation.4,32,39,61,62 However, theoreti-
cal and experimental studies have presented evidence that neutral
solvated molecules diffuse at rates significantly different from
the Stokes-Einstein predictions, due to solvation and Coulombic
attraction effects.63-66 Various approaches, mainly empirical
studies of diffusion rates, have been used to describe diffusion
of neutral molecules in solution more accurately. A well-
accepted form of the diffusion equation which has been found
to agree well with experimental measurements of neutral
molecules is based upon a perturbation of the Stokes-Einstein
equation:

whereη is the solvent viscosity, andr is the molecular radius.
The perturbative termfsw is given by a semiempirical equation
proposed by Spernol and Wirtz:65,66

rm and ra are the radii of the solute (m) and solvent (a), and
Tx
r is the reduced temperature of the solute (x) m) and solvent
(x ) a). These temperatures describe the intermolecular
interactions and are obtained from

Tx
f is the freezing point, andTx

b is the boiling point of the
appropriate specie. Equations 8-10 reproduce experimentally
determined diffusion constants and yield values ofD that are

significantly greater than those obtained from the Stokes-
Einstein equation. It should be noted that eqs 8-10 apply only
to the diffusion of neutral molecules and are not an accurate
description of ion motion. Other approaches for the determi-
nation ofD can be used for the diffusion of ions.63,67-69 The
experiments presented below involve only neutral species and
are thus well described by eq 8.
The experimental work presented here examines rubrene and

duroquinone as the donor and acceptor diffusing in three organic
solvents: dibutyl phthalate, diethyl sebacate, and cyclohexanone.
Mutual diffusion coefficients in the three solvents were calcu-
lated from eq 8, using molecular radii obtained either from
crystallographic data or from the method presented in section
IIIB. Crystallographic data exist for both rubrene and duro-
quinone.70,71 The donor and acceptor radii were found by
obtaining the molecular volume from the crystal structure,
scaling it by 74% to account for the closest packing of spherical
particles and then determining the hard-sphere radius,4/3πR3
that would reproduce this volume. This type of calculation for
similar molecules generally overestimates the particle radius by
∼10%.72 With this reduction factor, radii of 4.5 Å for RU and
3.4 Å for DQ are obtained, and these values were used in fits
to the experimental data.
B. Self-Consistent Determination of Solvent Radii. To

utilize the theoretical results presented in this work, a detailed
knowledge of the solvent rdf is required. Ideally, neutron or
X-ray scattering studies could provide experimentally deter-
mined radial distribution functions,g(R). While there is a great
deal of scattering data on condensed-phase systems, most is
focused on solids or very simple liquids. Only a limited number
of experiments have been performed on complex liquids, and
thus data on solvent structure for most organic liquids are not
available. Experimentalg(R) functions for the three solvents
used in the experiments presented below are not available. Thus
a theoretical method for determiningg(R) is required. One
common approach is to use a hard-sphere potential, generating
g(R) from numerical solutions to the Percus-Yevick integral
equation. Although other forms of the potential may be chosen,
e.g., Lennard-Jones, it will be shown below that the hard-sphere
g(R) provides a sufficiently accurate description of solvent
structure for the calculation of electron-transfer dynamics.
Before discussing the numerical methods for determining the

hard-sphere pair distribution function or the accuracy of the
hard-sphere potential itself, the procedures used to obtain the
necessary parameters, such as the solvent diameter and packing
fraction, are described. Any calculation of a hard-sphere
distribution function requires the determination of an effective
hard-sphere diameter,σ, related to the packing fractionη by

whereF is the bulk solvent number density. For a given solvent
of known density, the choice ofσ (or η) is not obvious. A
common approach is to model the solvent as a hard-sphere fluid
with the same transport properties as the real liquid. This
problem was initially formulated by Enskog, who extended
Boltzmann’s equation for dilute gases to describe the behavior
of a dense, hard-sphere fluid.48,73 A hard-sphere self-diffusion
constant,Dens, can be calculated from Enskog theory and is
given by73,74

Hereg(σ) is the value of the pair distribution function at the
contact distance,m is the hard-sphere mass (equal to the actual

D ) kT/6πηr fsw (8)

fsw ) (0.16+ 0.4rm/ra)(0.9+ 0.4Tm
r - 0.25Ta

r) (9)

Tx
r )

T- Tx
f

Tx
b - Tx

f
(10)

η ) πFσ3/6 (11)

Dens)
3

8Fσ2g(σ)x kT
πm

(12)
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molecular mass), andk is Boltzmann’s constant.g(σ) can be
determined to a high degree of accuracy using the Carnahan-
Starling equation of state:48,75

When comparing diffusion constants from Enskog theory to
those obtained from molecular dynamics simulations, Alder and
Wainwright found it necessary to modify the Enskog result to
account for correlated motion among the particles.76,77 From
fits to the Alder and Wainwright data, Czworniak et al. have
suggested an approximate analytical form for the “correlated
motion correction factor”, C:78

Using this correction factor as well as an additional factor to
account for rotational-translational coupling,58,78-80 given by
the termA, the corrected hard-sphere self-diffusion constant,
D, becomes

Inclusion of the translational-rotational coupling factor,A,
permits the theoretical hard-sphere diffusion constant to be
compared to experimental diffusion constants for real liquids.78-80

Comparison of the corrected Enskog result with several
experimentally measured self-diffusion constants has led to
excellent agreement forA values of 0.52.78

The corrected Enskog result given in eq 15 provides a method
for calculating an effective hard-sphere diameter,σ. This
diameter can then be used to generate a hard-sphereg(R) using
the methods detailed in section III.C. For solvents whose
diffusion constants are known from experimental measurements,
σ should be chosen so that eq 15 gives a diffusion constant in
good agreement with experiment. This was the procedure used
for cyclohexanone (CHX) for which an experimentally measured
diffusion constant is reported in the literature.81 However, for
the other two solvents: dibutyl phthalate (DBP) and diethyl
sebacate (DES), experimental values of the diffusion constants
could not be found. In the absence of such information, the
Spernol-Wirtz equation was used. Equations 8 and 15 were
then solved self-consistently to find a hard-sphere diameter that
led to agreement between the corrected Enskog and Spernol-
Wirtz diffusion constants. To check the validity of this method,
the same procedure was applied to find the hard-sphere diameter
and packing fraction for CHX. It was found that the self-
consistent procedure gave values which differed by only 0.5%
from those obtained using the experimental diffusion constant.
This helps confirm that the self-consistent approach provides
an accurate determination of these required system parameters.
To our knowledge, this is the only available approach for the
determination of the hard-sphere diameter in the absence of
experimental information.
C. Solvent Structure. In light of the significant role that

solvent structure plays in the dynamics of electron transfer, it
is important to use an accurate description of the radial
distribution function. Fortunately, there has been a great deal
of theoretical work done to model the two-particle rdf. While
these calculations are constrained to systems of either hard-
spheres or the softer Lennard-Jones potential, they provide
excellent approximations of the local structure of many organic
liquids. Due to the paucity of neutron-scattering data on
complex organic liquids, these numerical techniques are gener-
ally the only means from which accurateg(R) values can be
obtained.

A variety of methods have been developed to calculateg(R)
functions,35,82-85 the most well-known of which was presented
by Percus and Yevick (PY).35,86 Solutions to the PY integral
equation have allowed numerical calculations ofg(R) for
solutions of hard-sphere particles36,37,49,87and for molecules
interacting via a Lennard-Jones 6-12 potential.88 Slight cor-
rections to the hard-sphere rdf were obtained by Verlet and
Weis,89 with the results being found to agree quite well with
experimental observations and simulations.
To examine the efficacy of modeling the solvent as hard

spheres with ag(R) given by solutions to the PY equation, model
electron-transfer calculations of the excited state probability
〈Pex(t)〉 were generated for donors and acceptors in benzene.
This solvent was chosen because neutron diffraction studies have
been carried out on this pure liquid, giving an experimentally
determined radial distribution function.90,91 Using the experi-
mentally determined benzeneg(R), calculations of charge-
separation dynamics were carried out for a wide variety of
electron-transfer parameters,J0 andâ, and for different diffusion
coefficients and acceptor concentrations. For comparison,
〈Pex(t)〉 curves were also calculated using the identical system
parameters, but with a numerically obtained hard-sphereg(R)
function. This hard-sphereg(R) was generated using the Smith
and Henderson PY algorithm with the correction of Verlet and
Weis and a hard-sphere radius and packing fraction calculated
with the methods of section III.B.
The experimental and calculated rdf curves are compared in

Figure 1. The most significant discrepancy between the two
functions is in the region just around contact, where, in general,
the rates of electron transfer are the largest. The hard spheres
have a well-defined distance of closest approach, while the real
benzene liquid, having a softer potential, displays ag(R) that
goes smoothly to zero at short distance. However, the areas
under the experimental and the hard-sphereg(R) curves are
virtually identical. The probability of two molecules being
closer than “contact” in the experimental benzeneg(R) is made
up for with increased density at contact in the hard-sphere case.
While the two forms of the rdf behave differently at contact,

their structure is, in general, quite similar. These differences

g(σ) ) 2- η
2(1- η)3

(13)

C) 0.840-7.69(η - 0.463)- 32.3(η - 0.463)2 (14)

D ) DensAC (15)

Figure 1. Radial distribution functions,g(R), for benzene. The solid
line is from ref 90 and shows the experimentalg(R) determined from
neutron scattering. The dashed line is a calculated hard-sphereg(R)
from numerical solutions to the Percus-Yevick equation, using an
effective hard-sphere diameterσ ) 4.98 Å and packing fractionη )
43.5%. Both the experimental and theoreticalg(R) curves for the pure
solvent are shifted to a donor-acceptor contact distance of 9.0 Å.
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were observed to play only a small role in the ensemble averaged
kinetics of electron transfer. The very minor error introduced
by using the hard-sphereg(R) rather than the experimental form
is displayed in Figure 2. The solid lines are〈Pex(t)〉 curves
calculated using the experimental rdf, with parametersJ0 ) 2.6
cm-1, â ) 0.67 Å-1, ∆ε ) 1.85 eV,D ) 12 Å2/ns, for three
acceptor concentrations, 0.1, 0.2, and 0.3 M. The same
calculations were made using the hard-sphereg(R), and the
resulting curves were found to differ by only a few percent.
The J0 andâ values used in the hard-sphere calculation were
then varied slightly to see whether different values would
improve the agreement with the curves calculated from the
experimentalg(R) and the originalJ0 andâ. The dashed lines
in Figure 2 are the best fits, using the hard-sphere rdf andJ0
andâ values of 2.7 cm-1 and 0.66 Å-1, respectively, with all
other system parameters held constant. The agreement in the
〈Pex(t)〉 curves for all three concentrations using both forms of
g(R) is essentially exact, making the two sets indistinguishable.
The electron-transfer parameters are virtually identical and are
well within the uncertainty in the determination of these values
in real experiments. This same behavior was reproduced for
all values of the transfer parameters and acceptor concentrations
that were studied. For anyJ0 and â, the 〈Pex(t)〉 curves
calculated using either the experimental or theoretical hard-
sphereg(R) were very similar. In every case, by varying the
transfer parameters a few percent or less, identical excited-state
probability curves were obtained. These results confirm that
the PY hard-sphereg(R) provides an adequate representation
of real liquid structure and is sufficiently accurate to warrant
use in the calculation of electron-transfer parameters. In
addition, this emphasizes the utility of the methods presented

in section III.B for obtaining realistic values for the hard-sphere
radius,σ, and the solvent packing fraction,η. Using widely
available viscosity and density data for the solvents and
crystallographic data for each solute, it is possible to calculate
accurate values for the system properties necessary for analysis
of electron-transfer experiments.
As mentioned above, the hard sphereg(R) values were

calculated using the inverse Laplace transform of Thiele’s and
Wertheims’s solution to the PY equation.35-38 An analytical
formulation of these transforms has been published by Smith
and Henderson.87 These curves were then corrected according
to the algorithm of Verlet and Weis.89 It should be noted that
theseg(R) calculations are for homogeneous solutions of pure
solvent molecules. Wertheim has determined the Laplace
transform solution to the PY equation for the case of a
heterogeneous solution of different particles.37 Throop and
Bearman88 investigated these solutions, and found that in the
limit of low solute-to-solvent packing fraction ratio (less than
0.1, or about 1 mol/L), the solute molecules simply follow the
one-componentg(R) created by the solvent molecules. For these
cases of low-concentration solutes, the solute-solute g(R)
followed the high-density solventg(R), but the hard-sphere
contact distance was given by the sum of the solute radii. These
results can be used to simplify the work required to obtain
accurate hard-sphere rdf curves for experimental electron-
transfer systems. It is sufficiently accurate to calculate the one
componentg(R), using the packing fraction and molecular
diameter of the bulk solvent. The radial contact value is then
set equal to the hard-sphere contact diameter of the donor and
acceptor. If desired, it is possible to directly calculateg(R)
curves for heterogeneous solutions of mixed solutes and
solvents.38,49,88 A more complete discussion of the uses and
limitations ofg(R) calculations has been presented previously.34

IV. Experimental Methods

A. Sample Preparation. The electron-donating chro-
mophore is rubrene (RU), and the acceptor is duroquinone (DQ).
This charge-transfer system was investigated in several solvents
of varying viscosity and dielectric properties. In order of
decreasing viscosity, the solvents used were dibutyl phthalate,
diethyl sebacate, and cyclohexanone. RU in solution is readily
oxidized in the presence of oxygen and light, and the sample
preparation was developed accordingly.
All the reactants and solvents were filtered or purified prior

to use. The acceptor, DQ, was sublimated twice. As RU is
not easily sublimed or recrystallized, it was dissolved in the
degassed solvent and then filtered (2µm filter) in the dark. Each
sample was prepared by serial dilution from stock solution. The
RU concentrations were 10-4 M, while the DQ concentration
varied from 0.05 to 0.33 M. Each solution was freeze-pump-
thaw cycled five times with liquid nitrogen to further reduce
the oxygen concentration. The final concentrations of DQ were
determined spectroscopically at 430 nm, after first correcting
for RU absorption at this wavelength. The extinction coefficient
is ε430

DQ ) 27.2 M-1cm-1.
The viscosities of the liquid solvents were measured using

an Ubbelohde viscometer. The values were found to be
independent of acceptor concentration. The high-frequency
dielectric constant of each solvent,εop, was determined from
the square of the index of refraction. These values were
obtained using an Abbee´ refractometer and agreed within error
with published values. The low-frequency dielectric constant
of DES, εs was found using a capacitance bridge. It was
observed to be constant over the range of 120 Hz to 1 kHz and
was independent of acceptor concentration. The value ofεs
for DBP and CHX were obtained from the literature.92

Figure 2. Excited-state survival probability〈Pex(t)〉 curves for three
concentrations calculated using both the experimental and theoretical
hard-sphereg(R) from Figure 1. The figure demonstrates that the hard-
sphereg(R) is an excellent approximation to an experimentalg(R) in
the forward electron-transfer calculations. Six curves are shown: a solid
and dashed line for each concentration (0.1, 0.2, and 0.3 M), with the
solid lines calculated using the experimentalg(R) and the dashed line
from the theoretical hard-sphereg(R). The solid lines were generated
with electron-transfer parameters:J0 ) 2.6 cm-1, â ) 0.67 Å-1, and
the dashed lines are the best fits to these parameters, using a hard-
sphereg(R) and J0 ) 2.7 cm-1 and â ) 0.66 Å-1. The dielectric
constants areεop ) 2.2 andεs ) 6.4,∆ε ) 1.85 eV, andD ) 12.0
Å2/ns.
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B. Time-Correlated Single-Photon Counting. The fluo-
rescence lifetime of the photoexcited donor and lifetimes of
donors quenched by forward electron transfer were measured
by time-correlated single-photon-counting experiments (TC-
SPC). A synch-pumped dye laser, cavity dumped at 800 kHz,
was pumped by a 41 MHz continuous-wave acoustooptically
mode-locked and frequency-doubled Nd:YAG laser. Fluores-
cein 548 dye, base shifted with NaOH, was used to obtain lasing
at 545-575 nm. The electron-transfer samples were excited
with vertically polarized 552 nm pulses of approximately 10
ps duration. Using a front-face geometry, the fluorescence was
collected by a lens and focused on the entrance slit of a
subtractive double monochromator. The detection apparatus
was polarized along the magic angle to remove decay of the
fluorescence arising from rotational diffusion. All fluorescence
frequencies to the red of 575 nm were passed by the mono-
chromator and collected by a multichannel plate detector
(Hamamatsu R2809-06). Narrow-band wavelength measure-
ments to the red of 575 nm were made at several wavelengths,
and there was no indication of a wavelength dependence of the
time evolution of the fluorescence. The instrument response
for each TCSPC fluorescence measurement was typically a 70
ps fwhm near-Gaussian line shape, with a tailing shoulder. The
instrument response was measured with each data set and used
for convolutions in the data analysis.
C. Measurements of Reaction Free Energies.The clas-

sical form of the Marcus theory distance-dependent electron-
transfer rate constants, given in eqs 1 and 2, require knowledge
of the free energy of reaction for each molecular system in each
solvent being studied. Distance dependent values of∆G(R)
were calculated using the Rehm-Weller equation44,45 (eq 3)
and redox potentials were obtained by cyclic voltammetry. The
energy of rubrene photoexcitation was taken to be 545 nm, the
wavelength at which the normalized absorption and fluorescence
spectra overlap.93

The oxidation and reduction potentials necessary for calculat-
ing ∆G were determined experimentally because literature
values are not available for low dielectric solvents such as
dibutyl phthalate (DBP) or diethyl sebacate (DES). Unlike polar
solvents in which the free energy of reaction varies only slightly
from one solvent to another, low dielectric constant solvents
generally show much larger variations. Several theoretical
methods of calculating the change in∆G caused by transferring
systems from one solvent to another have been proposed in the
literature.94,95 However, these methods give widely varying
results. This was particularly true in the lower dielectric
constant solvents, DBP and DES. As a result, it was necessary
to perform cyclic voltammetry experiments to obtain the∆G
values.
Accurate experimental determination of redox potentials in

low dielectric constant liquids is difficult for several reasons.
At the extreme voltages necessary to measure redox potentials
in low dielectric solvents, oxygen and water impurity signals
are found to be a significant problem. Also, addition of
electrolyte to nonpolar liquids can cause a premature rise in
current compared to the pure solvent. Nonetheless, the experi-
mentally determined values are expected to be substantially more
accurate than values obtained from theoretical corrections to
measurements performed in highly polar solvents.
Precautionary measures were taken to eliminate water and

oxygen impurities in all the solvents. Each sample was placed
over 4 Å activated molecular sieves for at least 24 h. All three
solvents were freeze-pump-thawed on a vacuum line, sealed
off, and opened in a glovebag under Ar. Experiments were
performed using a Bioanalytical Systems 10µm diameter Pt

ultramicroelectrode and an Ensman 400 dual-electrode poten-
tiostat in a two-electrode mode. The reference electrode was
an Ag wire. The reverse processes of RU reduction and DQ
oxidation did not interfere with the desired signals, so both
species were put into solution simultaneously. This allowed
the desired difference in redox potentials (∆ε ) ε0(RU,ox)-
ε0(DQ,red)) to be measured directly. As a supporting electro-
lyte, the salt tetrahexylammonium perchlorate (Fluka) was used
as received. Typical salt concentrations were between 1 and
30 mM. Decreasing the salt concentration by a factor of 10
was found to have no effect on the measured potentials. The
typical concentrations of the redox species were 0.1 mM.
Sigmoidal steady-state plots were taken for all three solvents.

The solvents with higher dielectric constants, DBP and CHX,
provided precise, reproducible∆G values. The solvent with
the lowest dielectric constant, DES, was more difficult to
measure, and the results were somewhat less reproducible. In
addition, anIR drop was observed in DES, and the results were
mathematically corrected. The error in∆G was(0.02 eV for
CHX and DBP and(0.1 eV for DES.

V. Results

Using the theory presented above, with appropriate values
for the system parameters discussed in section III, fits were
obtained for the time-dependent fluorescence quenching mea-
surements of RU and DQ in the three solvents. Values of the
through-solvent electron-transfer parameters,J0 and â, were
determined by comparison of the〈Pex(t)〉 calculations, convolved
with a measured instrument response, to TCSPC fluorescence
measurements. Several acceptor concentrations were studied
in each solvent. The best fit to each experimental curve was
determined by a least-squares fitting routine, using the downhill
simplex method of parameter optimization.55,96 To the extent
that the classical form of the Marcus rate coefficient (eq 1)
provides a full description of solute and solvent energies of
reaction, the two parametersJ0 and â are expected to have
reasonably consistent values for electron transfer between the
same donor and acceptor in any solvent.
In addition to the electron transfer parameters, there are a

variety of system parameters needed to fit the data. These are
given in Table 1. The free energy of reaction at each separation
distance,R, was calculated from the difference in redox
potential,∆ε, obtained from cyclic voltammetry measurements
described above. The Fick mutual diffusion coefficient between
RU and DQ was calculated using the measured viscosity at 25
°C, with the Spernol-Wirtz correction to the Stokes-Einstein
equation.65 The radiative lifetime,τ, of photoexcited rubrene
in each solvent was found by least-squares fit of a single-
exponential decay to fluorescence measurements taken in the
absence of duroquinone. These decays were observed to be
single exponentials over the full time scale of the experiment,
more than 5 lifetimes of RU in each solvent. The radial
distribution functions,g(R), were obtained using solutions to
the Percus-Yevick equations, with corrections due to Verlet

TABLE 1: Parameters Used To Analyze the
Electron-Transfer Data in Each Solventa

η (%) σ (Å) D (Å2/ns) εop εs ∆ε (eV) τ (ns)

DBP 54.0 7.70 13.2 2.2 6.4 1.85 15.5
DES 53.0 7.67 41.5 2.07 5.0 2.1 15.1
CHX 50.0 5.48 97.2 2.1 18.3 1.82 14.7

aDBP, dibutyl phthalate; DES, diethyl sebacate; CHX, cyclohex-
anone. η, hard sphere packing fraction;σ, hard sphere diameter;D,
diffusion constant;εop, high-frequency dielectric constant;εs, static
dielectric constant;∆ε, difference between RU and DQ redox potentials;
τ is the rubrene fluorescence lifetime.
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and Weis. These were calculated for systems of a homogeneous
solvent, with molecular diameters and packing fractions obtained
via the self-consistent method detailed in section IIIB.
The fluorescence quenching data of RU and DQ in each

solvent is presented with the fluorescence lifetime removed, in
order to more directly examine the process of electron transfer.
This was accomplished by dividing each decay by a single
exponential, obtained as a fit to the fluorescence decay of pure
RU in each solvent. The resulting files were then fit with
calculated〈Pex(t)〉 functions, each convolved with the measured
instrument response. Removing the contribution of the fluo-
rescence lifetime decay from the data allowed a more direct
comparison of the transfer dynamics for each acceptor concen-
tration but did not affect the choice of electron-transfer
parameters or the quality of the theoretical fits. This was
particularly useful for the higher viscosity solvents and lower
acceptor concentration samples, in which fluorescence plays a
significant role in the measured excited-state decay.
Figure 3 shows fluorescence quenching data of rubrene for

three concentrations of duroquinone in the solvent DBP. The
dashed lines are the best fits for each decay, as determined by
the method of minimization of least squares. All three
concentrations, 0.11, 0.22, and 0.33 M, were fit simultaneously
to obtain a singleø2 value used in the least-squares minimization.
The electron-transfer parameters for the best fit areJ0 ) 3.1
cm-1 andâ ) 0.6 Å-1. For given values of all the required
system parameters, such as∆ε, D, σ, andη, theJ0 andâ given
above were found to be the only transfer parameters which
correctly modeled the data. Estimation of the error bars on these
Marcus constants were obtained by varying the experimental
system parameters within the limits of their uncertainties. For
a particular set of values of all the system parameters, such as
those given in Table 1, it was found that the best fit value ofJ0
andâ were very precisely determined, with a variation in each
of less than(0.05. However, if the system parameters, i.e.,
∆ε, D, σ, andη, were varied, the observed best fit values ofJ0

andâ were again precisely determined, although the error bars
could be as large as(0.3 for J0 and(0.1 for â.
An important point to note about the values and error bars

on J0 and â is that for any given choice of all the system
parameters within the error bars of each, the sharp uniqueness
of the transfer parameters in DBP was always observed. In all
cases, only one particular set of values of the Marcus parameters
J0 and â fit the experimental decays accurately. Thus, for
electron transfer between RU and DQ in this solvent, the
distance dependence and magnitude of through-solvent electron
transfer is well defined by these parameters. However, although
the fits are unique, the determination ofJ0 and â relies on
accurate knowledge of the solvent structure, the form of the
hydrodynamic effect, and the diffusion constants. These
physical parameters may be difficult to obtain for a real
molecular liquid, and a contribution to theJ0 andâ error bars
is thus expected due to the extreme difficulty of calculating these
quantities accurately for a complex molecular system. Never-
theless, the theory presented here is the first to incorporate a
realistic description of solvent and hydrodynamic effects in a
detailed treatment of intermolecular electron transfer. TheJ0
andâ values reported here should be substantially more accurate
than values determined from fits which treat the liquid as a
featureless continuum. For molecular reactions in the Marcus
normal region, the dependence of the transfer rate on particle
separation is generally observed to be an exponential decay.
This falloff in transfer rate is specified in large part by the
parameterâ, as given in eq 1. By uniquely determining the
values of the Marcus rate parameters, the distance dependence
of charge transfer between RU and DQ in the solvent DBP is
well defined. The functional form ofkf(R) indicates that
molecules with 2-3 Å edge-to-edge separation are highly
involved in the electron-transfer process, and even molecules
with a 6 Å separation have a reasonable probability of reacting.
This emphasizes the fact that rather than occurring only at
molecular contact, electron-transfer reactions involve noncontact,
solvent-separated molecules.
The ability of the theory to fit the data with a unique pair of

transfer parameters was influenced by the viscosity of the
solvent. It has been observed in previous experiments analyzed
with the continuum theory4 that for systems with large mutual
diffusion rates, it is not possible to uniquely determine values
for J0 andâ. Instead, as was observed in the present experi-
ments for the two low-viscosity solvents, a range of pairs of
electron-transfer parameters is found to fit the experimental data
equally well. Although the DBP fits were unique, the range of
parameters capable of fitting the data increased for the solvents
DES and CHX, which have progressively larger diffusion
coefficients. The reason behind this trend can be qualitatively
understood from the following argument. In the limit of infinite
diffusion, every microstate of the electron-transfer system (one
donor surrounded by many acceptors, in a volume large enough
to effectively represent an infinite system on the time scale of
electron-transfer events) experiences an identical probability
distribution of acceptor particles. Each donor no longer sees a
unique acceptor configuration but rather sees a static configu-
ration given byp′(R), which is identical for every donor. Thus,
rather than having to average over all possible microstates of
the ensemble to obtain the observable〈Pex(t)〉, each microstate
is a representation of the ensemble average. In this case of
infinite diffusion rates, the functional form of the rate coefficient,
kf(R), becomes unimportant. Instead, the only relevant feature
is the spatial integral:97

Figure 3. Fluorescence quenching RU/DQ data in the solvent DBP,
with best-fit 〈Pex(t)〉 calculations. Three samples with different DQ
concentrations were studied experimentally, 0.11, 0.22, and 0.33 M,
with the highest concentration showing the fastest decay. The best-fit
parameters areJ0 ) 3.1 cm-1 andâ ) 0.6 Å-1 for a diffusion constant
of 13.2 Å2/ns, with a donor-acceptor contact distance of 7.9 Å.
Additional parameters are given in Table 1.

C∫Rm∞kf(R) p′(R) dR (16)
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Equation 16 defines an effective “reactive density,” and in the
limit of infinite diffusion, the decay of the excited-state prob-
ability is a simple exponential with a decay constant given by
eq 16. It is clear that in this case, the values of the individual
parametersJ0 andâ are no longer unique and separable. All
that is important is the choice of the two parameters simulta-
neously, such that the integral of eq 16 gives the appropriate
value. There are many functional forms ofkf(R) which can be
sufficient to give the correct exponential decay, and thus many
different pairs ofJ0 and â (chosen simultaneously) can be
adequate.
While this behavior does not rigorously hold for large, but

less than infinite, values of the diffusion coefficient, similar
results are observed. The uniqueness of the choice for the
transfer variables was related to the inverse of the magnitude
of D. Excellent theoretical fits to the fluorescence quenching
data in DES and CHX were found, but more than one pair of
J0 andâ is capable of fitting the data. For the moderate viscosity
solvent, DES, it was possible to find sets of the two transfer
parameters which fit the data with a range inâ between 0.3
and 1.0 Å-1. For all values ofâ within this range, there was a
corresponding unique value ofJ0. For values outside this range,
it was not possible to find any pair of the parameters which fit
the data. For the least viscous solvent, CHX, there were few
limitations on the magnitude of the parameters. For any value
of â greater than 0.2 Å-1, a single value ofJ0 could be found
which could provide an excellent fit to the data.
While the rates of diffusion for both DES and CHX are not

infinite, they are, on the time scale of typical through-solvent
electron-transfer events, quite fast. This leads to a complex
interplay between the magnitude ofD, the functional form of
kf(R), and the value of the integral given by eq 16. For
intermediate values ofD, various pairs ofJ0 andâ fit the data,
but these do not give rise to identical values of the reactive
density. Rather, there is a moderate range of values of the
reactive density that give appropriate〈Pex(t)〉 curves. AsD
becomes larger, such as for CHX, the dependence on the form
of kf(R) is further lessened. This results in a smaller spread in
the values of the reactive density which are capable of producing
the correct excited-state decay. At the same time, it becomes
more likely that any choice ofJ0 andâ which gives the proper
value of the reactive density will fit the data, regardless of the
functional form ofkf(R).
This behavior makes it impossible to determine independent

values ofJ0 andâ in very low viscosity solvents. However,
following the concepts of Marcus theory, the distance depen-
dence of through-solvent transfer for the same donor-acceptor
pair is expected to be similar in any solvent. This distance
dependence is largely governed by the magnitude ofâ, while
J0 acts as an amplitude factor. For this reason, the magnitude
of â obtained in the highest viscosity solvent, DBP was used
in the calculations of the data taken in DES and CHX. Figures
4 and 5 display the best fits to the data in DES and CHX,
respectively, withâ fixed at 0.6 Å-1. The optimal choice ofJ0
is 5.8 and 7.8 cm-1 in the two solvents, respectively. The
acceptor concentrations were 0.11, 0.22, and 0.30 M in DES
and 0.056, 0.11, and 0.22 M in CHX. In the limit that eqs 1
and 2 fully represent all the solvent and molecular interactions
inherent in through-solvent electron transfer, the magnitude of
J0 is expected to be similar in each solvent. TheJ0 values
obtained for these three solvents are relatively close. Ifâ is
allowed to vary a small amount, thenJ0 values can be brought
into closer agreement. Due to the possible errors in the
magnitudes of the input parameters, e.g., the diffusion constants

and the rdfs, it is not possible to determine if the small
differences in theJ0 andâ values needed to fit the data in the
three solvents are real. However, it is possible that some factors
which have been studied as extensions to Marcus theory play a
role in the dynamics of the rubrene-duroquinone system. For
example, contributions from single-mode or multimode vibra-
tional solvent coupling29,98,99may influence the transfer rate in
a manner that depends on the detailed molecular nature of the
solvent. These theoretical refinements can be included in
calculations of electron-transfer observables with only minor
changes to the mathematical methods described above.

Figure 4. Fluorescence quenching data and best fits to the excited-
state decay of the RU/DQ system in DES. The DQ concentrations are
0.11, 0.22, and 0.30 M, and the electron transfer parameters areJ0 )
5.8 cm-1 andâ ) 0.6 Å-1. The system parameters are given in Table
1.

Figure 5. Data and best fits to the excited-state decay of the RU/DQ
system in CHX. The DQ concentrations are 0.056, 0.11 and 0.22 M,
and the electron-transfer parameters areJ0 ) 7.8 cm-1 andâ ) 0.6
Å-1. The system parameters are given in Table 1.
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As a final check, it is important to examine the necessity of
including the physical corrections presented in this paper to the
statistical mechanical model. The basic form of the theory,
without including the effects of solvent structure and hydrody-
namic effect, has previously been used to examine and analyze
a number of experimental electron-transfer systems.4,32,100

However, as discussed above, the results obtained from this
analysis may incorrectly skew the values of the Marcus
parameters to account for the solvent effects which have been
ignored up to this point. A full comparison of the theoretical
methods which take these corrections into account to the original
uncorrected form has been presented recently.34 Most important,
however, is the quality with which the simple continuum solvent
form of the model can fit the reaction dynamics in highly viscous
solvents. Figure 6 presents the fluorescence quenching mea-
surements of rubrene and duroquinone in DBP, with the best
fits which could be obtained from the uncorrected form of the
theoretical model. The data is the same as Figure 3, and thus
the quality of the fits can be directly compared to those obtained
using the full theory including solvent structure and diffusion
effects. The best fits for the uncorrected model, as measured
by least-squares minimization, were obtained for the Marcus
parametersJ0 ) 7.8 cm-1 andâ ) 1.9 Å-1. It is clear that not
only is the simple form of the model unable to adequately fit
the excited state observable in this solvent, but the parameters
found for these fits were fundamentally different from the values
obtained using the full form of the theory. The inability of the
continuum solvent expressions to reproduce the experimental
data was most pronounced for the most viscous solvent, DBP.
For the more rapidly diffusing systems, DES and CHX, the
simple form of the theory was able to produce somewhat closer
fits to the measured data. However, it was observed for these
cases as well, that the best-fit Marcus parameters were found
to again be drastically different from those obtained using the
detailed calculation of〈Pex(t)〉. These results further emphasize
the importance of including the solvent structure details in the
theory as discussed in this paper.

VI. Concluding Remarks

This paper presents the first comprehensive analysis of
photoinduced electron transfer in liquids which correctly ac-
counts for the important effects of solvent structure and distance-
dependent diffusion rates. While earlier theoretical and experi-
mental studies have examined the through-solvent behavior and
dynamics of intermolecular charge transfer in liquids,11,14-16,22,24-26

the serious theoretical issues introduced by the finite volume
of solvent molecules have not been included in previous
experimental studies and have only recently been treated
theoretically.34

For a donor surrounded by many acceptors in a liquid, a key
component in understanding the dynamics of photoinduced
electron transfer in liquids is the spatial distribution of the
acceptors. This includes both the initial distribution and the
change in acceptor positions with time due to diffusion. For
studies in which the distance between the donor and a single
acceptor is fixed by chemical linkage, the difficulties associated
with time varying spatial distribution of acceptors in a liquid is
avoided. However, the questions that are addressed are also
fundamentally different. At a single fixed distance, it is only
possible to measure a single value for the transfer rate constant.
The important parameters in the Marcus theory,J0 andâ, cannot
be determined independently. Furthermore, the transfer rate
constant that is measured for a linked donor-acceptor system
arises in part, or can be dominated by, through-bond interactions.
If the linkage is made longer to examine the distance dependence
of the transfer rate, it is unclear how the change in the distance
plays off against the change in the nature of the linkage between
the donor and acceptor. Therefore, while linked systems can
provide important information on electron transfer, they cannot
fully address the nature of through-solvent transfer for donors
and acceptors that are not covalently coupled.
The experimental and theoretical techniques presented above

provide the most complete methods currently available for
obtaining values of the Marcus transfer parameters,J0 andâ,
for through-solvent electron transfer. Inclusion of the solvent
structure via the pair distribution function and incorporation of
a distance-dependent diffusion constant gives a much more
realistic description of the solvent than treatments which ignore
these effects. The rate parameters reported here are thus
expected to be the most accurate determined to date for
intermolecular electron transfer in liquids. However, these
results are contingent upon detailed knowledge of system
parameters such as the radial distribution function. Future work
will focus on obtaining these parameters more accurately.
Additionally, work is currently in progress analyzing the ion
kinetics from pump probe data.101 The ion kinetics provide an
additional check of the reliability of the forward transfer
parameters. This occurs because successful analysis of the ion
state probability requires a detailed knowledge of the ion
distribution created by forward transfer. Thus, pump-probe
experiments measuring ion recombination provide both informa-
tion on the dynamics of geminate recombination and also an
independent verification of the forward transfer analysis.
In general, it should be noted that the success and utility of

the detailed electron-transfer theory have been well demonstrated
by the fluorescence quenching measurements presented here.
The inclusion of solvent structure and hydrodynamic effects
have led to successful fits of the forward transfer kinetics for
rubrene and duroquinone in several solvents. The dynamics of
charge separation in the highest viscosity solution, DBP, was
uniquely specified by a well-defined pair of the transfer
parameters. The measured value ofâ ) 0.6 Å-1 is smaller
than commonly cited values of roughly 1.0 Å-1. However,

Figure 6. Data and best fits to the excited-state decay of RU/DQ in
DBP, using the simple theoretical model with no solvent structure
effects included. This demonstrates the inability of the uncorrected
model to fit some experimental systems. The best fit Marcus parameters
areJ0 ) 7.8 cm-1 andâ ) 1.9 Å-1. All other system parameters are
identical to those given in Figure 3.
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previous studies in liquids do not take the necessary solvent
effects into account, and covalently linked systems measure
through-bond charge separation rather than through-space
transfer.
The interesting behavior seen in the limit of fast diffusion

suggests further avenues of study in charge separation reactions.
Although the values forJ0 and â may not be able to be
determined independently in low-viscosity solvents without
additional study of higher viscosity solvents simultaneously,
information on the kinetics is still available. As the mutual
diffusion coefficient becomes large, the reactive density (given
by eq 16) becomes the identifiable parameter. Since the reactive
density should exhibit a direct dependence on∆G, free energy
studies may be more straightforward to accomplish in low-
viscosity solvents.
Finally, it is important to recognize that the study of electron

transfer among molecules freely diffusing in liquids or in other
types of systems, such as micelles,102 goes beyond trying to
determine the underlying molecular electron-transfer parameters.
Photoinduced electron-transfer redox chemistry in bulk systems
is an area of chemistry that can play an important role in solar
energy conversion. The major goal is to produce long-lived
charge separation so that the highly reactive radical ions may
go on to do useful chemistry. The experiments and theory
described in this paper provide insights into the complex kinetics
that occur in electron-transfer systems in solution. In a
subsequent publication,101 the same types of theoretical con-
siderations will be applied to experimental studies of geminate
recombination following photoinduced electron-transfer. An
understanding of the interplay of the many processes influencing
charge separation may lead to the ability to design useful
photochemical redox systems.
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