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Abstract We have developed a theoretical description of energy-transfer between
chromophores in various geometries which correspond to actual configurations of
polymers in a variety of materials. These include micelles with chromophores in the
core or in the corona, such as one might obtain with a diblock copolymer in which
chromophores are incorporated in one block, micelles with chromophores at the surface
or at the interface between blocks, lamellae, and balls. The distribution of chromophores
in this model can be random or described by a variety of functions to investigate
situations such as the packing of diblocks at the interface between two homopolymeric
phases and the expansion, contraction, or redistribution of micelle coronae which often
accompanies changes in solvent characteristics. The calculated quantity, Gs(t), is the
probability of finding an initially excited chromophore still in the excited state at time t,
and is directly related to fluorescence depolarization. The behavior of G3(t) in the cases
of chromophores randomly distributed in an infinite plane and on a sphere is compared
with analytical expressions in closed form for G%(t) in those conﬁ‘%urations; in the case
of a ball, Gs(t) is compared with a previously reported expression” for energy-transfer in
that geometry, and exact agreement is obtained. The sensitivity of this method is
explored by examining Gs(t) as a function of the shape and volume of the chromophore
distribution.

INTRODUCTION

Electronically excited chromophores can transfer excitation among themselves through
nonradiative transition dipole - transition dipole interactions, as described by Férster'. This
electronic excitation transport (EET) among chromophores has been modeled such that a
calculable quantity, G%(1), emerges, which is readily compared with experimental
observables. Gs(t) is a configuration-averaged probability that an excitation is on an
initially excited chromophore at time t, either because the excitation has not been
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transferred to another chromophore, or because it has been transferred away from and
returned to the initially excited chromophore. In a system containing a small number of
donors and a large number of molecules which accept an excitation from a donor and do not
pass it on (called a donor-trap, or DT system), G? (t)e (where 1 is the donor fluorescence
lifetime in the absence of traps), is simply equal to the donor fluorescence decay. Ina
system without traps, EET occurs among chromophores which will continually transfer
excitations (called a donor-donor, or DD system). In that case, the experimenter can excite
the chromophores with a polarized excitation beam, so that chromophores with a large
projection of the light's E -field along their absorption dipoles are selectively excited. The
time-dependent loss of fluorescence polarization anisotropy due to EET is very well
approximated by G5().

Huber? developed a cumulant expansion method for calculating G3(t) for EET among
randomly distributed chromophores in an infinite volume. The expansion was truncated to
first-order, such that only EET interactions between pairs of chromophores were
considered. Baumann and Fa\yer3 applied the theory to infinite one- and two-dimensional
systems.; Peterson and Fayer4 extended the theory to random distributions of chromophores
in restricted geometries, including a finite spherical volume and a volume with the Gaussian
morphology of a polymer chain, and Marcus and Fayer5 treated the problem of calculating
G(t) for EET between chromophores on a single sphere and on neighboring spheres. Here
we present further development of this theory, enabling us to model EET among
chromophores randomly and nonrandomly distributed in finite volumes having a variety of
shapes. The model is shown to behave exactly as predicted in those cases for which closed-

form analytical expressions describing EET are available.

RESULTS

G5(t) for Donor-Donor Transport in a Spherical Shell:
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where R;, and R, are the shell's inner and outer radii, respectively; N is the number of
chromophores; t is time; R, is the Forster radius; 7 is the fluorescence lifetime; r; and r, are
the distances from the origin for the initially excited chromophore (1) and the chromophore
to which the excitation is passed (2), respectively, and 8, and 6, are the angles between the
sphere's z-axis and the radii pointing to chromophores 1 and 2, respectively.
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FIGURE 1 (left) Comparison of Eqn. 1 applied to chromophores randomly distributed
in a ball, with Eqn. 9 from Peterson and Fayer".
FIGURE 2 (right) Comparison of Eqn. 1 applied to chromophores randomly

distributed on a very thin spherical shell with Eqn. 4.6b from Marcus and Fayer".

Figure 1 compares the behavior of the expression for G%t)ina spherical shell (Eqn. 1,
filled circles) with that of Eqn. 9 in Peterson and Fayer® (line) for chromophores randomly
distributed in a ball, where R is the radius of the ball. Here, R,;=0, R ,=R.=18.5 A,
Ry=12.3A, and N=30. The units of the x-axis are donor fluorescence lifetimes. This
demonstrates that the changes made to the pre-existing expression for G3(t) do not make the
expression less applicable to systems already studied. Figure 2 shows the behavior of Eqn. 1
when the inner and outer radii of the shell differ by 0.0001 A, and R, is on the order of the
shell radius. This approximates the situation in which chromophores are confined to a
spherical surface, for which there is an analytical expression in closed form, Eqn. 4.6b in
Marcus and F ay_ers. Points calculated using that expression are represented by a line. The
dots were generated using Eqn. 1. The radii of shell and sphere are 374; R, is 51.5A.
Numerical calculations of Eqn. 1 look like the exact solutions for G(t) for chromophores
randomly distributed on a sphere. Figure 3 shows how Eqn. 1 looks in the limit of an
infinite plane. The plane is 0.0001A thick, and R, and R, are 500 times R,. This results in
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chromophores being extremely unlikely to transfer excitations through the core of the
sphere, so that effectively, the chromophores only transfer among themselves in a plane.
The dots were calculated with Eqn. 1; the line was calculated using Eqn. 4.6a in Marcus and
Fayer’, which was adapted from Baumann and Fayer3. Numerical calculations of Eqn. 1
very closely resemble the exact solutions for Gs(t) in an infinite plane; the slight
underestimate at shorter times may be due to rounding errors in the numerical calculation,
or to the fact that Eqn. 1 is used in a finite geometry.
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FIGURE 3 (left) Comparison of Eqn. 1 applied to chromophores randomly distributed
on a very thin shell whose radius is large with respect to R, with an expression for EET
in an infinite plane3'5.

FIGURE 4 (right) Sensitivity of Gs(t) to coronal swelling in micelles.

Figure 4 demonstrates that fluorescence anisotropy decays should change noticeably in
an experimentally tractable system. Suppose we have micelles comprised of diblock
copolymers in which one block is hydrophobic, and the other block is hydrophilic and bears
chromophores. The micelles are formed in an aqueous solution. In this example, we look at
the calculated fluorescence anisotropy decays from micelles with cores of 8 A radius which
have 30 2-vinyl naphthalene chromophores randomly packed in coronae which are 8 A
thick (solid line). If a change in solvent characteristics, such as addition of electrolytes,
were to cause the coronae to swell by 1 A in radius, the decay should look like the long-
dashed line. Further swelling, to 2.5 A, results in the dashed line, and swelling to 7 A gives
rise to the dotted line. In this case, we expect to be able to detect swelling of the coronae by
about 2 A. This method and model should allow us to study subtle changes in micellar

structure.
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